Associated factors with mortality due to COVID-19 in a high complexity center in Bogotá, Colombia
ANTECEDENTES El COVID-19 ha generado un impacto sin precedentes. Los pacientes en estado crítico presentan una mortalidad hasta del 61%, y el tratamiento agresivo no parece ser suficiente. Diferentes estudios han descrito factores asociados a la mortalidad, sin embargo, en Latinoamérica la informaci...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2023
- Institución:
- Universidad del Rosario
- Repositorio:
- Repositorio EdocUR - U. Rosario
- Idioma:
- eng
- OAI Identifier:
- oai:repository.urosario.edu.co:10336/40024
- Acceso en línea:
- https://doi.org/10.48713/10336_40024
https://repository.urosario.edu.co/handle/10336/40024
- Palabra clave:
- Covid-19
SARS-COV-2
Mortalidad
Factor de riesgo
Factor protector
Covid-19
SARS-COV-2
Mortality
Risk Factor
Protective Factor
- Rights
- License
- Attribution-ShareAlike 4.0 International
Summary: | ANTECEDENTES El COVID-19 ha generado un impacto sin precedentes. Los pacientes en estado crítico presentan una mortalidad hasta del 61%, y el tratamiento agresivo no parece ser suficiente. Diferentes estudios han descrito factores asociados a la mortalidad, sin embargo, en Latinoamérica la información es escasa. Nuestro objetivo fue determinar los factores asociados con la mortalidad por COVID-19 en un hospital de alta complejidad en Bogotá, Colombia. MÉTODOS Este estudio de casos y controles incluyó a 282 personas que fallecieron a causa de COVID-19 y 282 que sobrevivieron. Los individuos fueron emparejados por edad, sexo y mes de ingreso, para determinar las variables asociadas con la mortalidad. Se implementaron imputaciones múltiples por ecuación encadenada (MICE) para las variables con datos faltantes. Se estimaron árboles de clasificación y regresión (CART) para evaluar la interacción de los factores y su papel en la predicción de la mortalidad durante la hospitalización. RESULTADOS La mayoría de los pacientes eran varones en la séptima década. Aquellos que se recuperaron reportaron sintomatología heterogénea, mientras que los pacientes fallecidos presentaron dificultad respiratoria, disnea y convulsiones al ingreso. Además, este último grupo presentó una mayor carga de comorbilidades y alteraciones en los biomarcadores de laboratorio. Después de la imputación de conjuntos de datos, el análisis CART estimó 14 perfiles clínicos. La precisión del modelo fue del 85,6 % (P < 0,0001). CONCLUSIÓN El análisis multivariante arrojó un modelo confiable para predecir la mortalidad en COVID-19. Este análisis reveló nuevas interacciones entre las características clínicas y paraclínicas. Además, este modelo predictivo podría ofrecer nuevas pistas para el manejo personalizado de esta condición en entornos clínicos. |
---|