Drivers of diversification in Heliconius, with special focus on the sara/sapho clade

La comprensión de los mecanismos y procesos que impulsan la diversificación biológica y la adaptación sigue siendo una pregunta importante en la biología evolutiva que requiere investigación interdisciplinaria que aborde el papel de factores bióticos (es decir, antecedentes genéticos, interacciones...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2023
Institución:
Universidad del Rosario
Repositorio:
Repositorio EdocUR - U. Rosario
Idioma:
spa
OAI Identifier:
oai:repository.urosario.edu.co:10336/40996
Acceso en línea:
https://doi.org/10.48713/10336_40996
https://repository.urosario.edu.co/handle/10336/40996
Palabra clave:
Modelos de distribución de especies
Rearreglos cromosomales
Ecologia química
Heliconius
Species distribution models
Chromosomal rearrangements
Chemical ecology
Heliconius
Rights
License
Attribution-NonCommercial-NoDerivatives 4.0 International
id EDOCUR2_59b0d9fbf96d3fe9530e93fe752b5ff9
oai_identifier_str oai:repository.urosario.edu.co:10336/40996
network_acronym_str EDOCUR2
network_name_str Repositorio EdocUR - U. Rosario
repository_id_str
dc.title.none.fl_str_mv Drivers of diversification in Heliconius, with special focus on the sara/sapho clade
dc.title.TranslatedTitle.none.fl_str_mv Factores de diversificación en Heliconius, con especial atención al clado sara/sapho
title Drivers of diversification in Heliconius, with special focus on the sara/sapho clade
spellingShingle Drivers of diversification in Heliconius, with special focus on the sara/sapho clade
Modelos de distribución de especies
Rearreglos cromosomales
Ecologia química
Heliconius
Species distribution models
Chromosomal rearrangements
Chemical ecology
Heliconius
title_short Drivers of diversification in Heliconius, with special focus on the sara/sapho clade
title_full Drivers of diversification in Heliconius, with special focus on the sara/sapho clade
title_fullStr Drivers of diversification in Heliconius, with special focus on the sara/sapho clade
title_full_unstemmed Drivers of diversification in Heliconius, with special focus on the sara/sapho clade
title_sort Drivers of diversification in Heliconius, with special focus on the sara/sapho clade
dc.contributor.advisor.none.fl_str_mv Salazar Clavijo, Camilo Andres
Pardo Díaz, Geimy Carolina
dc.contributor.gruplac.none.fl_str_mv Filoevomica
dc.subject.none.fl_str_mv Modelos de distribución de especies
Rearreglos cromosomales
Ecologia química
Heliconius
topic Modelos de distribución de especies
Rearreglos cromosomales
Ecologia química
Heliconius
Species distribution models
Chromosomal rearrangements
Chemical ecology
Heliconius
dc.subject.keyword.none.fl_str_mv Species distribution models
Chromosomal rearrangements
Chemical ecology
Heliconius
description La comprensión de los mecanismos y procesos que impulsan la diversificación biológica y la adaptación sigue siendo una pregunta importante en la biología evolutiva que requiere investigación interdisciplinaria que aborde el papel de factores bióticos (es decir, antecedentes genéticos, interacciones ecológicas) y factores abióticos (es decir, clima). En esta tesis, estudié aspectos biogeográficos, cromosómicos y químicos que contribuyen a la diversificación de las mariposas neotropicales del género Heliconius, especialmente las especies del clado sara/sapho. Aunque Heliconius es uno de los grupos mejor estudiados en el contexto de la biología evolutiva y la ecología, el clado sara/sapho ha sido en gran medida poco estudiado a pesar de tener características únicas. Por ejemplo, algunas de sus especies muestran altas tasas de diversificación y un mayor número de cromosomas en comparación con otros Heliconius, y también parece que las especies en el clado no pueden sintetizar cianógenos, lo que las lleva a depender de toxinas adquiridas de plantas hospederas larvarias. En el Capítulo I, utilicé 54,392 registros georreferenciados de 46 especies y 1,012 registros georreferenciados de 38 híbridos interespecíficos de Heliconius para investigar el papel del entorno en la formación de su distribución y riqueza, así como sus patrones geográficos de diversidad filogenética y endemismo filogenético. También evalué si la similitud de nicho promueve la hibridación. Descubrí que Heliconius muestra cinco patrones generales de distribución, en su mayoría explicados por la precipitación y la isotermalidad, y en menor medida por la altitud. Curiosamente, la altitud desempeña un papel importante como predictor de la riqueza de especies y la diversidad filogenética, mientras que la precipitación explica los patrones de endemismo filogenético. No encontré evidencia que respalde el papel del entorno en facilitar la hibridación, porque las especies hibridantes no necesariamente comparten el mismo nicho climático a pesar de que algunas de ellas tienen distribuciones geográficas en gran parte superpuestas. En general, confirmé que, al igual que en otros organismos, la alta temperatura anual, el suministro constante de agua y la complejidad espacial-topográfica son los principales predictores de la diversidad en Heliconius. En el Capítulo II, generé datos de resecuenciación de genoma completo para 114 individuos de siete especies en el clado sara/sapho para investigar: (i) relaciones filogenéticas a nivel de genoma completo, (ii) el grado de diferenciación genómica entre especies y subespecies, y (iii) el impacto de las reorganizaciones cromosómicas en la evolución del clado. La inclusión de múltiples especies y subespecies de este clado me permitió redefinir algunas de las relaciones previamente reportadas y identificar el efecto de la geografía en la formación de su diversidad. Curiosamente, también encontré evidencia de fusiones de cromosomas sexuales con autosomas 4, 9 y 14. Todas estas fusiones parecen estar asociadas con eventos de especiación en este clado, siendo la fusión del cromosoma sexual 4 la más antigua. Aunque aún no comprendo el papel o las consecuencias evolutivas de estas fusiones, mi estudio muestra que las reorganizaciones cromosómicas pueden evolucionar rápidamente dentro de un clado y generar diversidad cromosómica. En el Capítulo III, investigué cómo varían los cianógenos (defensas químicas de los adultos de Heliconius) tanto en composición como en concentración en nueve anillos de mimetismo y seis ecorregiones neotropicales. Encontré que la variación en el perfil cianogénico de Heliconius no se explica por el anillo de mimetismo al que pertenece una especie o su localidad. En cambio, la variación cianogénica es el resultado de la cercanía filogenética y, probablemente, factores ecológicos como la especialización de la planta hospedera, la diversidad y abundancia de las plantas hospederas locales disponibles, la disponibilidad de precursores para la biosíntesis de compuestos cianogénicos en plantas fuente de polen, así como la comunidad local de depredadores. Mis resultados concuerdan con modelos recientes y metaanálisis que mostraron que un aumento en la toxicidad de las presas no se traduce en un aumento en el aprendizaje de los depredadores ni en la generación de diversidad mimética.
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2023-09-21T13:05:01Z
dc.date.available.none.fl_str_mv 2023-09-21T13:05:01Z
dc.date.created.none.fl_str_mv 2023-09-15
dc.date.embargoEnd.none.fl_str_mv info:eu-repo/date/embargoEnd/2025-10-28
dc.type.none.fl_str_mv bachelorThesis
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.document.none.fl_str_mv Trabajo de grado
dc.type.spa.none.fl_str_mv Trabajo de grado
dc.identifier.doi.none.fl_str_mv https://doi.org/10.48713/10336_40996
dc.identifier.uri.none.fl_str_mv https://repository.urosario.edu.co/handle/10336/40996
url https://doi.org/10.48713/10336_40996
https://repository.urosario.edu.co/handle/10336/40996
dc.language.iso.none.fl_str_mv spa
language spa
dc.rights.*.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_f1cf
dc.rights.acceso.none.fl_str_mv Restringido (Temporalmente bloqueado)
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
Restringido (Temporalmente bloqueado)
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_f1cf
dc.format.extent.none.fl_str_mv 182
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad del Rosario
dc.publisher.department.none.fl_str_mv Escuela de Medicina y Ciencias de la Salud
dc.publisher.program.none.fl_str_mv Doctorado en Ciencias Biomédicas y Biológicas
publisher.none.fl_str_mv Universidad del Rosario
institution Universidad del Rosario
dc.source.bibliographicCitation.none.fl_str_mv Carabajal Paladino, Leonela Z; Provazníková, Irena; Berger, Madeleine; Bass, Chris; Aratchige, Nayanie S; López, Silvia N; Marec, František; Nguyen, Petr; Barluenga, Marta (2019) Sex Chromosome Turnover in Moths of the Diverse Superfamily Gelechioidea. En: Genome Biology and Evolution. Vol. 11; No. 4; pp. 1307 - 1319; 1759-6653; Consultado en: 2022/07/08/16:45:57. Disponible en: https://academic.oup.com/gbe/article/11/4/1307/5432649. Disponible en: 10.1093/gbe/evz075.
Lucek, Kay (2018) Evolutionary Mechanisms of Varying Chromosome Numbers in the Radiation of Erebia Butterflies. En: Genes. Vol. 9; No. 3; pp. 166 2073-4425; Consultado en: 2022/07/08/16:47:04. Disponible en: http://www.mdpi.com/2073-4425/9/3/166. Disponible en: 10.3390/genes9030166.
Yoshido, Atsuo; Marec, František; Sahara, Ken (2005) Resolution of sex chromosome constitution by genomic in situ hybridization and fluorescence in situ hybridization with (TTAGG) n telomeric probe in some species of Lepidoptera. En: Chromosoma. Vol. 114; No. 3; pp. 193 - 202; 0009-5915, 1432-0886; Consultado en: 2022/07/08/17:41:27. Disponible en: http://link.springer.com/10.1007/s00412-005-0013-9. Disponible en: 10.1007/s00412-005-0013-9.
Lucek, Kay; Augustijnen, Hannah; Escudero, Marcial (2022) A holocentric twist to chromosomal speciation?. En: Trends in Ecology & Evolution. pp. S0169534722000854 01695347; Consultado en: 2022/07/08/19:41:58. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S0169534722000854. Disponible en: 10.1016/j.tree.2022.04.002.
Kozak, Krzysztof M.; Wahlberg, Niklas; Neild, Andrew F. E.; Dasmahapatra, Kanchon K.; Mallet, James; Jiggins, Chris D. (2015) Multilocus Species Trees Show the Recent Adaptive Radiation of the Mimetic Heliconius Butterflies. En: Systematic Biology. Vol. 64; No. 3; pp. 505 - 524; 1076-836X, 1063-5157; Consultado en: 2022/07/18/14:14:56. Disponible en: https://academic.oup.com/sysbio/article/64/3/505/1633024. Disponible en: 10.1093/sysbio/syv007.
Jiggins, Chris D.; Lamas, Gerardo (2016) The Ecology and Evolution of Heliconius Butterflies. : Oxford University Press; 978-0-19-956657-0; Consultado en: 2022/07/18/14:16:34. Disponible en: https://oxford.universitypressscholarship.com/view/10.1093/acprof:oso/9780199566570.001.0001/acprof-9780199566570.
Engler-Chaouat, Helene S.; Gilbert, Lawrence E. (2007) De novo Synthesis vs. Sequestration: Negatively Correlated Metabolic Traits and the Evolution of Host Plant Specialization in Cyanogenic Butterflies. En: Journal of Chemical Ecology. Vol. 33; No. 1; pp. 25 - 42; 1573-1561; Consultado en: 2022/07/19/00:03:54. Disponible en: https://doi.org/10.1007/s10886-006-9207-8. Disponible en: 10.1007/s10886-006-9207-8.
Brown, K. S.; Emmel, T. C.; Eliazar, P. J.; Suomalainen, E. (1992) Evolutionary patterns in chromosome numbers in neotropical Lepidoptera. I. Chromosomes of the Heliconiini (family Nymphalidae: subfamily Nymphalinae). En: Hereditas. Vol. 117; No. 2; pp. 109 - 125; 0018-0661; Disponible en: 10.1111/j.1601-5223.1992.tb00165.x.
Li, Heng (2013) Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. : ArXiv; Consultado en: 2022/07/29/14:44:01. Disponible en: http://arxiv.org/abs/1303.3997.
Broad, Institute (2019) Picard Toolkit. : Broad Institute; Consultado en: 2022/07/29/14:48:09. Disponible en: https://github.com/broadinstitute/picard.
Purcell, Shaun; Chang, Christopher C (2007) PLINK: Whole genome data analysis toolset. Consultado en: 2022/07/29/14:50:42. Disponible en: www.cog-genomics.org/plink/2.0/.
Stamatakis, Alexandros; Hoover, Paul; Rougemont, Jacques; Renner, Susanne (2008) A Rapid Bootstrap Algorithm for the RAxML Web Servers. En: Systematic Biology. Vol. 57; No. 5; pp. 758 - 771; 1076-836X, 1063-5157; Consultado en: 2022/07/29/14:52:30. Disponible en: https://academic.oup.com/sysbio/article/57/5/758/1618491. Disponible en: 10.1080/10635150802429642.
Hill, Jason; Rastas, Pasi; Hornett, Emily; Neethiraj, Ramprasad; Clark, Nathan; Morehouse, Nathan; La, Maria; Celorio-Mancera, Maria de la Paz; Cols, Jofre; Dircksen, Heinrich; Meslin, Camille; Keehnen, Naomi; Pruisscher, Peter; Sikkink, Kristin; Vives, Maria; Vogel, Heiko; Wiklund, Christer; Woronik, Alyssa; Boggs, Carol; Wheat, Christopher (2019) Unprecedented reorganization of holocentric chromosomes provides insights into the enigma of lepidopteran chromosome evolution. En: Science Advances. Vol. 5; pp. eaau3648 Disponible en: 10.1126/sciadv.aau3648.
