Synthesis and characterization of porous silicon as hydroxyapatite host matrix of biomedical applications

In this work, porous-silicon samples were prepared by electrochemical etching on p-type (Bdoped) Silicon (Si) wafers. Hydrofluoric acid (HF)-ethanol (C2H5OH) [HF:Et] and Hydrofluoric acid (HF)-dimethylformamide (DMF-C3H7NO) [HF:DMF] solution concentrations were varied between [1:2]-[1:3] and [1:7]-[...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2017
Institución:
Universidad del Rosario
Repositorio:
Repositorio EdocUR - U. Rosario
Idioma:
eng
OAI Identifier:
oai:repository.urosario.edu.co:10336/18791
Acceso en línea:
https://doi.org/10.1371/journal.pone.0173118
http://repository.urosario.edu.co/handle/10336/18791
Palabra clave:
Alcohol
Ácido fluorhídrico
Electrón
Dimetilformamida
Hidroxiapatita
Exploración
Silicio
Biomaterial
Fuerza atómica microscópica
Ingeniería Biomédica
Análisis químico
Concentración (Parámetros)
Electroquímica
Química Física
Parámetros físicos
Porosidad
Tiempo de reacción
Microscopía electrónica de barrido
Síntesis
Difracción de rayos X
Química
Materiales biocompatibles
Mala suerte
Biocompatible Materials
Hydrofluoric Acid
Reaction Time
Hydroxyapatite
Electron
Scanning
Dimethylformamide
Biomaterial
Atomic Force Microscopy
Silicon
Chemical Analysis
Biomedical Engineering
Concentration (Parameters)
Electrochemistry
Physical Parameters
PorosityPhysical Chemistry
Synthesis
Scanning Electron
Microscopy
X Ray Diffraction
Durapatite
Chemistry
Alcohol
Microscopia de fuerza atómica
Ciencias médicas
Rights
License
Abierto (Texto Completo)
Description
Summary:In this work, porous-silicon samples were prepared by electrochemical etching on p-type (Bdoped) Silicon (Si) wafers. Hydrofluoric acid (HF)-ethanol (C2H5OH) [HF:Et] and Hydrofluoric acid (HF)-dimethylformamide (DMF-C3H7NO) [HF:DMF] solution concentrations were varied between [1:2]-[1:3] and [1:7]-[1:9], respectively. Effects of synthesis parameters, like current density, solution concentrations, reaction time, on morphological properties were studied by scanning electron microscopy (SEM) and atomic force microscopy (AFM) measurements. Pore sizes varying from 20 nm to micrometers were obtained for long reaction times and [HF:Et] [1:2] concentrations; while pore sizes in the same order were observed for [HF:DMF] [1:7], but for shorter reaction time. Greater surface uniformity and pore distribution was obtained for a current density of around 8 mA/cm2 using solutions with DMF. A correlation between reflectance measurements and pore size is presented. The porous-silicon samples were used as substrate for hydroxyapatite growth by sol-gel method. X-ray diffraction (XRD) and SEM were used to characterize the layers grown. It was found that the layer topography obtained on PS samples was characterized by the evidence of Hydroxyapatite in the inter-pore regions and over the surface. © 2017 Dussan et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.