Portraying the gut bacterial communities and blood feeding sources of triatomine bugs (Hemiptera : Reduviidae), vectors of Chagas disease
Se realizó una primera caracterización del bacterioma intestinal de triatominos capturados en condiciones naturales en Colombia dada la falta de información sobre este bacterioma y los cambios que puede tener cuando Trypanosoma cruzi está presente o la fuente alimenticia del insecto cambia
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2019
- Institución:
- Universidad del Rosario
- Repositorio:
- Repositorio EdocUR - U. Rosario
- Idioma:
- spa
- OAI Identifier:
- oai:repository.urosario.edu.co:10336/19038
- Acceso en línea:
- https://doi.org/10.48713/10336_19038
http://repository.urosario.edu.co/handle/10336/19038
- Palabra clave:
- Secuenciación de última generación
Bacterioma
Triatominae
Trypanosoma cruzi
Fuente alimenticia
Enfermedades
Next-generation sequencing
Bacteriome
Triatominae
Trypanosoma cruzi
Feeding source
Enfermedad de chagas
Hemipteros
- Rights
- License
- Atribución-NoComercial-SinDerivadas 2.5 Colombia
id |
EDOCUR2_5d3a9152ffa4c76fc15de33b0cf89bd0 |
---|---|
oai_identifier_str |
oai:repository.urosario.edu.co:10336/19038 |
network_acronym_str |
EDOCUR2 |
network_name_str |
Repositorio EdocUR - U. Rosario |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Portraying the gut bacterial communities and blood feeding sources of triatomine bugs (Hemiptera : Reduviidae), vectors of Chagas disease |
title |
Portraying the gut bacterial communities and blood feeding sources of triatomine bugs (Hemiptera : Reduviidae), vectors of Chagas disease |
spellingShingle |
Portraying the gut bacterial communities and blood feeding sources of triatomine bugs (Hemiptera : Reduviidae), vectors of Chagas disease Secuenciación de última generación Bacterioma Triatominae Trypanosoma cruzi Fuente alimenticia Enfermedades Next-generation sequencing Bacteriome Triatominae Trypanosoma cruzi Feeding source Enfermedad de chagas Hemipteros |
title_short |
Portraying the gut bacterial communities and blood feeding sources of triatomine bugs (Hemiptera : Reduviidae), vectors of Chagas disease |
title_full |
Portraying the gut bacterial communities and blood feeding sources of triatomine bugs (Hemiptera : Reduviidae), vectors of Chagas disease |
title_fullStr |
Portraying the gut bacterial communities and blood feeding sources of triatomine bugs (Hemiptera : Reduviidae), vectors of Chagas disease |
title_full_unstemmed |
Portraying the gut bacterial communities and blood feeding sources of triatomine bugs (Hemiptera : Reduviidae), vectors of Chagas disease |
title_sort |
Portraying the gut bacterial communities and blood feeding sources of triatomine bugs (Hemiptera : Reduviidae), vectors of Chagas disease |
dc.contributor.advisor.none.fl_str_mv |
Ramírez, Juan David |
dc.subject.spa.fl_str_mv |
Secuenciación de última generación Bacterioma Triatominae Trypanosoma cruzi Fuente alimenticia |
topic |
Secuenciación de última generación Bacterioma Triatominae Trypanosoma cruzi Fuente alimenticia Enfermedades Next-generation sequencing Bacteriome Triatominae Trypanosoma cruzi Feeding source Enfermedad de chagas Hemipteros |
dc.subject.ddc.spa.fl_str_mv |
Enfermedades |
dc.subject.keyword.spa.fl_str_mv |
Next-generation sequencing Bacteriome Triatominae Trypanosoma cruzi Feeding source |
dc.subject.lemb.spa.fl_str_mv |
Enfermedad de chagas Hemipteros |
description |
Se realizó una primera caracterización del bacterioma intestinal de triatominos capturados en condiciones naturales en Colombia dada la falta de información sobre este bacterioma y los cambios que puede tener cuando Trypanosoma cruzi está presente o la fuente alimenticia del insecto cambia |
publishDate |
2019 |
dc.date.accessioned.none.fl_str_mv |
2019-02-11T19:12:51Z |
dc.date.available.none.fl_str_mv |
2019-02-11T19:12:51Z |
dc.date.created.none.fl_str_mv |
2019-02-05 |
dc.date.issued.none.fl_str_mv |
2019 |
dc.type.eng.fl_str_mv |
bachelorThesis |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.document.spa.fl_str_mv |
Artículo |
dc.type.spa.spa.fl_str_mv |
Trabajo de grado |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.48713/10336_19038 |
dc.identifier.uri.none.fl_str_mv |
http://repository.urosario.edu.co/handle/10336/19038 |
url |
https://doi.org/10.48713/10336_19038 http://repository.urosario.edu.co/handle/10336/19038 |
dc.language.iso.none.fl_str_mv |
spa |
language |
spa |
dc.rights.spa.fl_str_mv |
Atribución-NoComercial-SinDerivadas 2.5 Colombia Atribución-NoComercial-SinDerivadas 2.5 Colombia |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.acceso.spa.fl_str_mv |
Abierto (Texto Completo) |
dc.rights.uri.none.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/2.5/co/ |
rights_invalid_str_mv |
Atribución-NoComercial-SinDerivadas 2.5 Colombia Abierto (Texto Completo) http://creativecommons.org/licenses/by-nc-nd/2.5/co/ http://purl.org/coar/access_right/c_abf2 |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad del Rosario |
dc.publisher.department.spa.fl_str_mv |
Facultad de Ciencias Naturales y Matemáticas |
dc.publisher.program.spa.fl_str_mv |
Biología |
institution |
Universidad del Rosario |
dc.source.bibliographicCitation.spa.fl_str_mv |