Guerrero, Rafael F.; Kirkpatrick, Mark (2014) Local Adaptation and the Evolution of Chromosome Fusions. En: Evolution. Vol. 68; No. 10; pp. 2747 - 2756; 1558-5646; Consultado en: 2022/08/04/23:45:20. Disponible en: http://onlinelibrary.wiley.com/doi/abs/10.1111/evo.12481. Disponible en: 10.1111/evo.12481.
R Core Team (2013) R: A language and environment for statistical computing. R Foundation for Statistical Computing. Viena, Austria Disponible en: http://www.R-project.org/.
Kitano, Jun; Ross, Joseph A.; Mori, Seiichi; Kume, Manabu; Jones, Felicity C.; Chan, Yingguang F.; Absher, Devin M.; Grimwood, Jane; Schmutz, Jeremy; Myers, Richard M.; Kingsley, David M.; Peichel, Catherine L. (2009) A role for a neo-sex chromosome in stickleback speciation. En: Nature. Vol. 461; No. 7267; pp. 1079 - 1083; 1476-4687; Consultado en: 2022/10/29/22:59:05. Disponible en: https://www.nature.com/articles/nature08441. Disponible en: 10.1038/nature08441.
Yeaman, Sam (2013) Genomic rearrangements and the evolution of clusters of locally adaptive loci. En: Proceedings of the National Academy of Sciences of the United States of America. Vol. 110; No. 19; pp. E1743 - 1751; 1091-6490; Disponible en: 10.1073/pnas.1219381110.
Cicconardi, Francesco; Milanetti, Edoardo; Castro, Érika C. Pinheiro de; Mazo-Vargas, Anyi; Belleghem, Steven M. Van; Ruggieri, Angelo Alberto; Rastas, Pasi; Hanly, Joseph; Evans, Elizabeth; Jiggins, Chris D.; McMillan, W. Owen; Papa, Riccardo; Marino, Daniele di; Martin, Arnaud; Montgomery, Stephen H. (2022) Evolutionary dynamics of genome size and content during the adaptive radiation of Heliconiini butterflies. : bioRxiv; Consultado en: 2022/10/29/23:10:42. Disponible en: https://www.biorxiv.org/content/10.1101/2022.08.12.503723v1. Disponible en: 10.1101/2022.08.12.503723.
Pennell, Matthew W.; Kirkpatrick, Mark; Otto, Sarah P.; Vamosi, Jana C.; Peichel, Catherine L.; Valenzuela, Nicole; Kitano, Jun (2015) Y Fuse? Sex Chromosome Fusions in Fishes and Reptiles. En: PLOS Genetics. Vol. 11; No. 5; pp. e1005237 1553-7404; Consultado en: 2022/10/29/23:13:08. Disponible en: https://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1005237. Disponible en: 10.1371/journal.pgen.1005237.
Rueda-M, Nicol; Salgado-Roa, Fabian C.; Gantiva-Q, Carlos H.; Pardo-Díaz, Carolina; Salazar, Camilo (2021) Environmental Drivers of Diversification and Hybridization in Neotropical Butterflies. En: Frontiers in Ecology and Evolution. Vol. 9; 2296-701X; Consultado en: 2022/10/31/16:51:44. Disponible en: https://www.frontiersin.org/articles/10.3389/fevo.2021.750703.
Jay, Paul; Tezenas, Emilie; Véber, Amandine; Giraud, Tatiana (2022) Sheltering of deleterious mutations explains the stepwise extension of recombination suppression on sex chromosomes and other supergenes. En: PLOS Biology. Vol. 20; No. 7; pp. e3001698 1545-7885; Consultado en: 2022/11/29/20:01:35. Disponible en: https://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.3001698. Disponible en: 10.1371/journal.pbio.3001698.
Matsumoto, Tomotaka; Kitano, Jun (2016) The intricate relationship between sexually antagonistic selection and the evolution of sex chromosome fusions. En: Journal of Theoretical Biology. Vol. 404; pp. 97 - 108; 00225193; Consultado en: 2022/11/30/17:03:38. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S0022519316301266. Disponible en: 10.1016/j.jtbi.2016.05.036.
Ross, Joseph A.; Urton, James R.; Boland, Jessica; Shapiro, Michael D.; Peichel, Catherine L. (2009) Turnover of Sex Chromosomes in the Stickleback Fishes (Gasterosteidae). En: PLOS Genetics. Vol. 5; No. 2; pp. e1000391 1553-7404; Consultado en: 2022/12/02/15:37:17. Disponible en: https://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1000391. Disponible en: 10.1371/journal.pgen.1000391.
Pala, I; Naurin, S; Stervander, M; Hasselquist, D; Bensch, S; Hansson, B (2012) Evidence of a neo-sex chromosome in birds. En: Heredity. Vol. 108; No. 3; pp. 264 - 272; 0018-067X; Consultado en: 2022/12/02/16:57:19. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3282394/. Disponible en: 10.1038/hdy.2011.70.
Flores, Sergio V; Evans, Amy L; McAllister, Bryant F (2008) Independent Origins of New Sex-Linked Chromosomes in the melanica and robusta Species Groups of Drosophila. En: BMC Evolutionary Biology. Vol. 8; pp. 33 1471-2148; Consultado en: 2022/12/02/19:59:40. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2268673/. Disponible en: 10.1186/1471-2148-8-33.
Schmid, M.; Feichtinger, W.; Steinlein, C.; Visbal García, R.; Fernández Badillo, A. (2003) Chromosome banding in Amphibia. XXVIII. Homomorphic XY sex chromosomes and a derived Y-autosome translocation in Eleutherodactylus riveroi (Anura, Leptodactylidae). En: Cytogenetic and Genome Research. Vol. 101; No. 1; pp. 62 - 73; 1424-859X; Disponible en: 10.1159/000073420.
Král, Jiří; Kořínková, Tereza; Krkavcová, Lenka; Musilová, Jana; Forman, Martin; Herrera, Ivalú M. Ávila; Haddad, Charles R.; Vítková, Magda; Henriques, Sergio; Vargas, José G. Palacios; Hedin, Marshal (2013) Evolution of karyotype, sex chromosomes, and meiosis in mygalomorph spiders (Araneae: Mygalomorphae). En: Biological Journal of the Linnean Society. Vol. 109; No. 2; pp. 377 - 408; 0024-4066; Consultado en: 2022/12/06/19:15:01. Disponible en: https://doi.org/10.1111/bij.12056. Disponible en: 10.1111/bij.12056.
Bressa, M. J.; Papeschi, A. G.; Vítková, M.; Kubícková, S.; Fuková, I.; Pigozzi, M. I.; Marec, F. (2009) Sex chromosome evolution in cotton stainers of the genus Dysdercus (Heteroptera: Pyrrhocoridae). En: Cytogenetic and Genome Research. Vol. 125; No. 4; pp. 292 - 305; 1424-859X; Disponible en: 10.1159/000235936.
White, M. J. D. (1977) Animal Cytology and Evolution. 978-0-521-29227-6; Consultado en: 2022/12/06/19:49:37. Disponible en: https://www.cambridge.org/co/academic/subjects/life-sciences/cell-biology-and-developmental-biology/animal-cytology-and-evolution-3rd-edition, https://www.cambridge.org/co/academic/subjects/life-sciences/cell-biology-and-developmental-biology.
Brown, Keith S. (1981) The biology of Heliconius and related genera. En: Annual review entomology. Vol. 26; No. 4; pp. 27 - 56;
Sigeman, Hanna; Ponnikas, Suvi; Chauhan, Pallavi; Dierickx, Elisa; Brooke, M. de L.; Hansson, Bengt (2019) Repeated sex chromosome evolution in vertebrates supported by expanded avian sex chromosomes. En: Proceedings of the Royal Society B: Biological Sciences. Vol. 286; No. 1916; pp. 20192051 Consultado en: 2023/01/23/21:10:06. Disponible en: https://royalsocietypublishing.org/doi/10.1098/rspb.2019.2051. Disponible en: 10.1098/rspb.2019.2051.
Chang, Christopher C; Chow, Carson C; Tellier, Laurent CAM; Vattikuti, Shashaank; Purcell, Shaun M; Lee, James J (2015) Second-generation PLINK: rising to the challenge of larger and richer datasets. En: GigaScience. Vol. 4; No. 1; pp. s13742 - 015-0047-8; 2047-217X; Consultado en: 2023/01/23/22:10:48. Disponible en: https://doi.org/10.1186/s13742-015-0047-8. Disponible en: 10.1186/s13742-015-0047-8.
Manni, Mosè; Berkeley, Matthew R; Seppey, Mathieu; Simão, Felipe A; Zdobnov, Evgeny M (2021) BUSCO Update: Novel and Streamlined Workflows along with Broader and Deeper Phylogenetic Coverage for Scoring of Eukaryotic, Prokaryotic, and Viral Genomes. En: Molecular Biology and Evolution. Vol. 38; No. 10; pp. 4647 - 4654; 1537-1719; Consultado en: 2023/02/13/15:49:34. Disponible en: https://doi.org/10.1093/molbev/msab199. Disponible en: 10.1093/molbev/msab199.
Meier, Joana Isabel; Marques, David Alexander; Wagner, Catherine Elise; Excoffier, Laurent; Seehausen, Ole (2018) Genomics of Parallel Ecological Speciation in Lake Victoria Cichlids. En: Molecular Biology and Evolution. Vol. 35; No. 6; pp. 1489 - 1506; 0737-4038; Consultado en: 2023/02/13/16:27:12. Disponible en: https://doi.org/10.1093/molbev/msy051. Disponible en: 10.1093/molbev/msy051.
Suomalainen, Esko; Cook, Laurence M.; Turner, John R. G. (1973) Achiasmatic oogenesis in the Heliconiine butterflies. En: Hereditas. Vol. 74; No. 2; pp. 302 - 304; 1601-5223; Consultado en: 2023/02/17/20:47:53. Disponible en: https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1601-5223.1973.tb01134.x. Disponible en: 10.1111/j.1601-5223.1973.tb01134.x.
Charlesworth, D.; Charlesworth, B. (1980) Sex differences in fitness and selection for centric fusions between sex-chromosomes and autosomes. En: Genetics Research. Vol. 35; No. 2; pp. 205 - 214; 1469-5073, 0016-6723; Consultado en: 2023/03/06/14:05:05. Disponible en: https://www.cambridge.org/core/journals/genetics-research/article/sex-differences-in-fitness-and-selection-for-centric-fusions-between-sexchromosomes-and-autosomes/F6B902F3997278F205A9CBBFDC400440#. Disponible en: 10.1017/S0016672300014051.
Pardo-Manuel de Villena, F.; Sapienza, C. (2001) Female meiosis drives karyotypic evolution in mammals. En: Genetics. Vol. 159; No. 3; pp. 1179 - 1189; 0016-6731; Disponible en: 10.1093/genetics/159.3.1179.
Ruan, Jue; Li, Heng (2020) Fast and accurate long-read assembly with wtdbg2. En: Nature Methods. Vol. 17; No. 2; pp. 155 - 158; 1548-7105; Consultado en: 2023/03/06/14:27:11. Disponible en: https://www.nature.com/articles/s41592-019-0669-3. Disponible en: 10.1038/s41592-019-0669-3.
Garrison, Erik; Marth, Gabor (2012) Haplotype-based variant detection from short-read sequencing. : arXiv; Consultado en: 2023/03/06/14:40:35. Disponible en: http://arxiv.org/abs/1207.3907. Disponible en: 10.48550/arXiv.1207.3907.
Danecek, Petr; Bonfield, James K.; Liddle, Jennifer; Marshall, John; Ohan, Valeriu; Pollard, Martin O.; Whitwham, Andrew; Keane, Thomas; McCarthy, Shane A.; Davies, Robert M.; Li, Heng (2021) Twelve years of SAMtools and BCFtools. En: GigaScience. Vol. 10; No. 2; pp. giab008 2047-217X; Disponible en: 10.1093/gigascience/giab008.
Chow, William; Brugger, Kim; Caccamo, Mario; Sealy, Ian; Torrance, James; Howe, Kerstin (2016) gEVAL — a web-based browser for evaluating genome assemblies. En: Bioinformatics. Vol. 32; No. 16; pp. 2508 - 2510; 1367-4803; Consultado en: 2023/03/06/14:43:35. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4978925/. Disponible en: 10.1093/bioinformatics/btw159.
Ghurye, Jay; Rhie, Arang; Walenz, Brian P.; Schmitt, Anthony; Selvaraj, Siddarth; Pop, Mihai; Phillippy, Adam M.; Koren, Sergey (2019) Integrating Hi-C links with assembly graphs for chromosome-scale assembly. En: PLOS Computational Biology. Vol. 15; No. 8; pp. e1007273 1553-7358; Consultado en: 2023/03/06/14:44:40. Disponible en: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1007273. Disponible en: 10.1371/journal.pcbi.1007273.
