Functional, structural, and immunological compartmentalisation of malaria invasive proteins

Conserved Plasmodium falciparum merozoite high activity binding peptides (HABPs) involved in red blood cell (RBC) invasion which are present in merozoite surface proteins (MSPs) involved in attachment, rolling over RBC, those derived from soluble proteins loosely bound to the membrane, and those pre...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2007
Institución:
Universidad del Rosario
Repositorio:
Repositorio EdocUR - U. Rosario
Idioma:
eng
OAI Identifier:
oai:repository.urosario.edu.co:10336/25937
Acceso en línea:
https://doi.org/10.1016/j.bbrc.2006.12.220
https://repository.urosario.edu.co/handle/10336/25937
Palabra clave:
Malaria
Invasive proteins
Compartmentalisation
Structure
Rights
License
Restringido (Acceso a grupos específicos)
Description
Summary:Conserved Plasmodium falciparum merozoite high activity binding peptides (HABPs) involved in red blood cell (RBC) invasion which are present in merozoite surface proteins (MSPs) involved in attachment, rolling over RBC, those derived from soluble proteins loosely bound to the membrane, and those present in microneme and rhoptry organelles have an ?-helical structure and bind with high affinity to HLA-DR52 molecules. On the contrary, conserved HABPs belonging to molecules anchored to the membrane by a GPI tail, or a transmembranal region, or those molecules presenting PEXEL motifs have a strand, turn or unordered configuration and bind with high affinity to HLA-DR53 molecules. Such functional, cellular, structural, and immunological compartmentalisation has tremendous implications in subunit-based, multi-epitope, synthetic, anti-malarial vaccine development.