Rassi A, Rassi A, Marin-Neto JA. Chagas disease. Lancet 2010;375:1388–402. Zingales B, Andrade SG, Briones MR, Campbell DA, Chiari E, Fernandes O, et al. A new consensus for Trypanosoma cruzi intraspecific nomenclature: second revision meeting recommends TcI to TcVI. Mem Inst Oswaldo Cruz. 2009;104:1051–4. Tyler KM, Engman DM. The life cycle of Trypanosoma cruzi revisited. Int J Parasitol. 2001;31:472–81. Azambuja P, Ratcliffe NA, Garcia ES. Towards an understanding of the interactions of Trypanosoma cruzi and Trypanosoma rangeli within the reduviid insect host Rhodnius prolixus. An Acad Bras Cienc. 2005;77:397–404. Vallejo GA, Guhl F, Schaub GA. Triatominae–Trypanosoma cruzi/T. rangeli: vector–parasite interactions. Acta Trop. 2009;110:137–47. Díaz S, Villavicencio B, Correia N, Costa J, Haag KL. Triatomine bugs, their microbiota and Trypanosoma cruzi: Asymmetric responses of bacteria to an infected blood meal. Parasit Vectors 2016;9:1–11. de Fuentes-Vicente JA, Gutiérrez-Cabrera AE, Flores-Villegas AL, Lowenberger C, Benelli G, Salazar-Schettino PM, et al. What makes an effective Chagas disease vector? Factors underlying Trypanosoma cruzi -triatomine interactions. Acta Trop. 2018;183:23–31. Weiss B, Aksoy S. Microbiome influences on insect host vector competence. Trends Parasitol. 2011;27:514–22. Castro DP, Moraes CS, Gonzalez MS, Ratcliffe NA, Azambuja P, Garcia ES. Trypanosoma cruzi immune response modulation decreases microbiota in Rhodnius prolixus gut and is crucial for parasite survival and development. PLoS One 2012;7:e36591. Garcia ES, Genta FA, de Azambuja P, Schaub GA. Interactions between intestinal compounds of triatomines and Trypanosoma cruzi. Trends Parasitol. 2010;26:499–505. Vieira CS, Mattos DP, Waniek PJ, Santangelo JM, Figuereido MB, Gumiel M, et al. Rhodnius prolixus interaction with Trypanosoma rangeli: modulation of the immune system and microbiota population. Parasit Vectors 2015;8:135. González J, Azzato F, Ambrosio G, Milei J. Pathogenesis of chronic chagasic myocarditis. In: Diagnosis and Treatment of Myocarditis. InTech. Epub ahead of print 8 May 2013. DOI: 10.5772/55387. Otálora-Luna F, Pérez-Sánchez AJ, Sandoval C, Aldana E. Evolution of hematophagous habit in Triatominae (Heteroptera: Reduviidae). Rev Chil Hist Nat. 2015;88:4. Guhl F, Pinto N, Aguilera G. Sylvatic triatominae: A new challenge in vector control transmission. Mem Inst Oswaldo Cruz. 2009;104:71–5. Guhl F, Aguilera G, Pinto N, Vergara D. Updated geographical distribution and ecoepidemiology of the triatomine fauna (Reduviidae: Triatominae) in Colombia. Biomédica 2007;27:143. Cruz-Guzmán PJ, Morocoima A, Chique JD, Ramonis-Quintero J, Toquero Uzcátegui M, Carrasco HJ. Psammolestes arthuri naturally infected with Trypanosoma cruzi found in sympatry with Rhodnius prolixus and Triatoma maculata on bird nests in Anzoátegui state, Venezuela. Saber, Universidad de Oriente, Venezuela 2014;26:428–40 . da Mota FF, Marinho LP, Moreira CJ, Lima MM, Mello CB, Garcia ES, et al. Cultivation-independent methods reveal differences among bacterial gut microbiota in triatomine vectors of Chagas disease. PLoS Negl Trop Dis. 2012;6:e1631. Gumiel M, da Mota FF, Rizzo V de S, Sarquis O, de Castro DP, Lima MM, et al. Characterization of the microbiota in the guts of Triatoma brasiliensis and Triatoma pseudomaculata infected by Trypanosoma cruzi in natural conditions using culture independent methods. Parasit Vectors 2015;8:245. Rodríguez-Ruano SM, Škochová V, Rego ROM, Schmidt JO, Roachell W, Hypša, V, et al. Microbiomes of North American Triatominae: The grounds for Chagas disease epidemiology. Front Microbiol. 2018;9:1167. Orantes LC, Monroy C, Dorn PL, Stevens L, Rizzo DM, Morrissey L, et al. Uncovering vector, parasite, blood meal and microbiome patterns from mixed-DNA specimens of the Chagas disease vector Triatoma dimidiata. PLoS Negl Trop Dis. 2018;12:e0006730. Dumonteil E, Ramirez-Sierra M-J, Pérez-Carrillo S, Teh-Poot C, Herrera C, Gourbière S, et al. Detailed ecological associations of triatomines revealed by metabarcoding and next-generation sequencing: implications for triatomine behavior and Trypanosoma cruzi transmission cycles. Sci Rep. 2018;8:4140. WHO. Weekly epidemiological record 2015. Chagas disease in Latin America: an epidemiological update based on 2010 estimates http://www.who.int/wer/2015/wer9006.pdf?ua=1. Accessed 2 May 2018. Peña-García VH, Gómez-Palacio AM, Triana-Chávez O, Mejía-Jaramillo AM. Eco-epidemiology of Chagas disease in an endemic area of Colombia: risk factor estimation, Trypanosoma cruzi characterization and identification of blood-meal sources in bugs. Am J Trop Med Hyg. 2014;91:1116–24. Valença-Barbosa C, Fernandes FA, Santos HLC, Sarquis O, Harry M, Almeida CE, et al. Molecular identification of food sources in Triatomines in the Brazilian Northeast: Roles of goats and rodents in Chagas disease epidemiology. Am J Trop Med Hyg. 2015;93:994–7. Hernández C, Salazar C, Brochero H, Teherán A, Buitrago LS, Vera M, et al. Untangling the transmission dynamics of primary and secondary vectors of Trypanosoma cruzi in Colombia: parasite infection, feeding sources and discrete typing units. Parasit Vectors 2016;9:620. Georgieva AY, Gordon ERL, Weirauch C. Sylvatic host associations of Triatominae and implications for Chagas disease reservoirs: a review and new host records based on archival specimens. PeerJ 2017;5:e3826. Eichler S, Schaub GA. Development of symbionts in Triatomine bugs and the effects of infections with trypanosomatids. Exp Parasitol. 2002;100:17–27. Montoya-Porras LM, Omar T-C, Alzate JF, Moreno-Herrera CX, Cadavid-Restrepo GE. 16S rRNA gene amplicon sequencing reveals dominance of Actinobacteria in Rhodnius pallescens compared with Triatoma maculata midgut microbiota in natural populations of vector insects from Colombia. Acta Trop. 2018;178:327–32. Pompanon F, Deagle BE, Symondson WO, Brown DS, Jarman SN, Taberlet P. Who is eating what: diet assessment using next generation sequencing. Mol Ecol. 2012;21:1931–50. Noireau F, Abad-Franch F, Valente SA, Dias-Lima A, Lopes CM, Cunha V, et al. Trapping Triatominae in silvatic habitats. Mem Inst Oswaldo Cruz. 2002;97:61–3. Duffy T, Cura CI, Ramirez JC, Abate T, Cayo NM, Parrado R, et al. Analytical performance of a multiplex real-time PCR assay using TaqMan probes for quantification of Trypanosoma cruzi satellite DNA in blood samples. PLoS Negl Trop Dis. 2013;7:e2000. Ramirez JD, Guhl F, Umezawa ES, Morillo CA, Rosas F, Marin-Neto JA, et al. Evaluation of adult chronic Chagas’ heart disease diagnosis by molecular and serological methods. J Clin Microbiol. 