Krátká, Marie; Šmerda, Jakub; Lojdová, Kateřina; Bureš, Petr; Zedek, František (2021) Holocentric Chromosomes Probably Do Not Prevent Centromere Drive in Cyperaceae. En: Frontiers in Plant Science. Vol. 12; 1664-462X; Consultado en: 2023/03/21/20:34:48. Disponible en: https://www.frontiersin.org/articles/10.3389/fpls.2021.642661.
Chouteau, Mathieu; Dezeure, Jules; Sherratt, Thomas N.; Llaurens, Violaine; Joron, Mathieu (2019) Similar predator aversion for natural prey with diverse toxicity levels. En: Animal Behaviour. Vol. 153; pp. 49 - 59; 0003-3472; Consultado en: 2023/05/26/01:05:34. Disponible en: https://www.sciencedirect.com/science/article/pii/S000334721930137X. Disponible en: 10.1016/j.anbehav.2019.04.017.
Kuo, Chi-Yun (2023) Predator learning can resolve the paradox of local warning signal diversity. : bioRxiv; Consultado en: 2023/05/28/17:28:31. Disponible en: https://www.biorxiv.org/content/10.1101/2023.05.04.539348v1. Disponible en: 10.1101/2023.05.04.539348.
DePristo, Mark A; Banks, Eric; Poplin, Ryan; Garimella, Kiran V; Maguire, Jared R; Hartl, Christopher; Philippakis, Anthony A; del Angel, Guillermo; Rivas, Manuel A; Hanna, Matt; McKenna, Aaron; Fennell, Tim J; Kernytsky, Andrew M; Sivachenko, Andrey Y; Cibulskis, Kristian; Gabriel, Stacey B; Altshuler, David; Daly, Mark J (2011) A framework for variation discovery and genotyping using next-generation DNA sequencing data. En: Nature genetics. Vol. 43; No. 5; pp. 491 - 8; 1546-1718; Disponible en: http://dx.doi.org/10.1038/ng.806. Disponible en: 10.1038/ng.806.
Danecek, Petr; Auton, Adam; Abecasis, Goncalo; Albers, Cornelis A.; Banks, Eric; DePristo, Mark A.; Handsaker, Robert E.; Lunter, Gerton; Marth, Gabor T.; Sherry, Stephen T.; McVean, Gilean; Durbin, Richard (2011) The variant call format and VCFtools. En: Bioinformatics. Vol. 27; No. 15; pp. 2156 - 2158; 13674803; Disponible en: 10.1093/bioinformatics/btr330.
Li, Heng; Handsaker, Bob; Wysoker, Alec; Fennell, Tim; Ruan, Jue; Homer, Nils; Marth, Gabor; Abecasis, Goncalo; Durbin, Richard (2009) The Sequence Alignment/Map format and SAMtools. En: Bioinformatics. Vol. 25; No. 16; pp. 2078 - 2079; 13674803; Disponible en: 10.1093/bioinformatics/btp352.
Rosser, N.; Phillimore, A.; Huertas, B.; Willmott, K.; Mallet, J. (2012) Testing historical explanations for gradients in species richness in heliconiine butterflies of tropical America. En: Biological Journal of the Linnean Society. Vol. 105; No. March; pp. 479 - 497; 00244066; Disponible en: 10.1111/j.1095-8312.2011.01814.x.
Phillips, Steven Anderson, Robert Schapire, Robert (2006) Maximum entropy modeling of species geographic distributions. En: Ecological modelling. Vol. 190; pp. 231 - 259; Disponible en: www.sciencedirect.com. Disponible en: 10.1016/j.ecolmodel.2005.03.026.
Karger, Dirk Nikolaus; Conrad, Olaf; Böhner, Jürgen; Kawohl, Tobias; Kreft, Holger; Soria-Auza, Rodrigo Wilber; Zimmermann, Niklaus E; Linder, H Peter; Kessler, Michael (2017) Climatologies at high resolution for the earth’s land surface areas. En: Scientific Data. Vol. 4; pp. 170122 Disponible en: http://dx.doi.org/10.1038/sdata.2017.122.
Rosser, N.; Dasmahapatra, K.K.; Mallet, J. (2014) Stable Heliconius butterfly hybrid zones are correlated with a local rainfall peak at the edge of the Amazon basin. En: Evolution. Vol. 68; No. 12; pp. 3470 - 3484; Disponible en: 10.1111/evo.12539.
Mallet, J.; McMillan, W. O.; Jiggins, C. D.; Howard, D.J.; Berlocher, S.H. (1998) Mimicry and warning color at the boundary between races and species. En: Endless forms. Species and speciation. pp. 366
Beltrán, M.; Jiggins, C.D.; Brower, A.; Bermingham, E.; Mallet, J. (2007) Do pollen feeding, pupal-mating and larval gregariousness have a single origin in Heliconius butterflies? Inferences from multilocus DNA sequence data. En: Bio. J. Linn. Soc. Vol. 92; pp. 221 - 239;
Kronforst M.R., Hansen M.E., Crawford N.G., Gallant J.R., Zhang, W., Kulathinal R.J., Kapan D.D., Mullen S.P. (2013) Hybridization reveals the evolving genomic architecture of speciation. En: Cell Reports. Vol. 14; No. 5; pp. 666 - 77; Disponible en: doi: 10.1016/j.celrep.2013.09.042.
Barbet-Massin, Morgane; Jiguet, Frédéric; Albert, Cécile Hélène; Thuiller, Wilfried (2012) Selecting pseudo-absences for species distribution models: How, where and how many?. En: Methods in Ecology and Evolution. Vol. 3; No. 2; pp. 327 - 338; 2041210X; Disponible en: 10.1111/j.2041-210X.2011.00172.x.
Wieczorek, John; Guo, Qinghua; Hijmans, Robert J. (2004) The point-radius method for georeferencing locality descriptions and calculating associated uncertainty. En: International Journal of Geographical Information Science. Vol. 18; No. 8; pp. 745 - 767; 13658816; Disponible en: 10.1080/13658810412331280211.
McCullagh, P.; Nelder, J.A. (1989) Generalized linear models. London, UK
Friedman, J. H.; Hastie, T.; Tibshirani, R. (2000) Additive logistic regression: a statistical view of boosting. En: Ann. Stat. Vol. 28; pp. 337 - 407; Disponible en: doi:10.1214/aos/1016218223.
Mallet, J.; Barton, NH.; Lamas, G.; Santisteban, J.; Muedas, M.; Eeley, H. (1990) Estimates of selection and gene flow from measures of cline width and linkage disequilibrium in Heliconius hybrid zones. En: Genetics. Vol. 124; pp. 921 - 936;
Cormont, Anouk; Malinowska, Agnieszka H.; Kostenko, Olga; Radchuk, Victoria; Hemerik, Lia; WallisDeVries, Michiel F.; Verboom, Jana (2011) Effect of local weather on butterfly flight behaviour, movement, and colonization: Significance for dispersal under climate change. En: Biodiversity and Conservation. Vol. 20; No. 3; pp. 483 - 503; 09603115; Disponible en: 10.1007/s10531-010-9960-4.
Dasmahapatra, Kanchon K.; Lamas, Gerardo; Simpson, Fraser; Mallet, James (2010) The anatomy of a 'suture zone' in Amazonian butterflies: A coalescent-based test for vicariant geographic divergence and speciation. En: Molecular Ecology. Vol. 19; No. 19; pp. 4283 - 4301; 09621083; Disponible en: 10.1111/j.1365-294X.2010.04802.x.
Rödder, D.; Engler, J. O. (2011) Quantitative metrics of overlaps in Grinnellian niches: Advances and possible drawbacks. En: Global Ecology and Biogeography. Vol. 20; No. 6; pp. 915 - 927; 1466822X; Disponible en: 10.1111/j.1466-8238.2011.00659.x.
O'Donnell, Michael S.; Ignizio, Drew A (2012) Bioclimatic Predictors for Supporting Ecological Applications in the Conterminous United States. En: U.S Geological Survey Data Series 691. pp. 1 - 17; 09505849;
Mallet, J.; Beltrán, M.; Neukirchen, W.; Linares, M. (2007) Natural hybridization in heliconiine butterflies: The species boundary as a continuum. En: BMC Evolutionary Biology. Vol. 7; pp. 1 - 16; 14712148; Disponible en: 10.1186/1471-2148-7-28.
Muñoz, A. G.; Salazar, C.; Castaño, J.; Jiggins, C. D.; Linares, M. (2010) Multiple sources of reproductive isolation in a bimodal butterfly hybrid zone. En: Journal of Evolutionary Biology. Vol. 23; No. 6; pp. 1312 - 1320; 14209101; Disponible en: 10.1111/j.1420-9101.2010.02001.x.
Martin, Simon H.; Dasmahapatra, Kanchon K.; Nadeau, Nicola J.; Salazar, Camilo; Walters, James R.; Simpson, Fraser; Blaxter, Mark; Manica, Andrea; Mallet, James; Jiggins, Chris D. (2013) Genome-wide evidence for speciation with gene flow in Heliconius butterflies. En: Genome Research. Vol. 23; No. 11; pp. 1817 - 1828; 15495469; Disponible en: 10.1101/gr.159426.113.
Montejo-Kovacevich, Gabriela; Martin, Simon H.; Meier, Joana I.; Bacquet, Caroline N.; Monllor, Monica; Jiggins, Chris D.; Nadeau, Nicola J. (2020) Microclimate buffering and thermal tolerance across elevations in a tropical butterfly. En: The Journal of Experimental Biology. Vol. 223; No. 8; pp. jeb220426 0022-0949; Disponible en: 10.1242/jeb.220426.
Brown, Jason L.; Carnaval, Ana C. (2019) A tale of two niches: Methods, concepts, and evolution. En: Frontiers of Biogeography. Vol. 11; No. 4; pp. 1 - 27; 19486596; Disponible en: 10.21425/F5FBG44158.
Vallejos-Garrido, Paulo; Rivera, Reinaldo; Inostroza-Michae, Oscar; Rodríguez-Serrano, Enrique; Hernández, Cristián E. (2017) Historical dynamics and current environmental effects explain the spatial distribution of species richness patterns of New World monkeys. En: PeerJ. Vol. 5; pp. 2 - 27; 21678359; Disponible en: 10.7717/peerj.3850.
Paz, Andrea; Guarnizo, Carlos E. (2020) Environmental ranges estimated from species distribution models are not good predictors of lizard and frog physiological tolerances. En: Evolutionary Ecology. Vol. 34; No. 1; pp. 89 - 99; 15738477; Disponible en: https://doi.org/10.1007/s10682-019-10022-3. Disponible en: 10.1007/s10682-019-10022-3.
Davis Rabosky, Alison R.; Cox, Christian L.; Rabosky, Daniel L.; Title, Pascal O.; Holmes, Iris A.; Feldman, Anat; McGuire, Jimmy A. (2016) Coral snakes predict the evolution of mimicry across New World snakes. En: Nature Communications. Vol. 7; No. May; pp. 1 - 9; 20411723; Disponible en: 10.1038/ncomms11484.
Chattopadhyay, Balaji; Garg, Kritika M.; Ray, Rajasri; Rheindt, Frank E. (2019) Fluctuating fortunes: Genomes and habitat reconstructions reveal global climate-mediated changes in bats' genetic diversity. En: Proceedings of the Royal Society B: Biological Sciences. Vol. 286; No. 1911; pp. 1 - 10; 14712954; Disponible en: 10.1098/rspb.2019.0304.
Heya, Helen Msigo; Khamis, Fathiya Mbarak; Onyambu, Gladys Kemunto; Akutse, Komivi Senyo; Mohamed, Samira Abuelgasim; Kimathi, Emily Kajuju; Ombura, Fidelis Levi Odhiambo; Ekesi, Sunday; Dubois, Thomas; Subramanian, Sevgan; Tanga, Chrysantus Mbi (2020) Characterization and risk assessment of the invasive papaya mealybug, Paracoccus marginatus, in Kenya under changing climate. En: Journal of Applied Entomology. Vol. 144; No. 6; pp. 1 - 17; 14390418; Disponible en: 10.1111/jen.12748.
Simó, Miguel; Guerrero, José Carlos; Giuliani, Leandro; Castellano, Ismael; Acosta, Luis E (2014) A predictive modeling approach to test distributional uniformity of Uruguayan harvestmen (Arachnida: Opiliones). En: Zoological Studies. Vol. 53; No. 1; pp. 1 - 13; 1810-522X; Disponible en: 10.1186/s40555-014-0050-2.
Jiggins, C.; Mcmillan, W. O.; Mallet, J. (1997) Host plant adaptation has not played a role in the recent speciation of Heliconius himera and Heliconius erato. En: Ecological Entomology. Vol. 22; No. 3; pp. 361 - 365; 03076946; Disponible en: 10.1046/j.1365-2311.1997.00067.x.
Phillips, Steven J.; Dudík, Miroslav; Elith, Jane; Graham, Catherine H.; Lehmann, Anthony; Leathwick, John; Ferrier, Simon (2009) Sample selection bias and presence-only distribution models: Implications for background and pseudo-absence data. En: Ecological Applications. Vol. 19; No. 1; pp. 181 - 197; 10510761; Disponible en: 10.1890/07-2153.1.
Lake, Thomas A.; Briscoe Runquist, Ryan D.; Moeller, David A. (2020) Predicting range expansion of invasive species: Pitfalls and best practices for obtaining biologically realistic projections. En: Diversity and Distributions. Vol. 26; No. 12; pp. 1767 - 1779; 14724642; Disponible en: 10.1111/ddi.13161.
