Detección de melanoma cutáneo a través de la regla ABCD usando algoritmos de aprendizaje profundo

El melanoma es un tipo de cáncer de piel que afecta los melanocitos, estas son las células encargadas de la producción de melanina, esta neoplasia es la de mayor mortalidad de todos los cánceres de piel. Durante los últimos años se ha venido presentando un aumento de nuevos casos, por ejemplo, en Co...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2024
Institución:
Universidad del Rosario
Repositorio:
Repositorio EdocUR - U. Rosario
Idioma:
spa
OAI Identifier:
oai:repository.urosario.edu.co:10336/42244
Acceso en línea:
https://doi.org/10.48713/10336_42244
https://repository.urosario.edu.co/handle/10336/42244
Palabra clave:
Aprendizaje de máquina
Aprendizaje profundo
Clasificación
Melanoma
Regla ABCD
ABCD rule
Classification
Deep learning
Machine learning
Melanoma
Rights
License
Attribution-NonCommercial-ShareAlike 4.0 International
Description
Summary:El melanoma es un tipo de cáncer de piel que afecta los melanocitos, estas son las células encargadas de la producción de melanina, esta neoplasia es la de mayor mortalidad de todos los cánceres de piel. Durante los últimos años se ha venido presentando un aumento de nuevos casos, por ejemplo, en Colombia las cifras dadas por la Cuenta de Alto Costo lo ubicaron en 2021 como el octavo tumor más frecuente según el número de diagnósticos registrados, y la mortalidad aumentó un 30\% en comparación con el año anterior. Hoy en día existen una gran cantidad de métodos y técnicas para identificarlo en sus etapas tempranas, siendo una de ellas la regla ABCD, la cual a través de las características físicas del lunar puede determinar la sospecha de que este tenga células cancerosas, de manera específica: Si el lunar es asimétrico (A), tiene bordes irregulares (B), más de uno o dos colores (C) y un diámetro mayor a 6 mm (D) tiene una alta probabilidad de que sea melanoma, esta regla ha ganado bastante aceptación clínica para la identificación de esta enfermedad. Con base en esto, el objetivo de este trabajo de maestría fue la adaptación de modelos basados en aprendizaje profundo para la estimación automática de características que puedan clasificar lunares como benignos o malignos, con validación en imágenes obtenidas de la base de datos del \textit{International Skin Imaging Collaboration (ISIC) Challenge Dataset}. Para ello se usaron técnicas clásicas de procesamiento de imágenes para calcular las características ABCD de toda la base de datos y luego se realizó el entrenamiento para clasificación usando: las características, las imágenes y ambos conjuntos de datos, con esto se obtuvo que aquellos modelos donde se usaron tanto las características como las imágenes tuvieron un mejor desempeño, alcanzando mejores métricas de desempeño tanto en entrenamiento como en prueba.