2009;47:3945–51. Sadowsky MJ, Staley C, Heiner C, Hall R, Kelly CR, Brandt L, et al. Analysis of gut microbiota – An ever changing landscape. Gut Microbes 2017;8:268–75. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods 2010;7:335–6. Pellecer MJ, Dorn PL, Bustamante DM, Rodas A, Monroy MC. Vector blood meals are an early indicator of the effectiveness of the Ecohealth approach in halting Chagas transmission in Guatemala. Am J Trop Med Hyg. 2013;88:638–44. Waleckx E, Suarez J, Richards B, Dorn PL. Triatoma sanguisuga blood meals and potential for Chagas disease, Louisiana, USA. Emerg Infect Dis. 2014;20:2141–3. Wang Q, Garrity GM, Tiedje JM, Cole JR. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol. 2007;73:5261–7. Caporaso JG, Bittinger K, Bushman FD, DeSantis TZ, Andersen GL, Knight R. PyNAST: a flexible tool for aligning sequences to a template alignment. Bioinformatics 2010;26:266–7. Edgar RC. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 2010;26:2460–1. Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R, Horsman D, et al. Circos: An information aesthetic for comparative genomics. Genome Res. 2009;19:1639–45. Silva MBA, Menezes KR, Farias MCG, Andrade MS, Victor CCA, Lorosa ES, et al. Description of the feeding preferences of triatominae in the Chagas disease surveillance study for the State of Pernambuco, Brazil (Hemiptera: Reduviidae). Rev Soc Bras Med Trop. 2017;50:543–546. Oliveira JL, Cury JC, Gurgel-Gonçalves R, Bahia AC, Monteiro FA. Field-collected Triatoma sordida from central Brazil display high microbiota diversity that varies with regard to developmental stage and intestinal segmentation. PLoS Negl Trop Dis. 2018;12:e0006709. Engel P, Moran NA. The gut microbiota of insects – diversity in structure and function. FEMS Microbiol Rev. 2013;37:699–735. Vieira CS, Waniek PJ, Castro DP, Mattos DP, Moreira OC, Azambuja P. Impact of Trypanosoma cruzi on antimicrobial peptide gene expression and activity in the fat body and midgut of Rhodnius prolixus. Parasit Vectors 2016;9:119. Yun J-H, Roh SW, Whon TW, Jung MJ, Kim MS, Park DS, et al. Insect gut bacterial diversity determined by environmental habitat, diet, developmental stage, and phylogeny of host. Appl Environ Microbiol. 2014;80:5254–64. Garcia ES, Castro DP, Figueiredo MB, Azambuja P. Immune homeostasis to microorganisms in the guts of triatomines (Reduviidae)--a review. Mem Inst Oswaldo Cruz. 2010;105:605–10. Ventura M, Canchaya C, Tauch A, Chandra G, Fitzgerald GF, Chater KF, et al. Genomics of Actinobacteria: Tracing the evolutionary history of an ancient phylum. Microbiol Mol Biol Rev. 2007;71:495–548. Shin N-R, Whon TW, Bae J-W. Proteobacteria: microbial signature of dysbiosis in gut microbiota. Trends Biotechnol. 2015;33:496–503. Bradley PH, Pollard KS. Proteobacteria explain significant functional variability in the human gut microbiome. Microbiome 2017;5:36. Wexler HM. Bacteroides: the Good, the Bad, and the Nitty-Gritty. Clin Microbiol Rev. 2007;20:593–621. Thomas F, Hehemann J-H, Rebuffet E, Czjzek M, Michel G. Environmental and gut bacteroidetes: the food connection. Front Microbiol. 2011;2:93. Ramakrishna BS. Role of the gut microbiota in human nutrition and metabolism. J Gastroenterol Hepatol. 2013;28:9–17. Salem H, Kreutzer E, Sudakaran S, Kaltenpoth M. Actinobacteria as essential symbionts in firebugs and cotton stainers (Hemiptera, Pyrrhocoridae). Environ Microbiol. 2013;15:1956–68. Wang X, Liu T, Wu Y, Zhong D, Zhou G, Su X, et al. Bacterial microbiota assemblage in Aedes albopictus mosquitoes and its impacts on larval development. Mol Ecol. 2018;27:2972–85. Hehemann J-H, Correc G, Barbeyron T, Helbert W, Czjzek M, Michel G. Transfer of carbohydrate-active enzymes from marine bacteria to Japanese gut microbiota. Nature 2010;464:908–12. Pais R, Lohs C, Wu Y, Wang J, Aksoy S. The obligate mutualist Wigglesworthia glossinidia influences reproduction, digestion, and immunity processes of its host, the Tsetse fly. Appl Environ Microbiol. 2008;74:5965–74. Weiss BL, Maltz M, Aksoy S. Obligate symbionts activate immune system evelopment in the Tsetse fly. J Immunol. 2012;188:3395–403. Engel P, Martinson VG, Moran NA. Functional diversity within the simple gut microbiota of the honey bee. Proc Natl Acad Sci U S A. 2012;109:11002–7. Villegas LM, Pimenta PFP. Metagenomics, paratransgenesis and the Anopheles microbiome: a portrait of the geographical distribution of the anopheline microbiota based on a meta-analysis of reported taxa. Mem Inst Oswaldo Cruz. 2014;109:672–84. Espino CI, Gómez T, González G, Brazil do Santos MF, Solano J, Sousa O, et al. Detection of Wolbachia bacteria in multiple organs and feces of the triatomine insect Rhodnius pallescens (Hemiptera, Reduviidae). Appl Environ Microbiol. 2009;75:547–50. Di Rienzi SC, Sharon I, Wrighton KC, Koren O, Hug LA, Thomas BC, et al. The human gut and groundwater harbor non-photosynthetic bacteria belonging to a new candidate phylum sibling to Cyanobacteria. Elife. 