Soberón, Jorge; Nakamura, Miguel (2009) Niches and distributional areas: Concepts, methods, and assumptions. En: Proceedings of the National Academy of Sciences of the United States of America. Vol. 106; No. SUPPL. 2; pp. 19644 - 19650; 10916490; Disponible en: 10.1073/pnas.0901637106.
Kubota, Yasuhiro; Shiono, Takayuki; Kusumoto, Buntarou (2015) Role of climate and geohistorical factors in driving plant richness patterns and endemicity on the east Asian continental islands. En: Ecography. Vol. 38; No. 6; pp. 639 - 648; 16000587; Disponible en: 10.1111/ecog.00981.
Dormann, Carsten F.; Elith, Jane; Bacher, Sven; Buchmann, Carsten; Carl, Gudrun; Carré, Gabriel; Marquéz, Jaime R.García; Gruber, Bernd; Lafourcade, Bruno; Leitão, Pedro J.; Münkemüller, Tamara; Mcclean, Colin; Osborne, Patrick E.; Reineking, Björn; Schröder, Boris; Skidmore, Andrew K.; Zurell, Damaris; Lautenbach, Sven (2013) Collinearity: A review of methods to deal with it and a simulation study evaluating their performance. En: Ecography. Vol. 36; No. 1; pp. 27 - 46; 16000587; Disponible en: 10.1111/j.1600-0587.2012.07348.x.
Heiberger, Maintainer Richard M (2020) Package ‘ HH ’. 978-1-4939-2121-8;
Schmitt, Sylvain; Pouteau, Robin; Justeau, Dimitri; de Boissieu, Florian; Birnbaum, Philippe (2017) ssdm: An r package to predict distribution of species richness and composition based on stacked species distribution models. En: Methods in Ecology and Evolution. Vol. 8; No. 12; pp. 1795 - 1803; 2041210X; Disponible en: 10.1111/2041-210X.12841.
Hastie, T.J.; Tibshirani, R.J. (1990) Generalized Additive Models. pp. 352 London, Reino Unido: Chapman and Hall/CRC;
Smith, Adam B.; Santos, Maria J. (2020) Testing the ability of species distribution models to infer variable importance. En: Ecography. Vol. 43; No. 12; pp. 1801 - 1813; 16000587; Disponible en: 10.1111/ecog.05317.
Faith, Daniel P. (1992) Conservation evaluation and phylogenetic diversity. En: Biological Conservation. Vol. 61; No. 1; pp. 1 - 10; 00063207; Disponible en: 10.1016/0006-3207(92)91201-3.
Daru, Barnabas H.; Karunarathne, Piyal; Schliep, Klaus (2020) phyloregion: R package for biogeographical regionalization and macroecology. En: Methods in Ecology and Evolution. Vol. 11; No. 11; pp. 1483 - 1491; 2041210X; Disponible en: 10.1111/2041-210X.13478.
Rosauer, Dan; Laffan, Shawn W.; Crisp, Michael D.; Donnellan, Stephen C.; Cook, Lyn G. (2009) Phylogenetic endemism: A new approach for identifying geographical concentrations of evolutionary history. En: Molecular Ecology. Vol. 18; No. 19; pp. 4061 - 4072; 09621083; Disponible en: 10.1111/j.1365-294X.2009.04311.x.
Liaw, Andy; Wiener, M (2002) Classification and Regression by randomForest. En: R news. Vol. 2; No. December; pp. 18 - 22; 16093631; Disponible en: http://cran.r-project.org/doc/Rnews/.
Paz, Andrea; Brown, Jason L.; Cordeiro, Carlos L.O.; Aguirre-Santoro, Julian; Assis, Claydson; Amaro, Renata Cecilia; Raposo do Amaral, Fabio; Bochorny, Thuane; Bacci, Lucas F.; Caddah, Mayara K.; d’Horta, Fernando; Kaehler, Miriam; Lyra, Mariana; Grohmann, Carlos Henrique; Reginato, Marcelo; Silva-Brandão, Karina Lucas; Freitas, André Victor Lucci; Goldenberg, Renato; Lohmann, Lúcia G.; Michelangeli, Fabián A.; Miyaki, Cristina; Rodrigues, Miguel T.; Silva, Thiago S.; Carnaval, Ana C. (2021) Environmental correlates of taxonomic and phylogenetic diversity in the Atlantic Forest. En: Journal of Biogeography. No. March; 13652699; Disponible en: 10.1111/jbi.14083.
Venables, W.N.; Ripley, B. D. (2002) Modern applied statistics with S. Vol. 53; pp. 481 : Springer; 978-85-7811-079-6;
Karatzoglou, Alexandros; Hornik, Kurt; Smola, Alex; Zeileis, Achim (2004) kernlab. En: Journal of Statistical Software. Vol. 11; pp. 1 - 20; 15487660; Disponible en: 10.18637/jss.v011.i09.
Meyer, Leila; Diniz-Filho, José A.F.; Lohmann, Lúcia G. (2017) A comparison of hull methods for estimating species ranges and richness maps. En: Plant Ecology and Diversity. Vol. 10; No. 5-6; pp. 389 - 401; 17551668; Disponible en: https://doi.org/10.1080/17550874.2018.1425505. Disponible en: 10.1080/17550874.2018.1425505.
Schivo, Facundo; Bauni, Valeria; Krug, Pamela; Quintana, Rubén Darío (2019) Distribution and richness of amphibians under different climate change scenarios in a subtropical region of South America. En: Applied Geography. Vol. 103; No. February 2018; pp. 70 - 89; 01436228; Disponible en: 10.1016/j.apgeog.2019.01.003.
de Oliveira da Conceição, Eliezer; Mantovano, Tatiane; de Campos, Ramiro; Rangel, Thiago Fernando; Martens, Koen; Bailly, Dayani; Higuti, Janet (2020) Mapping the observed and modelled intracontinental distribution of non-marine ostracods from South America. En: Hydrobiologia. Vol. 847; No. 7; pp. 1663 - 1687; 15735117; Disponible en: 10.1007/s10750-019-04136-6.
Amundrud, Sarah L.; Videla, Martin; Srivastava, Diane S. (2018) Dispersal barriers and climate determine the geographic distribution of the helicopter damselfly Mecistogaster modesta. En: Freshwater Biology. Vol. 63; No. 2; pp. 214 - 223; 13652427; Disponible en: 10.1111/fwb.13054.
Atauchi, P. Joser; Peterson, Townsend; Flanagan, Jeremy (2017) Species distribution models for Peruvian Plantcutter improve with consideration of biotic interactions. En: Journal of avian biology. Vol. 49; No. 3;
Jetz, Walter; Rahbek, Carsten; Colwell, Robert K. (2004) The coincidence of rarity and richness and the potential signature of history in centres of endemism. En: Ecology Letters. Vol. 7; No. 12; pp. 1180 - 1191; 1461023X; Disponible en: 10.1111/j.1461-0248.2004.00678.x.
Davies Jonathan, T.; Buckley, Lauren B. (2011) Phylogenetic diversity as a window into the evolutionary and biogeographic histories of present-day richness gradients for mammals. En: Philosophical Transactions of the Royal Society B: Biological Sciences. Vol. 366; No. 1576; pp. 2414 - 2425; 09628436; Disponible en: 10.1098/rstb.2011.0058.
Pearson, David L; Carroll, Steven S (2001) Predicting Patterns of Tiger Beetle ( Coleoptera : Cicindelidae ) Species Richness in Northwestern South America. En: Studies on Neotropical Fauna and Environment. Vol. 36; No. 2; pp. 125 - 136;
Mullen, Sean P.; Savage, Wesley K.; Wahlberg, Niklas; Willmott, Keith R. (2011) Rapid diversification and not clade age explains high diversity in neotropical Adelpha butterflies. En: Proceedings of the Royal Society B: Biological Sciences. Vol. 278; No. 1713; pp. 1777 - 1785; 09628452; Disponible en: 10.1098/rspb.2010.2140.
Arango, Axel; Villalobos, Fabricio; Prieto-Torres, David A.; Guevara, Roger (2021) The phylogenetic diversity and structure of the seasonally dry forests in the Neotropics. En: Journal of Biogeography. Vol. 48; No. 1; pp. 176 - 186; 13652699; Disponible en: 10.1111/jbi.13991.
Velazco, Santiago José Elías; Svenning, Jean Christian; Ribeiro, Bruno R.; Laureto, Livia Maira Orlandi (2021) On opportunities and threats to conserve the phylogenetic diversity of Neotropical palms. En: Diversity and Distributions. Vol. 27; No. 3; pp. 512 - 523; 14724642; Disponible en: 10.1111/ddi.13215.
Keppel, Gunnar; Gillespie, Thomas W.; Ormerod, Paul; Fricker, Geoffrey A. (2016) Habitat diversity predicts orchid diversity in the tropical south-west Pacific. En: Journal of Biogeography. Vol. 43; No. 12; pp. 2332 - 2342; 13652699; Disponible en: 10.1111/jbi.12805.
Rahbek, Carsten; Graves, Gary R. (2001) Multiscale assessment of patterns of avian species richness. En: Proceedings of the National Academy of Sciences of the United States of America. Vol. 98; No. 8; pp. 4534 - 4539; 00278424; Disponible en: 10.1073/pnas.071034898.
Sandel, Brody; Weigelt, Patrick; Kreft, Holger; Keppel, Gunnar; van der Sande, Masha T.; Levin, Sam; Smith, Stephen; Craven, Dylan; Knight, Tiffany M. (2020) Current climate, isolation and history drive global patterns of tree phylogenetic endemism. En: Global Ecology and Biogeography. Vol. 29; No. 1; pp. 4 - 15; 14668238; Disponible en: 10.1111/geb.13001.
Davies, Richard G.; Orme, C. David L.; Storch, David; Olson, Valerie A.; Thomas, Gavin H.; Ross, Simon G.; Ding, Tzung Su; Rasmussen, Pamela C.; Bennett, Peter M.; Owens, Ian P.F.; Blackburn, Tim M.; Gaston, Kevin J. (2007) Topography, energy and the global distribution of bird species richness. En: Proceedings of the Royal Society B: Biological Sciences. Vol. 274; No. 1614; pp. 1189 - 1197; 14712970; Disponible en: 10.1098/rspb.2006.0061.
Hawkins, Bradford A.; Field, Richard; Cornell, Howard V.; Currie, David J.; Guégan, Jean François; Kaufman, Dawn M.; Kerr, Jeremy T.; Mittelbach, Gary G.; Oberdorff, Thierry; O'Brien, Eileen M.; Porter, Eric E.; Turner, John R.G. (2003) Energy, water, and broad-scale geographic patterns of species richness. En: Ecology. Vol. 84; No. 12; pp. 3105 - 3117; 00129658; Disponible en: 10.1890/03-8006.
Jetz, Walter; Rahbek, Carsten (2002) Geographic range size and determinants of avian species richness. En: Science. Vol. 297; No. 5586; pp. 1548 - 1551; 00368075; Disponible en: 10.1126/science.1072779.
Qian, Hong (2010) Environment-richness relationships for mammals, birds, reptiles, and amphibians at global and regional scales. En: Ecological Research. Vol. 25; No. 3; pp. 629 - 637; 09123814; Disponible en: 10.1007/s11284-010-0695-1.
Kreft, Holger; Jetz, Walter (2007) Global patterns and determinants of vascular plant diversity. En: Proceedings of the National Academy of Sciences of the United States of America. Vol. 104; No. 14; pp. 5925 - 5930; 00278424; Disponible en: 10.1073/pnas.0608361104.
Varzinczak, Luiz H.; Zanata, Thais B.; Moura, Mauricio O.; Passos, Fernando C. (2020) Geographical patterns and current and short-term historical correlates of phylogenetic diversity and endemism for New World primates. En: Journal of Biogeography. Vol. 47; No. 4; pp. 890 - 902; 13652699; Disponible en: 10.1111/jbi.13767.
Beck, Hylke E.; Zimmermann, Niklaus E.; McVicar, Tim R.; Vergopolan, Noemi; Berg, Alexis; Wood, Eric F. (2018) Present and future köppen-geiger climate classification maps at 1-km resolution. En: Scientific Data. Vol. 5; pp. 1 - 12; 20524463; Disponible en: 10.1038/sdata.2018.214.
Gotelli, Nicholas J.; Anderson, Marti J.; Arita, Hector T.; Chao, Anne; Colwell, Robert K.; Connolly, Sean R.; Currie, David J.; Dunn, Robert R.; Graves, Gary R.; Green, Jessica L.; Grytnes, John Arvid; Jiang, Yi Huei; Jetz, Walter; Kathleen Lyons, S.; McCain, Christy M.; Magurran, Anne E.; Rahbek, Carsten; Rangel, Thiago F.L.V.B.; Soberón, Jorge; Webb, Campbell O.; Willig, Michael R. (2009) Patterns and causes of species richness: A general simulation model for macroecology. En: Ecology Letters. Vol. 12; No. 9; pp. 873 - 886; 1461023X; Disponible en: 10.1111/j.1461-0248.2009.01353.x.
