Quantifying the impact of replication on the quality-of-service in cloud databases
Cloud databases achieve high availability by automatically replicating data on multiple nodes. However, the overhead caused by the replication process can lead to an increase in the mean and variance of transaction response times, causing unforeseen impacts on the offered quality-of-service (QoS). I...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2016
- Institución:
- Universidad del Rosario
- Repositorio:
- Repositorio EdocUR - U. Rosario
- Idioma:
- eng
- OAI Identifier:
- oai:repository.urosario.edu.co:10336/28490
- Acceso en línea:
- https://doi.org/10.1109/QRS.2016.40
https://repository.urosario.edu.co/handle/10336/28490
- Palabra clave:
- Time factors
Quality of service
Data models
Standards
Relational databases
Computational modeling
- Rights
- License
- Restringido (Acceso a grupos específicos)
id |
EDOCUR2_640afff40a8a3245d13a13bb5697f2c7 |
---|---|
oai_identifier_str |
oai:repository.urosario.edu.co:10336/28490 |
network_acronym_str |
EDOCUR2 |
network_name_str |
Repositorio EdocUR - U. Rosario |
repository_id_str |
|
spelling |
7d71128f-508a-4afc-bc9d-f913653f997680035202600693f31c7-5e59-4d88-b96a-2175836ec1b02020-08-28T15:49:13Z2020-08-28T15:49:13Z2016-10-13Cloud databases achieve high availability by automatically replicating data on multiple nodes. However, the overhead caused by the replication process can lead to an increase in the mean and variance of transaction response times, causing unforeseen impacts on the offered quality-of-service (QoS). In this paper, we propose a measurement-driven methodology to predict the impact of replication on Database-as-a-Service (DBaaS) environments. Our methodology uses operational data to parameterize a closed queueing network model of the database cluster together with a Markov model that abstracts the dynamic replication process. Experiments on Amazon RDS show that our methodology predicts response time mean and percentiles with errors of just 1% and 15% respectively, and under operational conditions that are significantly different from the ones used for model parameterization. We show that our modeling approach surpasses standard modeling methods and illustrate the applicability of our methodology for automated DBaaS provisioning.application/pdfhttps://doi.org/10.1109/QRS.2016.40ISBN: 978-1-5090-4128-2EISBN: 978-1-5090-4127-5https://repository.urosario.edu.co/handle/10336/28490engIEEE2972682016 IEEE International Conference on Software Quality, Reliability and Security (QRS)IEEE International Conference on Software Quality, Reliability and Security (QRS), ISBN: 978-1-5090-4128-2;EISBN: 978-1-5090-4127-5 (2016); pp. 268-297https://ieeexplore.ieee.org/document/7589808Restringido (Acceso a grupos específicos)http://purl.org/coar/access_right/c_16ec2016 IEEE International Conference on Software Quality, Reliability and Security (QRS)instname:Universidad del Rosarioreponame:Repositorio Institucional EdocURTime factorsQuality of serviceData modelsStandardsRelational databasesComputational modelingQuantifying the impact of replication on the quality-of-service in cloud databasesCuantificar el impacto de la replicación en la calidad del servicio en las bases de datos en la nubebookPartParte de librohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_3248Osman, RashaPérez, Juan F.Casale, Giuliano10336/28490oai:repository.urosario.edu.co:10336/284902021-09-23 12:54:05.459https://repository.urosario.edu.coRepositorio institucional EdocURedocur@urosario.edu.co |
dc.title.spa.fl_str_mv |
Quantifying the impact of replication on the quality-of-service in cloud databases |
dc.title.TranslatedTitle.spa.fl_str_mv |
Cuantificar el impacto de la replicación en la calidad del servicio en las bases de datos en la nube |
title |
Quantifying the impact of replication on the quality-of-service in cloud databases |
spellingShingle |