2013;2:e01102. Skennerton CT, Haroon MF, Briegel A, Shi J, Jensen GJ, Tyson GW, et al. Phylogenomic analysis of Candidatus ‘Izimaplasma’ species: free-living representatives from a Tenericutes clade found in methane seeps. ISME J. 2016;10:2679–92. Ribeiro JMC, Genta FA, Sorgine MHF, Logullo R, Mesquita RD, Paiva-Silva GO, et al. An insight into the transcriptome of the digestive tract of the bloodsucking bug, Rhodnius prolixus. PLoS Negl Trop Dis. 2014;8:e2594. Kollien AH, Waniek PJ, Nisbet AJ, Billingsley PF, Schaub GA. Activity and sequence characterization of two cysteine proteases in the digestive tract of the reduviid bug Triatoma infestans. Insect Mol Biol. 2004;13:569–79. Araújo CAC, Waniek PJ, Stock P, Mayer C, Jansen AM, Schaub GA. Sequence characterization and expression patterns of defensin and lysozyme encoding genes from the gut of the reduviid bug Triatoma brasiliensis. Insect Biochem Mol Biol. 2006;36:547–60. Bussacos ACM, Nakayasu ES, Hecht MM, Assumpção TC, Parente JA, Soares CM, et al. Redundancy of proteins in the salivary glands of Panstrongylus megistus secures prolonged procurement for blood meals. J Proteomics 2011;74:1693–700. Kato H, Jochim RC, Gomez EA, Tsunekawa S, Valenzuela JG, Hashiguchi Y. Salivary gland transcripts of the kissing bug, Panstrongylus chinai, a vector of Chagas disease. Acta Trop. 2017;174:122–9. Nevoa JC, Mendes MT, da Silva MV, Soares SC, Oliveira CJF, Ribeiro JMC. An insight into the salivary gland and fat body transcriptome of Panstrongylus lignarius (Hemiptera: Heteroptera), the main vector of Chagas disease in Peru. PLoS Negl Trop Dis. 2018;12:e0006243. Peña VH, Fernández GJ, Gómez-Palacio AM, Mejía-Jaramillo AM, Cantillo O, Triana-Chávez O. High-resolution melting (HRM) of the cytochrome B bene: a powerful approach to identify blood-meal sources in Chagas disease vectors. PLoS Negl Trop Dis. 2012;6:e1530. Meiser CK, Piechura H, Werner T, Dittmeyer-Schäfer S, Meyer HE, Warscheid B, et al. Kazal-type inhibitors in the stomach of Panstrongylus megistus (Triatominae, Reduviidae). Insect Biochem Mol Biol. 2010;40:345–53. Lucero DE, Ribera W, Pizarro JC, Plaza C, Gordon LW, Peña Jr R, et al. Sources of blood meals of sylvatic Triatoma guasayana near Zurima, Bolivia, assayed with qPCR and 12S cloning. PLoS Negl Trop Dis. 2014;8:e3365. Luitgards-Moura JF, Vargas AB, Almeida CE, Magno Esperança G, Agapito-Souza R, Folly-Ramos E, et al. A Triatoma maculata (Hemiptera, Reduviidae, Triatominae) population from Roraima, Amazon region, Brazil, has some bionomic characteristics of a potential Chagas disease vector. Rev Inst Med Trop Sao Paulo 2005;47 :131–7. Cantillo-Barraza O, Gómez-Palacio A, Salazar D, Mejía-Jaramillo AM, Calle J, Triana O. Distribution and ecoepidemiology of the triatomine fauna (Hemiptera: Reduviidae) in Margarita Island, Bolívar, Colombia . Biomédica 2010;30:382. Escandón-Vargas K, Muñoz-Zuluaga CA, Salazar L. Blood-feeding of Rhodnius prolixus. Biomédica 2017;37:299. Crawford PA, Crowley JR, Sambandam N, Muegge BD, Costello EK, Hamady M, et al. Regulation of myocardial ketone body metabolism by the gut microbiota during nutrient deprivation. Proc Natl Acad Sci. 2009;106:11276–81. Costello EK, Gordon JI, Secor SM, Knight R. Postprandial remodeling of the gut microbiota in Burmese pythons. ISME J. 2010;4:1375–85. Ni J, Yan Q, Yu Y, Zhang T. Factors influencing the grass carp gut microbiome and its effect on metabolism. FEMS Microbiol Ecol. 2014;87:704–14. Rabinovich JE, Kitron UD, Obed Y, Yoshioka M, Gottdenker N, Chaves LF. Ecological patterns of blood-feeding by kissing-bugs (Hemiptera: Reduviidae: Triatominae). Mem Inst Oswaldo Cruz. 2011;106:479–94. Schofield CJ. Biosystematics and evolution of the Triatominae. Cad Saude Publica. 2000;16:S89–92. Monteiro FA, Weirauch C, Felix M, Lazoski C, Abad-Franch F. Evolution, systematics, and biogeography of the Triatominae, vectors of Chagas disease. Adv Parasitol. 2018;99:265-344. Moraes AM, Junqueira AC, Costa GL, Celano V, Oliveira PC, Coura JR. Fungal flora of the digestive tract of 5 species of triatomines vectors of Trypanosoma cruzi, Chagas 1909. Mycopathologia 2001;151:41–8. Miller KE, Hopkins K, Inward DJG, Vogler AP. Metabarcoding of fungal communities associated with bark beetles. Ecol Evol. 2016;6:1590–600. Malacrinò A, Schena L, Campolo O, Laudani F, Mosca S, Giunti G. A metabarcoding survey on the fungal microbiota associated to the olive fruit fly. Microb Ecol. 2017;73:677–84. Duarte APM, Ferro M, Rodrigues A, Bacci M Jr, Nagamoto NS, Forti LC, et al. Prevalence of the genus Cladosporium on the integument of leaf-cutting ants characterized by 454 pyrosequencing. Antonie Van Leeuwenhoek 2016;109:1235–43. Lage-Moraes AM, Reis-de-Figueiredo A, Vieira-Junqueira AC, Lara-da-Costa G, Aguiar RK, Cunha-de-Oliveira P. Fungal flora of the digestive tract of Panstrongylus megistus (Reduviidae) used for experimental xenodiagnosis of Trypanosoma (Schizotripanum) cruzi Chagas, 1909. Rev Iberoam Micol. 2001;18:79–82. Moraes AML de, Junqueira ACV, Celano V, Lara da Costa G, Rodrigues Coura J. Fungal flora of the digestive tract of Rhodnius prolixus, Rhodnius neglectus, Diptelanogaster maximus and Panstrongylus megistus, vectors of Trypanosoma cruzi, Chagas, 1909. Brazilian J Microbiol. 2004;35:288–91. |
dc.source.instname.spa.fl_str_mv |
instname:Universidad del Rosario |
dc.source.reponame.spa.fl_str_mv |
reponame:Repositorio Institucional EdocUR |
bitstream.url.fl_str_mv |
https://repository.urosario.edu.co/bitstreams/8678d060-c66c-47ed-846b-a7a713a2c608/download https://repository.urosario.edu.co/bitstreams/21c42208-1067-40a9-8140-f3b395976116/download https://repository.urosario.edu.co/bitstreams/9d611e3d-907f-40ae-8749-c3cbe788fd88/download https://repository.urosario.edu.co/bitstreams/b2bd90e9-38df-4cec-99c8-e6aa06369c81/download https://repository.urosario.edu.co/bitstreams/dac06a5d-f9ef-4a86-8b6f-8a84a4315c41/download https://repository.urosario.edu.co/bitstreams/8d71ac20-8f9e-48eb-ad05-361ede536e28/download |
bitstream.checksum.fl_str_mv |