Vasconcelos, Tiago S.; da Silva, Fernando R.; dos Santos, Tiago G.; Prado, Vitor H. M.; Provete, Diogo B. (2019) Biogeographic Patterns of South American Anurans. pp. 155 : Springer; 978-3-030-26295-2;
Brown, Jason L.; Paz, Andrea; Reginato, Marcelo; Renata, Cecilia Amaro; Assis, Claydson; Lyra, Mariana; Caddah, Mayara K.; Aguirre-Santoro, Julian; d’Horta, Fernando; Raposo do Amaral, Fabio; Goldenberg, Renato; Lucas Silva-Brandão, Karina; Freitas, André Victor Lucci; Rodrigues, Miguel T.; Michelangeli, Fabian A.; Miyaki, Cristina Y.; Carnaval, Ana C. (2020) Seeing the forest through many trees: Multi-taxon patterns of phylogenetic diversity in the Atlantic Forest hotspot. En: Diversity and Distributions. Vol. 26; No. 9; pp. 1160 - 1176; 14724642; Disponible en: 10.1111/ddi.13116.
Rosser, Neil; Shirai, L. T.; Dasmahapatra, Kanchon K.; Mallet, James; Freitas, André V.L. (2021) The Amazon river is a suture zone for a polyphyletic group of co-mimetic heliconiine butterflies. En: Ecography. Vol. 44; pp. 177 - 187; Disponible en: doi: 10.1111/ecog.05282.
Silva-Flores, Ramón; Pérez-Verdín, Gustavo; Wehenkel, Christian (2014) Patterns of tree species diversity in relation to climatic factors on the Sierra Madre Occidental, Mexico. En: PLoS ONE. Vol. 9; No. 8; 19326203; Disponible en: 10.1371/journal.pone.0105034.
López-Aguirre, Camilo; Hand, Suzanne J.; Laffan, Shawn W.; Archer, Michael (2019) Zoogeographical regions and geospatial patterns of phylogenetic diversity and endemism of New World bats. En: Ecography. Vol. 42; No. 6; pp. 1188 - 1199; 16000587; Disponible en: 10.1111/ecog.04194.
Svenning, Jens Christian; Borchsenius, Finn; Bjorholm, Stine; Balslev, Henrik (2008) High tropical net diversification drives the New World latitudinal gradient in palm (Arecaceae) species richness. En: Journal of Biogeography. Vol. 35; No. 3; pp. 394 - 406; 03050270; Disponible en: 10.1111/j.1365-2699.2007.01841.x.
Daru, Barnabas H.; Farooq, Harith; Antonelli, Alexandre; Faurby, Søren (2020) Endemism patterns are scale dependent. En: Nature Communications. Vol. 11; No. 1; pp. 1 - 11; 20411723; Disponible en: 10.1038/s41467-020-15921-6.
Andújar, C.; Arribas, P.; Ruiz, C.; Serrano, J.; Gómez-Zurita, J. (2014) Integration of conflict into integrative taxonomy: fitting hybridization in species delimitation ofMesocarabus(Coleoptera: Carabidae). En: Molecular Ecology. Vol. 23; No. 17; pp. Andújar, - C., Arribas, P., Ruiz, C., Serrano, J., &; Disponible en: 10.1111/mec.12793.
Ortego, J.; Gugger, Paul F; Riordan, Erin C; Sork, Victoria L (2014) Influence of climatic niche suitability and geographical overlap on hybridization patterns among southern Californian oaks. En: Journal of Biogeography. Vol. 41; No. 10; pp. 1895 - 1908; Disponible en: 10.1111/jbi.12334.
Swenson, N.G.; Fair, J.M.; Heikoop, J. (2008) Water stress and hybridization between Quercus gambelii and Quercus grisea. En: Western North American Naturalist. Vol. 68; pp. 498 - 507;
Kuhn, Max (2008) caret Package. En: Journal Of Statistical Software. Vol. 28; No. 5; pp. 1 - 26; Disponible en: 10.18637/jss.v028.i05.
Montejo-Kovacevich, Gabriela; Smith, Jennifer E.; Meier, Joana I.; Bacquet, Caroline N.; Whiltshire-Romero, Eva; Nadeau, Nicola J.; Jiggins, Chris D. (2019) Altitude and life-history shape the evolution of Heliconius wings. En: Evolution. Vol. 73; No. 12; pp. 2436 - 2450; 15585646; Disponible en: 10.1111/evo.13865.
Assis, J. (2020) R Pipelines to reduce the spatial autocorrelation in Species Distribution Models. En: theMarineDataScientist.
Guedes, Thaís B.; Sawaya, Ricardo J.; Zizka, Alexander; Laffan, Shawn; Faurby, Søren; Pyron, R. Alexander; Bérnils, Renato S.; Jansen, Martin; Passos, Paulo; Prudente, Ana L.C.; Cisneros-Heredia, Diego F.; Braz, Henrique B.; Nogueira, Cristiano de C.; Antonelli, Alexandre (2018) Patterns, biases and prospects in the distribution and diversity of Neotropical snakes. En: Global Ecology and Biogeography. Vol. 27; No. 1; pp. 14 - 21; 14668238; Disponible en: 10.1111/geb.12679.
Rosauer, Dan F.; Jetz, Walter (2014) Phylogenetic endemism in terrestrial mammals. En: Global Ecology and Biogeography. Vol. 24; No. 2; pp. 168 - 179; 14668238; Disponible en: 10.1111/geb.12237.
Mendoza, Angela María; Arita, Héctor T. (2014) Priority setting by sites and by species using rarity, richness and phylogenetic diversity: The case of neotropical glassfrogs (Anura: Centrolenidae). En: Biodiversity and Conservation. Vol. 23; No. 4; pp. 909 - 926; 15729710; Disponible en: 10.1007/s10531-014-0642-5.
Jarvis, A.; Reuter, H.I.; Nelson, A.; Guevara, E. (2008) Hole-filled SRTM for the globe Version 4, available from the CGIAR-CSI SRTM 90m Database.
Fenker, Jéssica; Tedeschi, Leonardo G.; Pyron, Robert Alexander; Nogueira, Cristiano de C. (2014) Phylogenetic diversity, habitat loss and conservation in South American pitvipers (Crotalinae: Bothrops and Bothrocophias). En: Diversity and Distributions. Vol. 20; No. 10; pp. 1108 - 1119; 14724642; Disponible en: 10.1111/ddi.12217.
Arteaga, Maria Clara; Mccormack, John E; Eguiarte, Luis E; Medell, Rodrigo A (2011) Genetic admixture in multidimensional enviromental space : asymetrical niche similarity promotes gene flow in Armadillos (Dasypus Novemcinctus). En: Evolution. Vol. 65; No. 9; pp. 2470 - 2480; Disponible en: 10.1111/j.1558-5646.2011.01329.x.
Li, Han; Ralph, Peter (2019) Local PCA shows how the effect of population structure differs along the genome. En: Genetics. Vol. 211; No. 1; pp. 289 - 304; 19432631; Disponible en: 10.1534/genetics.118.301747.
Alexander, David H.; Novembre, John; Lange, Kenneth (2009) Fast model-based estimation of ancestry in unrelated individuals. En: Genome Research. Vol. 19; No. 9; pp. 1655 - 1664; 10889051; Disponible en: 10.1101/gr.094052.109.
Picq, Sandrine; Lumley, Lisa; Šíchová, Jindra; Laroche, Jérôme; Pouliot, Esther; Brunet, Bryan M.T.; Levesque, Roger C.; Sperling, Felix A.H.; Marec, František; Cusson, Michel (2018) Insights into the structure of the spruce budworm (Choristoneura fumiferana) genome, as revealed by molecular cytogenetic analyses and a high-density linkage map. En: G3: Genes, Genomes, Genetics. Vol. 8; No. 8; pp. 2539 - 2549; 21601836; Disponible en: 10.1534/g3.118.200263.
Nguyen, Petr; Sýkorová, Miroslava; Šíchová, Jindra; Kůta, Václav; Dalíková, Martina; Frydrychová, Radmila Čapková; Neven, Lisa G.; Sahara, Ken; Marec, Frantǐsek (2013) Neo-sex chromosomes and adaptive potential in tortricid pests. En: Proceedings of the National Academy of Sciences of the United States of America. Vol. 110; No. 17; pp. 6931 - 6936; 00278424; Disponible en: 10.1073/pnas.1220372110.
Smith, David A.S.; Gordon, Ian J.; Traut, Walther; Herren, Jeremy; Collins, Steve; Martins, Dino J.; Saitoti, Kennedy; Ireri, Piera; Ffrench-Constant, Richard (2016) A neo-W chromosome in a tropical butterfly links colour pattern, male-killing, and speciation. En: Proceedings of the Royal Society B: Biological Sciences. Vol. 283; No. 1835; 14712954; Disponible en: 10.1098/rspb.2016.0821.
Šíchová, Jindra; Ohno, Mizuki; Dincă, Vlad; Watanabe, Michihito; Sahara, Ken; Marec, František (2016) Fissions, fusions, and translocations shaped the karyotype and multiple sex chromosome constitution of the northeast-Asian wood white butterfly, Leptidea amurensis. En: Biological Journal of the Linnean Society. Vol. 118; No. 3; pp. 457 - 471; 10958312; Disponible en: 10.1111/bij.12756.
Yoshido, A.; Sahara, K.; Marec, F.; Matsuda, Y. (2011) Step-by-step evolution of neo-sex chromosomes in geographical populations of wild silkmoths, Samia cynthia ssp. En: Heredity. Vol. 106; No. 4; pp. 614 - 624; 0018067X; Disponible en: http://dx.doi.org/10.1038/hdy.2010.94. Disponible en: 10.1038/hdy.2010.94.
Šíchová, Jindra; Voleníková, Anna; Dincə, Vlad; Nguyen, Petr; Vila, Roger; Sahara, Ken; Marec, František (2015) Dynamic karyotype evolution and unique sex determination systems in Leptidea wood white butterflies Speciation and evolutionary genetics. En: BMC Evolutionary Biology. Vol. 15; No. 1; pp. 1 - 16; 14712148; Disponible en: 10.1186/s12862-015-0375-4.
Mongue, Andrew J.; Nguyen, Petr; Voleníková, Anna; Walters, James R. (2017) Neo-sex chromosomes in the monarch butterfly, Danaus plexippus. En: G3: Genes, Genomes, Genetics. Vol. 7; No. 10; pp. 3281 - 3294; 21601836; Disponible en: 10.1534/g3.117.300187.
Davey, John W.; Chouteau, Mathieu; Barker, Sarah L.; Maroja, Luana; Baxter, Simon W.; Simpson, Fraser; Joron, Mathieu; Mallet, James; Dasmahapatra, Kanchon K.; Jiggins, Chris D. (2016) Major improvements to the Heliconius melpomene genome assembly used to confirm 10 chromosome fusion events in 6 million years of butterfly evolution. En: G3: Genes, Genomes, Genetics. Vol. 6; No. 3; pp. 695 - 708; 21601836; Disponible en: 10.1534/g3.115.023655.
