Quantifying the impact of replication on the quality-of-service in cloud databases

Cloud databases achieve high availability by automatically replicating data on multiple nodes. However, the overhead caused by the replication process can lead to an increase in the mean and variance of transaction response times, causing unforeseen impacts on the offered quality-of-service (QoS). I...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2016
Institución:
Universidad del Rosario
Repositorio:
Repositorio EdocUR - U. Rosario
Idioma:
eng
OAI Identifier:
oai:repository.urosario.edu.co:10336/28490
Acceso en línea:
https://doi.org/10.1109/QRS.2016.40
https://repository.urosario.edu.co/handle/10336/28490
Palabra clave:
Time factors
Quality of service
Data models
Standards
Relational databases
Computational modeling
Rights
License
Restringido (Acceso a grupos específicos)
id EDOCUR2_640afff40a8a3245d13a13bb5697f2c7
oai_identifier_str oai:repository.urosario.edu.co:10336/28490
network_acronym_str EDOCUR2
network_name_str Repositorio EdocUR - U. Rosario
repository_id_str
spelling 7d71128f-508a-4afc-bc9d-f913653f997680035202600693f31c7-5e59-4d88-b96a-2175836ec1b02020-08-28T15:49:13Z2020-08-28T15:49:13Z2016-10-13Cloud databases achieve high availability by automatically replicating data on multiple nodes. However, the overhead caused by the replication process can lead to an increase in the mean and variance of transaction response times, causing unforeseen impacts on the offered quality-of-service (QoS). In this paper, we propose a measurement-driven methodology to predict the impact of replication on Database-as-a-Service (DBaaS) environments. Our methodology uses operational data to parameterize a closed queueing network model of the database cluster together with a Markov model that abstracts the dynamic replication process. Experiments on Amazon RDS show that our methodology predicts response time mean and percentiles with errors of just 1% and 15% respectively, and under operational conditions that are significantly different from the ones used for model parameterization. We show that our modeling approach surpasses standard modeling methods and illustrate the applicability of our methodology for automated DBaaS provisioning.application/pdfhttps://doi.org/10.1109/QRS.2016.40ISBN: 978-1-5090-4128-2EISBN: 978-1-5090-4127-5https://repository.urosario.edu.co/handle/10336/28490engIEEE2972682016 IEEE International Conference on Software Quality, Reliability and Security (QRS)IEEE International Conference on Software Quality, Reliability and Security (QRS), ISBN: 978-1-5090-4128-2;EISBN: 978-1-5090-4127-5 (2016); pp. 268-297https://ieeexplore.ieee.org/document/7589808Restringido (Acceso a grupos específicos)http://purl.org/coar/access_right/c_16ec2016 IEEE International Conference on Software Quality, Reliability and Security (QRS)instname:Universidad del Rosarioreponame:Repositorio Institucional EdocURTime factorsQuality of serviceData modelsStandardsRelational databasesComputational modelingQuantifying the impact of replication on the quality-of-service in cloud databasesCuantificar el impacto de la replicación en la calidad del servicio en las bases de datos en la nubebookPartParte de librohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_3248Osman, RashaPérez, Juan F.Casale, Giuliano10336/28490oai:repository.urosario.edu.co:10336/284902021-09-23 12:54:05.459https://repository.urosario.edu.coRepositorio institucional EdocURedocur@urosario.edu.co
dc.title.spa.fl_str_mv Quantifying the impact of replication on the quality-of-service in cloud databases
dc.title.TranslatedTitle.spa.fl_str_mv Cuantificar el impacto de la replicación en la calidad del servicio en las bases de datos en la nube
title Quantifying the impact of replication on the quality-of-service in cloud databases
spellingShingle Quantifying the impact of replication on the quality-of-service in cloud databases
Time factors
Quality of service
Data models
Standards
Relational databases
Computational modeling
title_short Quantifying the impact of replication on the quality-of-service in cloud databases
title_full Quantifying the impact of replication on the quality-of-service in cloud databases
title_fullStr Quantifying the impact of replication on the quality-of-service in cloud databases
title_full_unstemmed Quantifying the impact of replication on the quality-of-service in cloud databases
title_sort Quantifying the impact of replication on the quality-of-service in cloud databases
dc.subject.keyword.spa.fl_str_mv Time factors
Quality of service
Data models
Standards
Relational databases
Computational modeling
topic Time factors
Quality of service
Data models
Standards
Relational databases
Computational modeling
description Cloud databases achieve high availability by automatically replicating data on multiple nodes. However, the overhead caused by the replication process can lead to an increase in the mean and variance of transaction response times, causing unforeseen impacts on the offered quality-of-service (QoS). In this paper, we propose a measurement-driven methodology to predict the impact of replication on Database-as-a-Service (DBaaS) environments. Our methodology uses operational data to parameterize a closed queueing network model of the database cluster together with a Markov model that abstracts the dynamic replication process. Experiments on Amazon RDS show that our methodology predicts response time mean and percentiles with errors of just 1% and 15% respectively, and under operational conditions that are significantly different from the ones used for model parameterization. We show that our modeling approach surpasses standard modeling methods and illustrate the applicability of our methodology for automated DBaaS provisioning.
publishDate 2016
dc.date.created.spa.fl_str_mv 2016-10-13
dc.date.accessioned.none.fl_str_mv 2020-08-28T15:49:13Z
dc.date.available.none.fl_str_mv 2020-08-28T15:49:13Z
dc.type.eng.fl_str_mv bookPart
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_3248
dc.type.spa.spa.fl_str_mv Parte de libro
dc.identifier.doi.none.fl_str_mv https://doi.org/10.1109/QRS.2016.40
dc.identifier.issn.none.fl_str_mv ISBN: 978-1-5090-4128-2
EISBN: 978-1-5090-4127-5
dc.identifier.uri.none.fl_str_mv https://repository.urosario.edu.co/handle/10336/28490
url https://doi.org/10.1109/QRS.2016.40
https://repository.urosario.edu.co/handle/10336/28490
identifier_str_mv ISBN: 978-1-5090-4128-2
EISBN: 978-1-5090-4127-5
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.citationEndPage.none.fl_str_mv 297
dc.relation.citationStartPage.none.fl_str_mv 268
dc.relation.citationTitle.none.fl_str_mv 2016 IEEE International Conference on Software Quality, Reliability and Security (QRS)
dc.relation.ispartof.spa.fl_str_mv IEEE International Conference on Software Quality, Reliability and Security (QRS), ISBN: 978-1-5090-4128-2;EISBN: 978-1-5090-4127-5 (2016); pp. 268-297
dc.relation.uri.spa.fl_str_mv https://ieeexplore.ieee.org/document/7589808
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
dc.rights.acceso.spa.fl_str_mv Restringido (Acceso a grupos específicos)
rights_invalid_str_mv Restringido (Acceso a grupos específicos)
http://purl.org/coar/access_right/c_16ec
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv IEEE
dc.source.spa.fl_str_mv 2016 IEEE International Conference on Software Quality, Reliability and Security (QRS)
institution Universidad del Rosario
dc.source.instname.none.fl_str_mv instname:Universidad del Rosario
dc.source.reponame.none.fl_str_mv reponame:Repositorio Institucional EdocUR
repository.name.fl_str_mv Repositorio institucional EdocUR
repository.mail.fl_str_mv edocur@urosario.edu.co
_version_ 1818106477804519424