c6a262de7617bc33ac929838c303290c 4f6276a036fbedd63001e57b05a81d96 fab9d9ed61d64f6ac005dee3306ae77e 9f5eb859bd5c30bc88515135ce7ba417 21a296f33513da6c4046b13319819819 cc4c47d472f12a2840eacd315e10a948 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio institucional EdocUR |
repository.mail.fl_str_mv |
edocur@urosario.edu.co |
_version_ |
1814167516973367296 |
spelling |
Ramírez, Juan David1011716118600Arias-Giraldo, Luisa M.Muñoz, Claudia MarinaHernández Castro, Diana CarolinaHerrera Ossa, Giovanny AndrésCaicedo Garzón, ValentinaVelásquez-Ortiz, NataliaCantillo, OmarUrbano, PlutarcoBiólogoFull time9325ec59-afd4-44a7-8f36-99f36e34797a600966e0593-a04b-498b-81d7-a39434da9caf600f401d21c-a327-4fc5-9043-0963b38c932e600db65c9d8-a7e8-4f0e-84e7-d5b2655cc062600578e3d3c-f2f9-46c9-b26d-a86520d4698360030f14eb2-f36a-4a70-bc45-ab294c25876660080f15593-2cd2-4c43-b949-8694a201fb2e6007a058964-b13e-4d0d-9ed5-d4f0668ba0146002019-02-11T19:12:51Z2019-02-11T19:12:51Z2019-02-052019Se realizó una primera caracterización del bacterioma intestinal de triatominos capturados en condiciones naturales en Colombia dada la falta de información sobre este bacterioma y los cambios que puede tener cuando Trypanosoma cruzi está presente o la fuente alimenticia del insecto cambiaWe provide a first characterization of the gut bacteriome of triatomines captured in natural conditions in Colombia given the lack of information about this bacteriome and the possible changes it can undergo when Trypanosoma cruzi is present or the feeding source of the triatomine varies2021-02-12 01:01:01: Script de automatizacion de embargos. info:eu-repo/date/embargoEnd/2021-02-11application/pdfhttps://doi.org/10.48713/10336_19038 http://repository.urosario.edu.co/handle/10336/19038spaUniversidad del RosarioFacultad de Ciencias Naturales y MatemáticasBiologíaAtribución-NoComercial-SinDerivadas 2.5 ColombiaAtribución-NoComercial-SinDerivadas 2.5 ColombiaAbierto (Texto Completo)EL AUTOR, manifiesta que la obra objeto de la presente autorización es original y la realizó sin violar o usurpar derechos de autor de terceros, por lo tanto la obra es de exclusiva autoría y tiene la titularidad sobre la misma.http://creativecommons.org/licenses/by-nc-nd/2.5/co/http://purl.org/coar/access_right/c_abf2Rassi A, Rassi A, Marin-Neto JA. Chagas disease. Lancet 2010;375:1388–402.Zingales B, Andrade SG, Briones MR, Campbell DA, Chiari E, Fernandes O, et al. A new consensus for Trypanosoma cruzi intraspecific nomenclature: second revision meeting recommends TcI to TcVI. Mem Inst Oswaldo Cruz. 2009;104:1051–4.Tyler KM, Engman DM. The life cycle of Trypanosoma cruzi revisited. Int J Parasitol. 2001;31:472–81.Azambuja P, Ratcliffe NA, Garcia ES. Towards an understanding of the interactions of Trypanosoma cruzi and Trypanosoma rangeli within the reduviid insect host Rhodnius prolixus. An Acad Bras Cienc. 2005;77:397–404.Vallejo GA, Guhl F, Schaub GA. Triatominae–Trypanosoma cruzi/T. rangeli: vector–parasite interactions. Acta Trop. 2009;110:137–47.Díaz S, Villavicencio B, Correia N, Costa J, Haag KL. Triatomine bugs, their microbiota and Trypanosoma cruzi: Asymmetric responses of bacteria to an infected blood meal. Parasit Vectors 2016;9:1–11.de Fuentes-Vicente JA, Gutiérrez-Cabrera AE, Flores-Villegas AL, Lowenberger C, Benelli G, Salazar-Schettino PM, et al. What makes an effective Chagas disease vector? Factors underlying Trypanosoma cruzi -triatomine interactions. Acta Trop. 2018;183:23–31.Weiss B, Aksoy S. Microbiome influences on insect host vector competence. Trends Parasitol. 2011;27:514–22.Castro DP, Moraes CS, Gonzalez MS, Ratcliffe NA, Azambuja P, Garcia ES. Trypanosoma cruzi immune response modulation decreases microbiota in Rhodnius prolixus gut and is crucial for parasite survival and development. PLoS One 2012;7:e36591.Garcia ES, Genta FA, de Azambuja P, Schaub GA. Interactions between intestinal compounds of triatomines and Trypanosoma cruzi. Trends Parasitol. 2010;26:499–505.Vieira CS, Mattos DP, Waniek PJ, Santangelo JM, Figuereido MB, Gumiel M, et al. Rhodnius prolixus interaction with Trypanosoma rangeli: modulation of the immune system and microbiota population. Parasit Vectors 2015;8:135.González J, Azzato F, Ambrosio G, Milei J. Pathogenesis of chronic chagasic myocarditis. In: Diagnosis and Treatment of Myocarditis. InTech. Epub ahead of print 8 May 2013. DOI: 10.5772/55387.Otálora-Luna F, Pérez-Sánchez AJ, Sandoval C, Aldana E. Evolution of hematophagous habit in Triatominae (Heteroptera: Reduviidae). Rev Chil Hist Nat. 2015;88:4.Guhl F, Pinto N, Aguilera G. Sylvatic triatominae: A new challenge in vector control transmission. Mem Inst Oswaldo Cruz. 2009;104:71–5.Guhl F, Aguilera G, Pinto N, Vergara D. Updated geographical distribution and ecoepidemiology of the triatomine fauna (Reduviidae: Triatominae) in Colombia. Biomédica 2007;27:143.Cruz-Guzmán PJ, Morocoima A, Chique JD, Ramonis-Quintero J, Toquero Uzcátegui M, Carrasco HJ. Psammolestes arthuri naturally infected with Trypanosoma cruzi found in sympatry with Rhodnius prolixus and Triatoma maculata on bird nests in Anzoátegui state, Venezuela. Saber, Universidad de Oriente, Venezuela 2014;26:428–40 .da Mota FF, Marinho LP, Moreira CJ, Lima MM, Mello CB, Garcia ES, et al. Cultivation-independent methods reveal differences among bacterial gut microbiota in triatomine vectors of Chagas disease. PLoS Negl Trop Dis. 2012;6:e1631.Gumiel M, da Mota FF, Rizzo V de S, Sarquis O, de Castro DP, Lima MM, et al. Characterization of the microbiota in the guts of Triatoma brasiliensis and Triatoma pseudomaculata infected by Trypanosoma cruzi in natural conditions using culture independent methods. Parasit Vectors 2015;8:245.Rodríguez-Ruano SM, Škochová V, Rego ROM, Schmidt JO, Roachell W, Hypša, V, et al. Microbiomes of North American Triatominae: The grounds for Chagas disease epidemiology. Front Microbiol. 