Quantifying the impact of replication on the quality-of-service in cloud databases Time factors Quality of service Data models Standards Relational databases Computational modeling |
title_short |
Quantifying the impact of replication on the quality-of-service in cloud databases |
title_full |
Quantifying the impact of replication on the quality-of-service in cloud databases |
title_fullStr |
Quantifying the impact of replication on the quality-of-service in cloud databases |
title_full_unstemmed |
Quantifying the impact of replication on the quality-of-service in cloud databases |
title_sort |
Quantifying the impact of replication on the quality-of-service in cloud databases |
dc.subject.keyword.spa.fl_str_mv |
Time factors Quality of service Data models Standards Relational databases Computational modeling |
topic |
Time factors Quality of service Data models Standards Relational databases Computational modeling |
description |
Cloud databases achieve high availability by automatically replicating data on multiple nodes. However, the overhead caused by the replication process can lead to an increase in the mean and variance of transaction response times, causing unforeseen impacts on the offered quality-of-service (QoS). In this paper, we propose a measurement-driven methodology to predict the impact of replication on Database-as-a-Service (DBaaS) environments. Our methodology uses operational data to parameterize a closed queueing network model of the database cluster together with a Markov model that abstracts the dynamic replication process. Experiments on Amazon RDS show that our methodology predicts response time mean and percentiles with errors of just 1% and 15% respectively, and under operational conditions that are significantly different from the ones used for model parameterization. We show that our modeling approach surpasses standard modeling methods and illustrate the applicability of our methodology for automated DBaaS provisioning. |
publishDate |
2016 |
dc.date.created.spa.fl_str_mv |
2016-10-13 |
dc.date.accessioned.none.fl_str_mv |
2020-08-28T15:49:13Z |
dc.date.available.none.fl_str_mv |
2020-08-28T15:49:13Z |
dc.type.eng.fl_str_mv |
bookPart |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_3248 |
dc.type.spa.spa.fl_str_mv |
Parte de libro |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.1109/QRS.2016.40 |
dc.identifier.issn.none.fl_str_mv |
ISBN: 978-1-5090-4128-2 EISBN: 978-1-5090-4127-5 |
dc.identifier.uri.none.fl_str_mv |
https://repository.urosario.edu.co/handle/10336/28490 |
url |
https://doi.org/10.1109/QRS.2016.40 https://repository.urosario.edu.co/handle/10336/28490 |
identifier_str_mv |
ISBN: 978-1-5090-4128-2 EISBN: 978-1-5090-4127-5 |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.relation.citationEndPage.none.fl_str_mv |
297 |
dc.relation.citationStartPage.none.fl_str_mv |
268 |
dc.relation.citationTitle.none.fl_str_mv |
2016 IEEE International Conference on Software Quality, Reliability and Security (QRS) |
dc.relation.ispartof.spa.fl_str_mv |
IEEE International Conference on Software Quality, Reliability and Security (QRS), ISBN: 978-1-5090-4128-2;EISBN: 978-1-5090-4127-5 (2016); pp. 268-297 |
dc.relation.uri.spa.fl_str_mv |
https://ieeexplore.ieee.org/document/7589808 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_16ec |
dc.rights.acceso.spa.fl_str_mv |
Restringido (Acceso a grupos específicos) |
rights_invalid_str_mv |
Restringido (Acceso a grupos específicos) http://purl.org/coar/access_right/c_16ec |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
IEEE |
dc.source.spa.fl_str_mv |
2016 IEEE International Conference on Software Quality, Reliability and Security (QRS) |
institution |
Universidad del Rosario |
dc.source.instname.none.fl_str_mv |
instname:Universidad del Rosario |
dc.source.reponame.none.fl_str_mv |
reponame:Repositorio Institucional EdocUR |
repository.name.fl_str_mv |
Repositorio institucional EdocUR |
repository.mail.fl_str_mv |
edocur@urosario.edu.co |
_version_ |
1818106477804519424 |