2018;9:1167.Orantes LC, Monroy C, Dorn PL, Stevens L, Rizzo DM, Morrissey L, et al. Uncovering vector, parasite, blood meal and microbiome patterns from mixed-DNA specimens of the Chagas disease vector Triatoma dimidiata. PLoS Negl Trop Dis. 2018;12:e0006730.Dumonteil E, Ramirez-Sierra M-J, Pérez-Carrillo S, Teh-Poot C, Herrera C, Gourbière S, et al. Detailed ecological associations of triatomines revealed by metabarcoding and next-generation sequencing: implications for triatomine behavior and Trypanosoma cruzi transmission cycles. Sci Rep. 2018;8:4140.WHO. Weekly epidemiological record 2015. Chagas disease in Latin America: an epidemiological update based on 2010 estimates http://www.who.int/wer/2015/wer9006.pdf?ua=1. Accessed 2 May 2018.Peña-García VH, Gómez-Palacio AM, Triana-Chávez O, Mejía-Jaramillo AM. Eco-epidemiology of Chagas disease in an endemic area of Colombia: risk factor estimation, Trypanosoma cruzi characterization and identification of blood-meal sources in bugs. Am J Trop Med Hyg. 2014;91:1116–24.Valença-Barbosa C, Fernandes FA, Santos HLC, Sarquis O, Harry M, Almeida CE, et al. Molecular identification of food sources in Triatomines in the Brazilian Northeast: Roles of goats and rodents in Chagas disease epidemiology. Am J Trop Med Hyg. 2015;93:994–7.Hernández C, Salazar C, Brochero H, Teherán A, Buitrago LS, Vera M, et al. Untangling the transmission dynamics of primary and secondary vectors of Trypanosoma cruzi in Colombia: parasite infection, feeding sources and discrete typing units. Parasit Vectors 2016;9:620.Georgieva AY, Gordon ERL, Weirauch C. Sylvatic host associations of Triatominae and implications for Chagas disease reservoirs: a review and new host records based on archival specimens. PeerJ 2017;5:e3826.Eichler S, Schaub GA. Development of symbionts in Triatomine bugs and the effects of infections with trypanosomatids. Exp Parasitol. 2002;100:17–27.Montoya-Porras LM, Omar T-C, Alzate JF, Moreno-Herrera CX, Cadavid-Restrepo GE. 16S rRNA gene amplicon sequencing reveals dominance of Actinobacteria in Rhodnius pallescens compared with Triatoma maculata midgut microbiota in natural populations of vector insects from Colombia. Acta Trop. 2018;178:327–32.Pompanon F, Deagle BE, Symondson WO, Brown DS, Jarman SN, Taberlet P. Who is eating what: diet assessment using next generation sequencing. Mol Ecol. 2012;21:1931–50.Noireau F, Abad-Franch F, Valente SA, Dias-Lima A, Lopes CM, Cunha V, et al. Trapping Triatominae in silvatic habitats. Mem Inst Oswaldo Cruz. 2002;97:61–3.Duffy T, Cura CI, Ramirez JC, Abate T, Cayo NM, Parrado R, et al. Analytical performance of a multiplex real-time PCR assay using TaqMan probes for quantification of Trypanosoma cruzi satellite DNA in blood samples. PLoS Negl Trop Dis. 2013;7:e2000.Ramirez JD, Guhl F, Umezawa ES, Morillo CA, Rosas F, Marin-Neto JA, et al. Evaluation of adult chronic Chagas’ heart disease diagnosis by molecular and serological methods. J Clin Microbiol. 2009;47:3945–51.Sadowsky MJ, Staley C, Heiner C, Hall R, Kelly CR, Brandt L, et al. Analysis of gut microbiota – An ever changing landscape. Gut Microbes 2017;8:268–75.Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods 2010;7:335–6.Pellecer MJ, Dorn PL, Bustamante DM, Rodas A, Monroy MC. Vector blood meals are an early indicator of the effectiveness of the Ecohealth approach in halting Chagas transmission in Guatemala. Am J Trop Med Hyg. 2013;88:638–44.Waleckx E, Suarez J, Richards B, Dorn PL. Triatoma sanguisuga blood meals and potential for Chagas disease, Louisiana, USA. Emerg Infect Dis. 2014;20:2141–3.Wang Q, Garrity GM, Tiedje JM, Cole JR. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol. 2007;73:5261–7.Caporaso JG, Bittinger K, Bushman FD, DeSantis TZ, Andersen GL, Knight R. PyNAST: a flexible tool for aligning sequences to a template alignment. Bioinformatics 2010;26:266–7.Edgar RC. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 2010;26:2460–1.Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R, Horsman D, et al. Circos: An information aesthetic for comparative genomics. Genome Res. 2009;19:1639–45.Silva MBA, Menezes KR, Farias MCG, Andrade MS, Victor CCA, Lorosa ES, et al. Description of the feeding preferences of triatominae in the Chagas disease surveillance study for the State of Pernambuco, Brazil (Hemiptera: Reduviidae). Rev Soc Bras Med Trop. 2017;50:543–546.Oliveira JL, Cury JC, Gurgel-Gonçalves R, Bahia AC, Monteiro FA. Field-collected Triatoma sordida from central Brazil display high microbiota diversity that varies with regard to developmental stage and intestinal segmentation. PLoS Negl Trop Dis. 2018;12:e0006709.Engel P, Moran NA. The gut microbiota of insects – diversity in structure and function. FEMS Microbiol Rev. 2013;37:699–735.Vieira CS, Waniek PJ, Castro DP, Mattos DP, Moreira OC, Azambuja P. Impact of Trypanosoma cruzi on antimicrobial peptide gene expression and activity in the fat body and midgut of Rhodnius prolixus. Parasit Vectors 2016;9:119.Yun J-H, Roh SW, Whon TW, Jung MJ, Kim MS, Park DS, et al. Insect gut bacterial diversity determined by environmental habitat, diet, developmental stage, and phylogeny of host. Appl Environ Microbiol. 2014;80:5254–64.Garcia ES, Castro DP, Figueiredo MB, Azambuja P. Immune homeostasis to microorganisms in the guts of triatomines (Reduviidae)--a review. Mem Inst Oswaldo Cruz. 2010;105:605–10.Ventura M, Canchaya C, Tauch A, Chandra G, Fitzgerald GF, Chater KF, et al. Genomics of Actinobacteria: Tracing the evolutionary history of an ancient phylum. Microbiol Mol Biol Rev. 2007;71:495–548.Shin N-R, Whon TW, Bae J-W. Proteobacteria: microbial signature of dysbiosis in gut microbiota. Trends Biotechnol. 2015;33:496–503.Bradley PH, Pollard KS. Proteobacteria explain significant functional variability in the human gut microbiome. Microbiome 2017;5:36.Wexler HM. Bacteroides: the Good, the Bad, and the Nitty-Gritty. Clin Microbiol Rev. 2007;20:593–621.Thomas F, Hehemann J-H, Rebuffet E, Czjzek M, Michel G. Environmental and gut bacteroidetes: the food connection. Front Microbiol. 2011;2:93.Ramakrishna BS. Role of the gut microbiota in human nutrition and metabolism. J Gastroenterol Hepatol. 2013;28:9–17.Salem H, Kreutzer E, Sudakaran S, Kaltenpoth M. Actinobacteria as essential symbionts in firebugs and cotton stainers (Hemiptera, Pyrrhocoridae). Environ Microbiol. 2013;15:1956–68.Wang X, Liu T, Wu Y, Zhong D, Zhou G, Su X, et al. Bacterial microbiota assemblage in Aedes albopictus mosquitoes and its impacts on larval development. Mol Ecol. 2018;27:2972–85.Hehemann J-H, Correc G, Barbeyron T, Helbert W, Czjzek M, Michel G. Transfer of carbohydrate-active enzymes from marine bacteria to Japanese gut microbiota. Nature 2010;464:908–12.Pais R, Lohs C, Wu Y, Wang J, Aksoy S. The obligate mutualist Wigglesworthia glossinidia influences reproduction, digestion, and immunity processes of its host, the Tsetse fly. Appl Environ Microbiol. 2008;74:5965–74.Weiss BL, Maltz M, Aksoy S. Obligate symbionts activate immune system evelopment in the Tsetse fly. J Immunol. 2012;188:3395–403.Engel P, Martinson VG, Moran NA. Functional diversity within the simple gut microbiota of the honey bee. Proc Natl Acad Sci U S A. 2012;109:11002–7.Villegas LM, Pimenta PFP. Metagenomics, paratransgenesis and the Anopheles microbiome: a portrait of the geographical distribution of the anopheline microbiota based on a meta-analysis of reported taxa. Mem Inst Oswaldo Cruz. 2014;109:672–84.Espino CI, Gómez T, González G, Brazil do Santos MF, Solano J, Sousa O, et al. Detection of Wolbachia bacteria in multiple organs and feces of the triatomine insect Rhodnius pallescens (Hemiptera, Reduviidae). Appl Environ Microbiol. 2009;75:547–50.Di Rienzi SC, Sharon I, Wrighton KC, Koren O, Hug LA, Thomas BC, et al. The human gut and groundwater harbor non-photosynthetic bacteria belonging to a new candidate phylum sibling to Cyanobacteria. Elife. 2013;2:e01102.Skennerton CT, Haroon MF, Briegel A, Shi J, Jensen GJ, Tyson GW, et al. Phylogenomic analysis of Candidatus ‘Izimaplasma’ species: free-living representatives from a Tenericutes clade found in methane seeps. ISME J. 2016;10:2679–92.Ribeiro JMC, Genta FA, Sorgine MHF, Logullo R, Mesquita RD, Paiva-Silva GO, et al. An insight into the transcriptome of the digestive tract of the bloodsucking bug, Rhodnius prolixus. PLoS Negl Trop Dis. 2014;8:e2594.Kollien AH, Waniek PJ, Nisbet AJ, Billingsley PF, Schaub GA. Activity and sequence characterization of two cysteine proteases in the digestive tract of the reduviid bug Triatoma infestans. Insect Mol Biol. 2004;13:569–79.Araújo CAC, Waniek PJ, Stock P, Mayer C, Jansen AM, Schaub GA. Sequence characterization and expression patterns of defensin and lysozyme encoding genes from the gut of the reduviid bug Triatoma brasiliensis. Insect Biochem Mol Biol. 2006;36:547–60.Bussacos ACM, Nakayasu ES, Hecht MM, Assumpção TC, Parente JA, Soares CM, et al. Redundancy of proteins in the salivary glands of Panstrongylus megistus secures prolonged procurement for blood meals. J Proteomics 2011;74:1693–700.Kato H, Jochim RC, Gomez EA, Tsunekawa S, Valenzuela JG, Hashiguchi Y. Salivary gland transcripts of the kissing bug, Panstrongylus chinai, a vector of Chagas disease. Acta Trop. 2017;174:122–9.Nevoa JC, Mendes MT, da Silva MV, Soares SC, Oliveira CJF, Ribeiro JMC. An insight into the salivary gland and fat body transcriptome of Panstrongylus lignarius (Hemiptera: Heteroptera), the main vector of Chagas disease in Peru. PLoS Negl Trop Dis. 2018;12:e0006243.Peña VH, Fernández GJ, Gómez-Palacio AM, Mejía-Jaramillo AM, Cantillo O, Triana-Chávez O. High-resolution melting (HRM) of the cytochrome B bene: a powerful approach to identify blood-meal sources in Chagas disease vectors. PLoS Negl Trop Dis. 2012;6:e1530.Meiser CK, Piechura H, Werner T, Dittmeyer-Schäfer S, Meyer HE, Warscheid B, et al. Kazal-type inhibitors in the stomach of Panstrongylus megistus (Triatominae, Reduviidae). Insect Biochem Mol Biol. 2010;40:345–53.Lucero DE, Ribera W, Pizarro JC, Plaza C, Gordon LW, Peña Jr R, et al. Sources of blood meals of sylvatic Triatoma guasayana near Zurima, Bolivia, assayed with qPCR and 12S cloning. PLoS Negl Trop Dis. 2014;8:e3365.Luitgards-Moura JF, Vargas AB, Almeida CE, Magno Esperança G, Agapito-Souza R, Folly-Ramos E, et al. A Triatoma maculata (Hemiptera, Reduviidae, Triatominae) population from Roraima, Amazon region, Brazil, has some bionomic characteristics of a potential Chagas disease vector. Rev Inst Med Trop Sao Paulo 2005;47 :131–7.Cantillo-Barraza O, Gómez-Palacio A, Salazar D, Mejía-Jaramillo AM, Calle J, Triana O. Distribution and ecoepidemiology of the triatomine fauna (Hemiptera: Reduviidae) in Margarita Island, Bolívar, Colombia . Biomédica 2010;30:382.Escandón-Vargas K, Muñoz-Zuluaga CA, Salazar L. Blood-feeding of Rhodnius prolixus. Biomédica 2017;37:299.Crawford PA, Crowley JR, Sambandam N, Muegge BD, Costello EK, Hamady M, et al. Regulation of myocardial ketone body metabolism by the gut microbiota during nutrient deprivation. Proc Natl Acad Sci. 2009;106:11276–81.Costello EK, Gordon JI, Secor SM, Knight R. Postprandial remodeling of the gut microbiota in Burmese pythons. ISME J. 2010;4:1375–85.Ni J, Yan Q, Yu Y, Zhang T. Factors influencing the grass carp gut microbiome and its effect on metabolism. FEMS Microbiol Ecol. 2014;87:704–14.Rabinovich JE, Kitron UD, Obed Y, Yoshioka M, Gottdenker N, Chaves LF. Ecological patterns of blood-feeding by kissing-bugs (Hemiptera: Reduviidae: Triatominae). Mem Inst Oswaldo Cruz. 2011;106:479–94.Schofield CJ. Biosystematics and evolution of the Triatominae. Cad Saude Publica. 2000;16:S89–92.Monteiro FA, Weirauch C, Felix M, Lazoski C, Abad-Franch F. Evolution, systematics, and biogeography of the Triatominae, vectors of Chagas disease. Adv Parasitol. 2018;99:265-344.Moraes AM, Junqueira AC, Costa GL, Celano V, Oliveira PC, Coura JR. Fungal flora of the digestive tract of 5 species of triatomines vectors of Trypanosoma cruzi, Chagas 1909. Mycopathologia 2001;151:41–8.Miller KE, Hopkins K, Inward DJG, Vogler AP. Metabarcoding of fungal communities associated with bark beetles. Ecol Evol. 2016;6:1590–600.Malacrinò A, Schena L, Campolo O, Laudani F, Mosca S, Giunti G. A metabarcoding survey on the fungal microbiota associated to the olive fruit fly. Microb Ecol. 2017;73:677–84.Duarte APM, Ferro M, Rodrigues A, Bacci M Jr, Nagamoto NS, Forti LC, et al. Prevalence of the genus Cladosporium on the integument of leaf-cutting ants characterized by 454 pyrosequencing. Antonie Van Leeuwenhoek 2016;109:1235–43.Lage-Moraes AM, Reis-de-Figueiredo A, Vieira-Junqueira AC, Lara-da-Costa G, Aguiar RK, Cunha-de-Oliveira P. Fungal flora of the digestive tract of Panstrongylus megistus (Reduviidae) used for experimental xenodiagnosis of Trypanosoma (Schizotripanum) cruzi Chagas, 1909. Rev Iberoam Micol. 2001;18:79–82.Moraes AML de, Junqueira ACV, Celano V, Lara da Costa G, Rodrigues Coura J. Fungal flora of the digestive tract of Rhodnius prolixus, Rhodnius neglectus, Diptelanogaster maximus and Panstrongylus megistus, vectors of Trypanosoma cruzi, Chagas, 1909. Brazilian J Microbiol. 2004;35:288–91.instname:Universidad del Rosarioreponame:Repositorio Institucional EdocURSecuenciación de última generaciónBacteriomaTriatominaeTrypanosoma cruziFuente alimenticiaEnfermedades616600Next-generation sequencingBacteriomeTriatominaeTrypanosoma cruziFeeding sourceEnfermedad de chagasHemipterosPortraying the gut bacterial communities and blood feeding sources of triatomine bugs (Hemiptera : Reduviidae), vectors of Chagas diseasebachelorThesisArtículoTrabajo de gradohttp://purl.org/coar/resource_type/c_7a1fORIGINALAriasGiraldo-LuisaMaria-2019.pdfAriasGiraldo-LuisaMaria-2019.pdfArtículo principalapplication/pdf256625https://repository.urosario.edu.co/bitstreams/8678d060-c66c-47ed-846b-a7a713a2c608/downloadc6a262de7617bc33ac929838c303290cMD519Imagenes_Arias_Giraldo_Luisa_Maria.zipImagenes_Arias_Giraldo_Luisa_Maria.zip application/zip3404335https://repository.urosario.edu.co/bitstreams/21c42208-1067-40a9-8140-f3b395976116/download4f6276a036fbedd63001e57b05a81d96MD522LICENSElicense.txtlicense.txttext/plain1475https://repository.urosario.edu.co/bitstreams/9d611e3d-907f-40ae-8749-c3cbe788fd88/downloadfab9d9ed61d64f6ac005dee3306ae77eMD520CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8810https://repository.urosario.edu.co/bitstreams/b2bd90e9-38df-4cec-99c8-e6aa06369c81/download9f5eb859bd5c30bc88515135ce7ba417MD521TEXTAriasGiraldo-LuisaMaria-2019.pdf.txtAriasGiraldo-LuisaMaria-2019.pdf.txtExtracted texttext/plain63421https://repository.urosario.edu.co/bitstreams/dac06a5d-f9ef-4a86-8b6f-8a84a4315c41/download21a296f33513da6c4046b13319819819MD523THUMBNAILAriasGiraldo-LuisaMaria-2019.pdf.jpgAriasGiraldo-LuisaMaria-2019.pdf.jpgGenerated Thumbnailimage/jpeg2923https://repository.urosario.edu.co/bitstreams/8d71ac20-8f9e-48eb-ad05-361ede536e28/downloadcc4c47d472f12a2840eacd315e10a948MD52410336/19038oai:repository.urosario.edu.co:10336/190382019-09-19 07:37:54.609585http://creativecommons.org/licenses/by-nc-nd/2.5/co/Atribución-NoComercial-SinDerivadas 2.5 Colombiahttps://repository.urosario.edu.coRepositorio institucional EdocURedocur@urosario.edu.coRUwoTE9TKSBBVVRPUihFUyksIG1hbmlmaWVzdGEobWFuaWZlc3RhbW9zKSBxdWUgbGEgb2JyYSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIHJlYWxpesOzIHNpbiB2aW9sYXIgbyB1c3VycGFyIGRlcmVjaG9zIGRlIGF1dG9yIGRlIHRlcmNlcm9zLCBwb3IgbG8gdGFudG8gbGEgb2JyYSBlcyBkZSBleGNsdXNpdmEgYXV0b3LDrWEgeSB0aWVuZSBsYSB0aXR1bGFyaWRhZCBzb2JyZSBsYSBtaXNtYS4gCgpQQVJHUkFGTzogRW4gY2FzbyBkZSBwcmVzZW50YXJzZSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybyBlbiBjdWFudG8gYSBsb3MgZGVyZWNob3MgZGUgYXV0b3Igc29icmUgbGEgb2JyYSBlbiBjdWVzdGnDs24sIEVMIEFVVE9SLCBhc3VtaXLDoSB0b2RhIGxhIHJlc3BvbnNhYmlsaWRhZCwgeSBzYWxkcsOhIGVuIGRlZmVuc2EgZGUgbG9zIGRlcmVjaG9zIGFxdcOtIGF1dG9yaXphZG9zOyBwYXJhIHRvZG9zIGxvcyBlZmVjdG9zIGxhIHVuaXZlcnNpZGFkIGFjdMO6YSBjb21vIHVuIHRlcmNlcm8gZGUgYnVlbmEgZmUuIAoKRUwgQVVUT1IsIGF1dG9yaXphIGEgTEEgVU5JVkVSU0lEQUQgREVMIFJPU0FSSU8sICBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgTGV5IDQ0IGRlIDE5OTMsIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbm9ybWFzIGdlbmVyYWxlcyBzb2JyZSBsYSBtYXRlcmlhLCAgdXRpbGljZSB5IHVzZSBsYSBvYnJhIG9iamV0byBkZSBsYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuLgoKLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0KClBPTElUSUNBIERFIFRSQVRBTUlFTlRPIERFIERBVE9TIFBFUlNPTkFMRVMuIERlY2xhcm8gcXVlIGF1dG9yaXpvIHByZXZpYSB5IGRlIGZvcm1hIGluZm9ybWFkYSBlbCB0cmF0YW1pZW50byBkZSBtaXMgZGF0b3MgcGVyc29uYWxlcyBwb3IgcGFydGUgZGUgTEEgVU5JVkVSU0lEQUQgREVMIFJPU0FSSU8gIHBhcmEgZmluZXMgYWNhZMOpbWljb3MgeSBlbiBhcGxpY2FjacOzbiBkZSBjb252ZW5pb3MgY29uIHRlcmNlcm9zIG8gc2VydmljaW9zIGNvbmV4b3MgY29uIGFjdGl2aWRhZGVzIHByb3BpYXMgZGUgbGEgYWNhZGVtaWEsIGNvbiBlc3RyaWN0byBjdW1wbGltaWVudG8gZGUgbG9zIHByaW5jaXBpb3MgZGUgbGV5LiBQYXJhIGVsIGNvcnJlY3RvIGVqZXJjaWNpbyBkZSBtaSBkZXJlY2hvIGRlIGhhYmVhcyBkYXRhICBjdWVudG8gY29uIGxhIGN1ZW50YSBkZSBjb3JyZW8gaGFiZWFzZGF0YUB1cm9zYXJpby5lZHUuY28sIGRvbmRlIHByZXZpYSBpZGVudGlmaWNhY2nDs24gIHBvZHLDqSBzb2xpY2l0YXIgbGEgY29uc3VsdGEsIGNvcnJlY2Npw7NuIHkgc3VwcmVzacOzbiBkZSBtaXMgZGF0b3MuCgo= |