dc.source.instname.none.fl_str_mv instname:Universidad del Rosario
dc.source.reponame.none.fl_str_mv reponame:Repositorio Institucional EdocUR
bitstream.url.fl_str_mv https://repository.urosario.edu.co/bitstreams/07bae3fb-b985-476a-9e62-abe98fe43d24/download
https://repository.urosario.edu.co/bitstreams/a24ffc74-de4e-4917-978f-ee0ea374e65f/download
https://repository.urosario.edu.co/bitstreams/8899d94d-e544-4ffe-94be-0237fa4a4204/download
https://repository.urosario.edu.co/bitstreams/b88c61ab-5c66-4f9e-a17b-5bd07e64d5b5/download
https://repository.urosario.edu.co/bitstreams/c1870d68-4b0c-4f72-bdc5-a58c560c830a/download
https://repository.urosario.edu.co/bitstreams/3f0d306b-16be-4451-9f7f-df919d33a615/download
bitstream.checksum.fl_str_mv 6082b987fa602e8bc453909c7b5cd3f7
db83b429fd3fec89eb4bcced90502f11
b2825df9f458e9d5d96ee8b7cd74fde6
3b6ce8e9e36c89875e8cf39962fe8920
df5503a11fe4af87081901f5efabe229
93281570dd5527452a5710e1b5f85a32
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio institucional EdocUR
repository.mail.fl_str_mv edocur@urosario.edu.co
_version_ 1818106616775442432
spelling Salazar Clavijo, Camilo Andres2662f3fb-e83f-4531-8481-105ada41efbd-1Pardo Díaz, Geimy Carolina53107311600FiloevomicaRueda Muñoz, Nicol MagalyDoctor en Ciencias Biomédicas y BiológicasDoctoradoFull time7934e4ee-1ec1-4d1d-b057-e9aff431e72d-12023-09-21T13:05:01Z2023-09-21T13:05:01Z2023-09-15info:eu-repo/date/embargoEnd/2025-10-28La comprensión de los mecanismos y procesos que impulsan la diversificación biológica y la adaptación sigue siendo una pregunta importante en la biología evolutiva que requiere investigación interdisciplinaria que aborde el papel de factores bióticos (es decir, antecedentes genéticos, interacciones ecológicas) y factores abióticos (es decir, clima). En esta tesis, estudié aspectos biogeográficos, cromosómicos y químicos que contribuyen a la diversificación de las mariposas neotropicales del género Heliconius, especialmente las especies del clado sara/sapho. Aunque Heliconius es uno de los grupos mejor estudiados en el contexto de la biología evolutiva y la ecología, el clado sara/sapho ha sido en gran medida poco estudiado a pesar de tener características únicas. Por ejemplo, algunas de sus especies muestran altas tasas de diversificación y un mayor número de cromosomas en comparación con otros Heliconius, y también parece que las especies en el clado no pueden sintetizar cianógenos, lo que las lleva a depender de toxinas adquiridas de plantas hospederas larvarias. En el Capítulo I, utilicé 54,392 registros georreferenciados de 46 especies y 1,012 registros georreferenciados de 38 híbridos interespecíficos de Heliconius para investigar el papel del entorno en la formación de su distribución y riqueza, así como sus patrones geográficos de diversidad filogenética y endemismo filogenético. También evalué si la similitud de nicho promueve la hibridación. Descubrí que Heliconius muestra cinco patrones generales de distribución, en su mayoría explicados por la precipitación y la isotermalidad, y en menor medida por la altitud. Curiosamente, la altitud desempeña un papel importante como predictor de la riqueza de especies y la diversidad filogenética, mientras que la precipitación explica los patrones de endemismo filogenético. No encontré evidencia que respalde el papel del entorno en facilitar la hibridación, porque las especies hibridantes no necesariamente comparten el mismo nicho climático a pesar de que algunas de ellas tienen distribuciones geográficas en gran parte superpuestas. En general, confirmé que, al igual que en otros organismos, la alta temperatura anual, el suministro constante de agua y la complejidad espacial-topográfica son los principales predictores de la diversidad en Heliconius. En el Capítulo II, generé datos de resecuenciación de genoma completo para 114 individuos de siete especies en el clado sara/sapho para investigar: (i) relaciones filogenéticas a nivel de genoma completo, (ii) el grado de diferenciación genómica entre especies y subespecies, y (iii) el impacto de las reorganizaciones cromosómicas en la evolución del clado. La inclusión de múltiples especies y subespecies de este clado me permitió redefinir algunas de las relaciones previamente reportadas y identificar el efecto de la geografía en la formación de su diversidad. Curiosamente, también encontré evidencia de fusiones de cromosomas sexuales con autosomas 4, 9 y 14. Todas estas fusiones parecen estar asociadas con eventos de especiación en este clado, siendo la fusión del cromosoma sexual 4 la más antigua. Aunque aún no comprendo el papel o las consecuencias evolutivas de estas fusiones, mi estudio muestra que las reorganizaciones cromosómicas pueden evolucionar rápidamente dentro de un clado y generar diversidad cromosómica. En el Capítulo III, investigué cómo varían los cianógenos (defensas químicas de los adultos de Heliconius) tanto en composición como en concentración en nueve anillos de mimetismo y seis ecorregiones neotropicales. Encontré que la variación en el perfil cianogénico de Heliconius no se explica por el anillo de mimetismo al que pertenece una especie o su localidad. En cambio, la variación cianogénica es el resultado de la cercanía filogenética y, probablemente, factores ecológicos como la especialización de la planta hospedera, la diversidad y abundancia de las plantas hospederas locales disponibles, la disponibilidad de precursores para la biosíntesis de compuestos cianogénicos en plantas fuente de polen, así como la comunidad local de depredadores. Mis resultados concuerdan con modelos recientes y metaanálisis que mostraron que un aumento en la toxicidad de las presas no se traduce en un aumento en el aprendizaje de los depredadores ni en la generación de diversidad mimética.Understanding the mechanisms and processes driving biological diversification and adaptation is still a major question in evolutionary biology that requires interdisciplinary research that addresses the role of biotic (i.e., genetic background, ecological interactions) and abiotic factors (i.e., climate). In this dissertation I studied biogeographic, chromosomic, and chemical aspects that contribute to the diversification of the Neotropical butterflies of the genus Heliconius, especially species in the sara/sapho clade. Although Heliconius is one of the best studied groups in the context of evolutionary biology and ecology, the clade sara/sapho has been largely unstudied despite having unique features. For example, some of its species show high diversification rates and a higher number of chromosomes compared to other Heliconius, and also, species in the clade seem unable to synthesise cyanogens leading to reliance on toxins sequestered from larval host plants. In Chapter I, I used 54,392 georeferenced records for 46 species and 1,012 georeferenced records for 38 interspecific hybrids of Heliconius to investigate the role of the environment in shaping their distribution and richness, as well as their geographic patterns of phylogenetic diversity and phylogenetic endemism. I also evaluated whether niche similarity promotes hybridization. I found that Heliconius displays five general distribution patterns mostly explained by precipitation and isothermality, and to a lesser extent, by altitude. Interestingly, altitude plays a major role as a predictor of species richness and phylogenetic diversity, while precipitation explains patterns of phylogenetic endemism. I did not find evidence supporting the role of the environment in facilitating hybridization because hybridizing species do not necessarily share the same climatic niche despite some of them having largely overlapping geographic distributions. Overall, I confirmed that, as in other organisms, high annual temperature, a constant supply of water, and spatial- topographic complexity are the main predictors of diversity in Heliconius. In Chapter II, I generated whole genome resequencing data for 114 individuals from seven species in the sara/sapho clade to investigate: (i) genome-wide phylogenetic relationships, (ii) the degree of genomic differentiation between species and subspecies, and (iii) the impact of chromosomal rearrangements in the evolution of the clade. The inclusion of multiple species and subspecies of this clade allowed me to redefine some of the relations previously reported, and to identify the effect of geography in shaping their diversity. Interestingly, I also found evidence for sex- autosome fusions involving autosomes 4, 9, and 14. All of these fusions seem to be associated with speciation events in this clade, with the sex-autosome 4 fusion being the oldest one. Although I do not yet understand the role or evolutionary consequences of these fusions, my study shows that chromosomal rearrangements can evolve rapidly within a clade and generate chromosomal diversity. In Chapter III, I investigated how cyanogens (chemical defences of adult Heliconius) vary both in composition and concentration across nine mimicry rings and six Neotropical ecoregions. I found that variation in the cyanogenic profile of Heliconius is not explained by the mimicry ring that a species belongs to or its locality. Instead, cyanogenic variation is the result of phylogenetic closeness and, likely, ecological factors such as host plant specialization, diversity and abundance of local hostplants locally available, availability of precursors for biosynthesis of cyanogenic compounds in pollen-source plants, as well as the local predator community. My results agree with recent modelling and meta-analyses that showed that increased toxicity of preys does not translate into increased predator learning or generation of mimetic diversity.Universidad del RosarioMinisterio de Ciencia tecnologia e innovacion182application/pdfhttps://doi.org/10.48713/10336_40996 https://repository.urosario.edu.co/handle/10336/40996spaUniversidad del RosarioEscuela de Medicina y Ciencias de la SaludDoctorado en Ciencias Biomédicas y BiológicasAttribution-NonCommercial-NoDerivatives 4.0 InternationalRestringido (Temporalmente bloqueado)PARGRAFO: En caso de presentarse cualquier reclamación o acción por parte de un tercero en cuanto a los derechos de autor sobre la obra en cuestión, EL AUTOR, asumirá toda la responsabilidad, y saldrá en defensa de los derechos aquí autorizados; para todos los efectos la universidad actúa como un tercero de buena fe.http://creativecommons.org/licenses/by-nc-nd/4.0/http://purl.org/coar/access_right/c_f1cfCarabajal Paladino, Leonela Z; Provazníková, Irena; Berger, Madeleine; Bass, Chris; Aratchige, Nayanie S; López, Silvia N; Marec, František; Nguyen, Petr; Barluenga, Marta (2019) Sex Chromosome Turnover in Moths of the Diverse Superfamily Gelechioidea. En: Genome Biology and Evolution. Vol. 11; No. 4; pp. 1307 - 1319; 1759-6653; Consultado en: 2022/07/08/16:45:57. Disponible en: https://academic.oup.com/gbe/article/11/4/1307/5432649. Disponible en: 10.1093/gbe/evz075.Lucek, Kay (2018) Evolutionary Mechanisms of Varying Chromosome Numbers in the Radiation of Erebia Butterflies. En: Genes. Vol. 9; No. 3; pp. 166 2073-4425; Consultado en: 2022/07/08/16:47:04. Disponible en: http://www.mdpi.com/2073-4425/9/3/166. Disponible en: 10.3390/genes9030166.Yoshido, Atsuo; Marec, František; Sahara, Ken (2005) Resolution of sex chromosome constitution by genomic in situ hybridization and fluorescence in situ hybridization with (TTAGG) n telomeric probe in some species of Lepidoptera. En: Chromosoma. Vol. 114; No. 3; pp. 193 - 202; 0009-5915, 1432-0886; Consultado en: 2022/07/08/17:41:27. Disponible en: http://link.springer.com/10.1007/s00412-005-0013-9. Disponible en: 10.1007/s00412-005-0013-9.Lucek, Kay; Augustijnen, Hannah; Escudero, Marcial (2022) A holocentric twist to chromosomal speciation?. En: Trends in Ecology & Evolution. pp. S0169534722000854 01695347; Consultado en: 2022/07/08/19:41:58. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S0169534722000854. Disponible en: 10.1016/j.tree.2022.04.002.Kozak, Krzysztof M.; Wahlberg, Niklas; Neild, Andrew F. E.; Dasmahapatra, Kanchon K.; Mallet, James; Jiggins, Chris D. (2015) Multilocus Species Trees Show the Recent Adaptive Radiation of the Mimetic Heliconius Butterflies. En: Systematic Biology. Vol. 64; No. 3; pp. 505 - 524; 1076-836X, 1063-5157; Consultado en: 2022/07/18/14:14:56. Disponible en: https://academic.oup.com/sysbio/article/64/3/505/1633024. Disponible en: 10.1093/sysbio/syv007.Jiggins, Chris D.; Lamas, Gerardo (2016) The Ecology and Evolution of Heliconius Butterflies. : Oxford University Press; 978-0-19-956657-0; Consultado en: 2022/07/18/14:16:34. Disponible en: https://oxford.universitypressscholarship.com/view/10.1093/acprof:oso/9780199566570.001.0001/acprof-9780199566570.Engler-Chaouat, Helene S.; Gilbert, Lawrence E. (2007) De novo Synthesis vs. Sequestration: Negatively Correlated Metabolic Traits and the Evolution of Host Plant Specialization in Cyanogenic Butterflies. En: Journal of Chemical Ecology. Vol. 33; No. 1; pp. 25 - 42; 1573-1561; Consultado en: 2022/07/19/00:03:54. Disponible en: https://doi.org/10.1007/s10886-006-9207-8. Disponible en: 10.1007/s10886-006-9207-8.Brown, K. S.; Emmel, T. C.; Eliazar, P. J.; Suomalainen, E. (1992) Evolutionary patterns in chromosome numbers in neotropical Lepidoptera. I. Chromosomes of the Heliconiini (family Nymphalidae: subfamily Nymphalinae). En: Hereditas. Vol. 117; No. 2; pp. 109 - 125; 0018-0661; Disponible en: 10.1111/j.1601-5223.1992.tb00165.x.Li, Heng (2013) Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. : ArXiv; Consultado en: 2022/07/29/14:44:01. Disponible en: http://arxiv.org/abs/1303.3997.Broad, Institute (2019) Picard Toolkit. : Broad Institute; Consultado en: 2022/07/29/14:48:09. Disponible en: https://github.com/broadinstitute/picard.Purcell, Shaun; Chang, Christopher C (2007) PLINK: Whole genome data analysis toolset. Consultado en: 2022/07/29/14:50:42. Disponible en: www.cog-genomics.org/plink/2.0/.Stamatakis, Alexandros; Hoover, Paul; Rougemont, Jacques; Renner, Susanne (2008) A Rapid Bootstrap Algorithm for the RAxML Web Servers. En: Systematic Biology. Vol. 57; No. 5; pp. 758 - 771; 1076-836X, 1063-5157; Consultado en: 2022/07/29/14:52:30. Disponible en: https://academic.oup.com/sysbio/article/57/5/758/1618491. Disponible en: 10.1080/10635150802429642.Hill, Jason; Rastas, Pasi; Hornett, Emily; Neethiraj, Ramprasad; Clark, Nathan; Morehouse, Nathan; La, Maria; Celorio-Mancera, Maria de la Paz; Cols, Jofre; Dircksen, Heinrich; Meslin, Camille; Keehnen, Naomi; Pruisscher, Peter; Sikkink, Kristin; Vives, Maria; Vogel, Heiko; Wiklund, Christer; Woronik, Alyssa; Boggs, Carol; Wheat, Christopher (2019) Unprecedented reorganization of holocentric chromosomes provides insights into the enigma of lepidopteran chromosome evolution. En: Science Advances. Vol. 5; pp. eaau3648 Disponible en: 10.1126/sciadv.aau3648.Guerrero, Rafael F.; Kirkpatrick, Mark (2014) Local Adaptation and the Evolution of Chromosome Fusions. En: Evolution. Vol. 68; No. 10; pp. 2747 - 2756; 1558-5646; Consultado en: 2022/08/04/23:45:20. Disponible en: http://onlinelibrary.wiley.com/doi/abs/10.1111/evo.12481. Disponible en: 10.1111/evo.12481.R Core Team (2013) R: A language and environment for statistical computing. R Foundation for Statistical Computing. Viena, Austria Disponible en: http://www.R-project.org/.Kitano, Jun; Ross, Joseph A.; Mori, Seiichi; Kume, Manabu; Jones, Felicity C.; Chan, Yingguang F.; Absher, Devin M.; Grimwood, Jane; Schmutz, Jeremy; Myers, Richard M.; Kingsley, David M.; Peichel, Catherine L. (2009) A role for a neo-sex chromosome in stickleback speciation. En: Nature. Vol. 461; No. 7267; pp. 1079 - 1083; 1476-4687; Consultado en: 2022/10/29/22:59:05. Disponible en: https://www.nature.com/articles/nature08441. Disponible en: 10.1038/nature08441.Yeaman, Sam (2013) Genomic rearrangements and the evolution of clusters of locally adaptive loci. En: Proceedings of the National Academy of Sciences of the United States of America. Vol. 110; No. 19; pp. E1743 - 1751; 1091-6490; Disponible en: 10.1073/pnas.1219381110.Cicconardi, Francesco; Milanetti, Edoardo; Castro, Érika C. Pinheiro de; Mazo-Vargas, Anyi; Belleghem, Steven M. Van; Ruggieri, Angelo Alberto; Rastas, Pasi; Hanly, Joseph; Evans, Elizabeth; Jiggins, Chris D.; McMillan, W. Owen; Papa, Riccardo; Marino, Daniele di; Martin, Arnaud; Montgomery, Stephen H. (2022) Evolutionary dynamics of genome size and content during the adaptive radiation of Heliconiini butterflies. : bioRxiv; Consultado en: 2022/10/29/23:10:42. Disponible en: https://www.biorxiv.org/content/10.1101/2022.08.12.503723v1. Disponible en: 10.1101/2022.08.12.503723.Pennell, Matthew W.; Kirkpatrick, Mark; Otto, Sarah P.; Vamosi, Jana C.; Peichel, Catherine L.; Valenzuela, Nicole; Kitano, Jun (2015) Y Fuse? Sex Chromosome Fusions in Fishes and Reptiles. En: PLOS Genetics. Vol. 11; No. 5; pp. e1005237 1553-7404; Consultado en: 2022/10/29/23:13:08. Disponible en: https://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1005237. Disponible en: 10.1371/journal.pgen.1005237.Rueda-M, Nicol; Salgado-Roa, Fabian C.; Gantiva-Q, Carlos H.; Pardo-Díaz, Carolina; Salazar, Camilo (2021) Environmental Drivers of Diversification and Hybridization in Neotropical Butterflies. En: Frontiers in Ecology and Evolution. Vol. 9; 2296-701X; Consultado en: 2022/10/31/16:51:44. Disponible en: https://www.frontiersin.org/articles/10.3389/fevo.2021.750703.Jay, Paul; Tezenas, Emilie; Véber, Amandine; Giraud, Tatiana (2022) Sheltering of deleterious mutations explains the stepwise extension of recombination suppression on sex chromosomes and other supergenes. En: PLOS Biology. Vol. 20; No. 7; pp. e3001698 1545-7885; Consultado en: 2022/11/29/20:01:35. Disponible en: https://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.3001698. Disponible en: 10.1371/journal.pbio.3001698.Matsumoto, Tomotaka; Kitano, Jun (2016) The intricate relationship between sexually antagonistic selection and the evolution of sex chromosome fusions. En: Journal of Theoretical Biology. Vol. 404; pp. 97 - 108; 00225193; Consultado en: 2022/11/30/17:03:38. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S0022519316301266. Disponible en: 10.1016/j.jtbi.2016.05.036.Ross, Joseph A.; Urton, James R.; Boland, Jessica; Shapiro, Michael D.; Peichel, Catherine L. (2009) Turnover of Sex Chromosomes in the Stickleback Fishes (Gasterosteidae). En: PLOS Genetics. Vol. 5; No. 2; pp. e1000391 1553-7404; Consultado en: 2022/12/02/15:37:17. Disponible en: https://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1000391. Disponible en: 10.1371/journal.pgen.1000391.Pala, I; Naurin, S; Stervander, M; Hasselquist, D; Bensch, S; Hansson, B (2012) Evidence of a neo-sex chromosome in birds. En: Heredity. Vol. 108; No. 3; pp. 264 - 272; 0018-067X; Consultado en: 2022/12/02/16:57:19. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3282394/. Disponible en: 10.1038/hdy.2011.70.Flores, Sergio V; Evans, Amy L; McAllister, Bryant F (2008) Independent Origins of New Sex-Linked Chromosomes in the melanica and robusta Species Groups of Drosophila. En: BMC Evolutionary Biology. Vol. 8; pp. 33 1471-2148; Consultado en: 2022/12/02/19:59:40. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2268673/. Disponible en: 10.1186/1471-2148-8-33.Schmid, M.; Feichtinger, W.; Steinlein, C.; Visbal García, R.; Fernández Badillo, A. (2003) Chromosome banding in Amphibia. XXVIII. Homomorphic XY sex chromosomes and a derived Y-autosome translocation in Eleutherodactylus riveroi (Anura, Leptodactylidae). En: Cytogenetic and Genome Research. Vol. 101; No. 1; pp. 62 - 73; 1424-859X; Disponible en: 10.1159/000073420.Král, Jiří; Kořínková, Tereza; Krkavcová, Lenka; Musilová, Jana; Forman, Martin; Herrera, Ivalú M. Ávila; Haddad, Charles R.; Vítková, Magda; Henriques, Sergio; Vargas, José G. Palacios; Hedin, Marshal (2013) Evolution of karyotype, sex chromosomes, and meiosis in mygalomorph spiders (Araneae: Mygalomorphae). En: Biological Journal of the Linnean Society. Vol. 109; No. 2; pp. 377 - 408; 0024-4066; Consultado en: 2022/12/06/19:15:01. Disponible en: https://doi.org/10.1111/bij.12056. Disponible en: 10.1111/bij.12056.Bressa, M. J.; Papeschi, A. G.; Vítková, M.; Kubícková, S.; Fuková, I.; Pigozzi, M. I.; Marec, F. (2009) Sex chromosome evolution in cotton stainers of the genus Dysdercus (Heteroptera: Pyrrhocoridae). En: Cytogenetic and Genome Research. Vol. 125; No. 4; pp. 292 - 305; 1424-859X; Disponible en: 10.1159/000235936.White, M. J. D. (1977) Animal Cytology and Evolution. 978-0-521-29227-6; Consultado en: 2022/12/06/19:49:37. Disponible en: https://www.cambridge.org/co/academic/subjects/life-sciences/cell-biology-and-developmental-biology/animal-cytology-and-evolution-3rd-edition, https://www.cambridge.org/co/academic/subjects/life-sciences/cell-biology-and-developmental-biology.Brown, Keith S. (1981) The biology of Heliconius and related genera. En: Annual review entomology. Vol. 26; No. 4; pp. 27 - 56;Sigeman, Hanna; Ponnikas, Suvi; Chauhan, Pallavi; Dierickx, Elisa; Brooke, M. de L.; Hansson, Bengt (2019) Repeated sex chromosome evolution in vertebrates supported by expanded avian sex chromosomes. En: Proceedings of the Royal Society B: Biological Sciences. Vol. 286; No. 1916; pp. 20192051 Consultado en: 2023/01/23/21:10:06. Disponible en: https://royalsocietypublishing.org/doi/10.1098/rspb.2019.2051. Disponible en: 10.1098/rspb.2019.2051.Chang, Christopher C; Chow, Carson C; Tellier, Laurent CAM; Vattikuti, Shashaank; Purcell, Shaun M; Lee, James J (2015) Second-generation PLINK: rising to the challenge of larger and richer datasets. En: GigaScience. Vol. 4; No. 1; pp. s13742 - 015-0047-8; 2047-217X; Consultado en: 2023/01/23/22:10:48. Disponible en: https://doi.org/10.1186/s13742-015-0047-8. Disponible en: 10.1186/s13742-015-0047-8.Manni, Mosè; Berkeley, Matthew R; Seppey, Mathieu; Simão, Felipe A; Zdobnov, Evgeny M (2021) BUSCO Update: Novel and Streamlined Workflows along with Broader and Deeper Phylogenetic Coverage for Scoring of Eukaryotic, Prokaryotic, and Viral Genomes. En: Molecular Biology and Evolution. Vol. 38; No. 10; pp. 4647 - 4654; 1537-1719; Consultado en: 2023/02/13/15:49:34. Disponible en: https://doi.org/10.1093/molbev/msab199. Disponible en: 10.1093/molbev/msab199.Meier, Joana Isabel; Marques, David Alexander; Wagner, Catherine Elise; Excoffier, Laurent; Seehausen, Ole (2018) Genomics of Parallel Ecological Speciation in Lake Victoria Cichlids. En: Molecular Biology and Evolution. Vol. 35; No. 6; pp. 1489 - 1506; 0737-4038; Consultado en: 2023/02/13/16:27:12. Disponible en: https://doi.org/10.1093/molbev/msy051. Disponible en: 10.1093/molbev/msy051.Suomalainen, Esko; Cook, Laurence M.; Turner, John R. G. (1973) Achiasmatic oogenesis in the Heliconiine butterflies. En: Hereditas. Vol. 74; No. 2; pp. 302 - 304; 1601-5223; Consultado en: 2023/02/17/20:47:53. Disponible en: https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1601-5223.1973.tb01134.x. Disponible en: 10.1111/j.1601-5223.1973.tb01134.x.Charlesworth, D.; Charlesworth, B. (1980) Sex differences in fitness and selection for centric fusions between sex-chromosomes and autosomes. En: Genetics Research. Vol. 35; No. 2; pp. 205 - 214; 1469-5073, 0016-6723; Consultado en: 2023/03/06/14:05:05. Disponible en: https://www.cambridge.org/core/journals/genetics-research/article/sex-differences-in-fitness-and-selection-for-centric-fusions-between-sexchromosomes-and-autosomes/F6B902F3997278F205A9CBBFDC400440#. Disponible en: 10.1017/S0016672300014051.Pardo-Manuel de Villena, F.; Sapienza, C. (2001) Female meiosis drives karyotypic evolution in mammals. En: Genetics. Vol. 159; No. 3; pp. 1179 - 1189; 0016-6731; Disponible en: 10.1093/genetics/159.3.1179.Ruan, Jue; Li, Heng (2020) Fast and accurate long-read assembly with wtdbg2. En: Nature Methods. Vol. 17; No. 2; pp. 155 - 158; 1548-7105; Consultado en: 2023/03/06/14:27:11. Disponible en: https://www.nature.com/articles/s41592-019-0669-3. Disponible en: 10.1038/s41592-019-0669-3.Garrison, Erik; Marth, Gabor (2012) Haplotype-based variant detection from short-read sequencing. : arXiv; Consultado en: 2023/03/06/14:40:35. Disponible en: http://arxiv.org/abs/1207.3907. Disponible en: 10.48550/arXiv.1207.3907.Danecek, Petr; Bonfield, James K.; Liddle, Jennifer; Marshall, John; Ohan, Valeriu; Pollard, Martin O.; Whitwham, Andrew; Keane, Thomas; McCarthy, Shane A.; Davies, Robert M.; Li, Heng (2021) Twelve years of SAMtools and BCFtools. En: GigaScience. Vol. 10; No. 2; pp. giab008 2047-217X; Disponible en: 10.1093/gigascience/giab008.Chow, William; Brugger, Kim; Caccamo, Mario; Sealy, Ian; Torrance, James; Howe, Kerstin (2016) gEVAL — a web-based browser for evaluating genome assemblies. En: Bioinformatics. Vol. 32; No. 16; pp. 2508 - 2510; 1367-4803; Consultado en: 2023/03/06/14:43:35. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4978925/. Disponible en: 10.1093/bioinformatics/btw159.Ghurye, Jay; Rhie, Arang; Walenz, Brian P.; Schmitt, Anthony; Selvaraj, Siddarth; Pop, Mihai; Phillippy, Adam M.; Koren, Sergey (2019) Integrating Hi-C links with assembly graphs for chromosome-scale assembly. En: PLOS Computational Biology. Vol. 15; No. 8; pp. e1007273 1553-7358; Consultado en: 2023/03/06/14:44:40. Disponible en: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1007273. Disponible en: 10.1371/journal.pcbi.1007273.Krátká, Marie; Šmerda, Jakub; Lojdová, Kateřina; Bureš, Petr; Zedek, František (2021) Holocentric Chromosomes Probably Do Not Prevent Centromere Drive in Cyperaceae. En: Frontiers in Plant Science. Vol. 12; 1664-462X; Consultado en: 2023/03/21/20:34:48. Disponible en: https://www.frontiersin.org/articles/10.3389/fpls.2021.642661.Chouteau, Mathieu; Dezeure, Jules; Sherratt, Thomas N.; Llaurens, Violaine; Joron, Mathieu (2019) Similar predator aversion for natural prey with diverse toxicity levels. En: Animal Behaviour. Vol. 153; pp. 49 - 59; 0003-3472; Consultado en: 2023/05/26/01:05:34. Disponible en: https://www.sciencedirect.com/science/article/pii/S000334721930137X. Disponible en: 10.1016/j.anbehav.2019.04.017.Kuo, Chi-Yun (2023) Predator learning can resolve the paradox of local warning signal diversity. : bioRxiv; Consultado en: 2023/05/28/17:28:31. Disponible en: https://www.biorxiv.org/content/10.1101/2023.05.04.539348v1. Disponible en: 10.1101/2023.05.04.539348.DePristo, Mark A; Banks, Eric; Poplin, Ryan; Garimella, Kiran V; Maguire, Jared R; Hartl, Christopher; Philippakis, Anthony A; del Angel, Guillermo; Rivas, Manuel A; Hanna, Matt; McKenna, Aaron; Fennell, Tim J; Kernytsky, Andrew M; Sivachenko, Andrey Y; Cibulskis, Kristian; Gabriel, Stacey B; Altshuler, David; Daly, Mark J (2011) A framework for variation discovery and genotyping using next-generation DNA sequencing data. En: Nature genetics. Vol. 43; No. 5; pp. 491 - 8; 1546-1718; Disponible en: http://dx.doi.org/10.1038/ng.806. Disponible en: 10.1038/ng.806.Danecek, Petr; Auton, Adam; Abecasis, Goncalo; Albers, Cornelis A.; Banks, Eric; DePristo, Mark A.; Handsaker, Robert E.; Lunter, Gerton; Marth, Gabor T.; Sherry, Stephen T.; McVean, Gilean; Durbin, Richard (2011) The variant call format and VCFtools. En: Bioinformatics. Vol. 27; No. 15; pp. 2156 - 2158; 13674803; Disponible en: 10.1093/bioinformatics/btr330.Li, Heng; Handsaker, Bob; Wysoker, Alec; Fennell, Tim; Ruan, Jue; Homer, Nils; Marth, Gabor; Abecasis, Goncalo; Durbin, Richard (2009) The Sequence Alignment/Map format and SAMtools. En: Bioinformatics. Vol. 25; No. 16; pp. 2078 - 2079; 13674803; Disponible en: 10.1093/bioinformatics/btp352.Rosser, N.; Phillimore, A.; Huertas, B.; Willmott, K.; Mallet, J. (2012) Testing historical explanations for gradients in species richness in heliconiine butterflies of tropical America. En: Biological Journal of the Linnean Society. Vol. 105; No. March; pp. 479 - 497; 00244066; Disponible en: 10.1111/j.1095-8312.2011.01814.x.Phillips, Steven Anderson, Robert Schapire, Robert (2006) Maximum entropy modeling of species geographic distributions. En: Ecological modelling. Vol. 190; pp. 231 - 259; Disponible en: www.sciencedirect.com. Disponible en: 10.1016/j.ecolmodel.2005.03.026.Karger, Dirk Nikolaus; Conrad, Olaf; Böhner, Jürgen; Kawohl, Tobias; Kreft, Holger; Soria-Auza, Rodrigo Wilber; Zimmermann, Niklaus E; Linder, H Peter; Kessler, Michael (2017) Climatologies at high resolution for the earth’s land surface areas. En: Scientific Data. Vol. 4; pp. 170122 Disponible en: http://dx.doi.org/10.1038/sdata.2017.122.Rosser, N.; Dasmahapatra, K.K.; Mallet, J. (2014) Stable Heliconius butterfly hybrid zones are correlated with a local rainfall peak at the edge of the Amazon basin. En: Evolution. Vol. 68; No. 12; pp. 3470 - 3484; Disponible en: 10.1111/evo.12539.Mallet, J.; McMillan, W. O.; Jiggins, C. D.; Howard, D.J.; Berlocher, S.H. (1998) Mimicry and warning color at the boundary between races and species. En: Endless forms. Species and speciation. pp. 366 Beltrán, M.; Jiggins, C.D.; Brower, A.; Bermingham, E.; Mallet, J. (2007) Do pollen feeding, pupal-mating and larval gregariousness have a single origin in Heliconius butterflies? Inferences from multilocus DNA sequence data. En: Bio. J. Linn. Soc. Vol. 92; pp. 221 - 239;Kronforst M.R., Hansen M.E., Crawford N.G., Gallant J.R., Zhang, W., Kulathinal R.J., Kapan D.D., Mullen S.P. (2013) Hybridization reveals the evolving genomic architecture of speciation. En: Cell Reports. Vol. 14; No. 5; pp. 666 - 77; Disponible en: doi: 10.1016/j.celrep.2013.09.042.Barbet-Massin, Morgane; Jiguet, Frédéric; Albert, Cécile Hélène; Thuiller, Wilfried (2012) Selecting pseudo-absences for species distribution models: How, where and how many?. En: Methods in Ecology and Evolution. Vol. 3; No. 2; pp. 327 - 338; 2041210X; Disponible en: 10.1111/j.2041-210X.2011.00172.x.Wieczorek, John; Guo, Qinghua; Hijmans, Robert J. (2004) The point-radius method for georeferencing locality descriptions and calculating associated uncertainty. En: International Journal of Geographical Information Science. Vol. 18; No. 8; pp. 745 - 767; 13658816; Disponible en: 10.1080/13658810412331280211.McCullagh, P.; Nelder, J.A. (1989) Generalized linear models. London, UKFriedman, J. H.; Hastie, T.; Tibshirani, R. (2000) Additive logistic regression: a statistical view of boosting. En: Ann. Stat. Vol. 28; pp. 337 - 407; Disponible en: doi:10.1214/aos/1016218223.Mallet, J.; Barton, NH.; Lamas, G.; Santisteban, J.; Muedas, M.; Eeley, H. (1990) Estimates of selection and gene flow from measures of cline width and linkage disequilibrium in Heliconius hybrid zones. En: Genetics. Vol. 124; pp. 921 - 936;Cormont, Anouk; Malinowska, Agnieszka H.; Kostenko, Olga; Radchuk, Victoria; Hemerik, Lia; WallisDeVries, Michiel F.; Verboom, Jana (2011) Effect of local weather on butterfly flight behaviour, movement, and colonization: Significance for dispersal under climate change. En: Biodiversity and Conservation. Vol. 20; No. 3; pp. 483 - 503; 09603115; Disponible en: 10.1007/s10531-010-9960-4.Dasmahapatra, Kanchon K.; Lamas, Gerardo; Simpson, Fraser; Mallet, James (2010) The anatomy of a 'suture zone' in Amazonian butterflies: A coalescent-based test for vicariant geographic divergence and speciation. En: Molecular Ecology. Vol. 19; No. 19; pp. 4283 - 4301; 09621083; Disponible en: 10.1111/j.1365-294X.2010.04802.x.Rödder, D.; Engler, J. O. (2011) Quantitative metrics of overlaps in Grinnellian niches: Advances and possible drawbacks. En: Global Ecology and Biogeography. Vol. 20; No. 6; pp. 915 - 927; 1466822X; Disponible en: 10.1111/j.1466-8238.2011.00659.x.O'Donnell, Michael S.; Ignizio, Drew A (2012) Bioclimatic Predictors for Supporting Ecological Applications in the Conterminous United States. En: U.S Geological Survey Data Series 691. pp. 1 - 17; 09505849;Mallet, J.; Beltrán, M.; Neukirchen, W.; Linares, M. (2007) Natural hybridization in heliconiine butterflies: The species boundary as a continuum. En: BMC Evolutionary Biology. Vol. 7; pp. 1 - 16; 14712148; Disponible en: 10.1186/1471-2148-7-28.Muñoz, A. G.; Salazar, C.; Castaño, J.; Jiggins, C. D.; Linares, M. (2010) Multiple sources of reproductive isolation in a bimodal butterfly hybrid zone. En: Journal of Evolutionary Biology. Vol. 23; No. 6; pp. 1312 - 1320; 14209101; Disponible en: 10.1111/j.1420-9101.2010.02001.x.Martin, Simon H.; Dasmahapatra, Kanchon K.; Nadeau, Nicola J.; Salazar, Camilo; Walters, James R.; Simpson, Fraser; Blaxter, Mark; Manica, Andrea; Mallet, James; Jiggins, Chris D. (2013) Genome-wide evidence for speciation with gene flow in Heliconius butterflies. En: Genome Research. Vol. 23; No. 11; pp. 1817 - 1828; 15495469; Disponible en: 10.1101/gr.159426.113.Montejo-Kovacevich, Gabriela; Martin, Simon H.; Meier, Joana I.; Bacquet, Caroline N.; Monllor, Monica; Jiggins, Chris D.; Nadeau, Nicola J. (2020) Microclimate buffering and thermal tolerance across elevations in a tropical butterfly. En: The Journal of Experimental Biology. Vol. 223; No. 8; pp. jeb220426 0022-0949; Disponible en: 10.1242/jeb.220426.Brown, Jason L.; Carnaval, Ana C. (2019) A tale of two niches: Methods, concepts, and evolution. En: Frontiers of Biogeography. Vol. 11; No. 4; pp. 1 - 27; 19486596; Disponible en: 10.21425/F5FBG44158.Vallejos-Garrido, Paulo; Rivera, Reinaldo; Inostroza-Michae, Oscar; Rodríguez-Serrano, Enrique; Hernández, Cristián E. (2017) Historical dynamics and current environmental effects explain the spatial distribution of species richness patterns of New World monkeys. En: PeerJ. Vol. 5; pp. 2 - 27; 21678359; Disponible en: 10.7717/peerj.3850.Paz, Andrea; Guarnizo, Carlos E. (2020) Environmental ranges estimated from species distribution models are not good predictors of lizard and frog physiological tolerances. En: Evolutionary Ecology. Vol. 34; No. 1; pp. 89 - 99; 15738477; Disponible en: https://doi.org/10.1007/s10682-019-10022-3. Disponible en: 10.1007/s10682-019-10022-3.Davis Rabosky, Alison R.; Cox, Christian L.; Rabosky, Daniel L.; Title, Pascal O.; Holmes, Iris A.; Feldman, Anat; McGuire, Jimmy A. (2016) Coral snakes predict the evolution of mimicry across New World snakes. En: Nature Communications. Vol. 7; No. May; pp. 1 - 9; 20411723; Disponible en: 10.1038/ncomms11484.Chattopadhyay, Balaji; Garg, Kritika M.; Ray, Rajasri; Rheindt, Frank E. (2019) Fluctuating fortunes: Genomes and habitat reconstructions reveal global climate-mediated changes in bats' genetic diversity. En: Proceedings of the Royal Society B: Biological Sciences. Vol. 286; No. 1911; pp. 1 - 10; 14712954; Disponible en: 10.1098/rspb.2019.0304.Heya, Helen Msigo; Khamis, Fathiya Mbarak; Onyambu, Gladys Kemunto; Akutse, Komivi Senyo; Mohamed, Samira Abuelgasim; Kimathi, Emily Kajuju; Ombura, Fidelis Levi Odhiambo; Ekesi, Sunday; Dubois, Thomas; Subramanian, Sevgan; Tanga, Chrysantus Mbi (2020) Characterization and risk assessment of the invasive papaya mealybug, Paracoccus marginatus, in Kenya under changing climate. En: Journal of Applied Entomology. Vol. 144; No. 6; pp. 1 - 17; 14390418; Disponible en: 10.1111/jen.12748.Simó, Miguel; Guerrero, José Carlos; Giuliani, Leandro; Castellano, Ismael; Acosta, Luis E (2014) A predictive modeling approach to test distributional uniformity of Uruguayan harvestmen (Arachnida: Opiliones). En: Zoological Studies. Vol. 53; No. 1; pp. 1 - 13; 1810-522X; Disponible en: 10.1186/s40555-014-0050-2.Jiggins, C.; Mcmillan, W. O.; Mallet, J. (1997) Host plant adaptation has not played a role in the recent speciation of Heliconius himera and Heliconius erato. En: Ecological Entomology. Vol. 22; No. 3; pp. 361 - 365; 03076946; Disponible en: 10.1046/j.1365-2311.1997.00067.x.Phillips, Steven J.; Dudík, Miroslav; Elith, Jane; Graham, Catherine H.; Lehmann, Anthony; Leathwick, John; Ferrier, Simon (2009) Sample selection bias and presence-only distribution models: Implications for background and pseudo-absence data. En: Ecological Applications. Vol. 19; No. 1; pp. 181 - 197; 10510761; Disponible en: 10.1890/07-2153.1.Lake, Thomas A.; Briscoe Runquist, Ryan D.; Moeller, David A. (2020) Predicting range expansion of invasive species: Pitfalls and best practices for obtaining biologically realistic projections. En: Diversity and Distributions. Vol. 26; No. 12; pp. 1767 - 1779; 14724642; Disponible en: 10.1111/ddi.13161.Soberón, Jorge; Nakamura, Miguel (2009) Niches and distributional areas: Concepts, methods, and assumptions. En: Proceedings of the National Academy of Sciences of the United States of America. Vol. 106; No. SUPPL. 2; pp. 19644 - 19650; 10916490; Disponible en: 10.1073/pnas.0901637106.Kubota, Yasuhiro; Shiono, Takayuki; Kusumoto, Buntarou (2015) Role of climate and geohistorical factors in driving plant richness patterns and endemicity on the east Asian continental islands. En: Ecography. Vol. 38; No. 6; pp. 639 - 648; 16000587; Disponible en: 10.1111/ecog.00981.Dormann, Carsten F.; Elith, Jane; Bacher, Sven; Buchmann, Carsten; Carl, Gudrun; Carré, Gabriel; Marquéz, Jaime R.García; Gruber, Bernd; Lafourcade, Bruno; Leitão, Pedro J.; Münkemüller, Tamara; Mcclean, Colin; Osborne, Patrick E.; Reineking, Björn; Schröder, Boris; Skidmore, Andrew K.; Zurell, Damaris; Lautenbach, Sven (2013) Collinearity: A review of methods to deal with it and a simulation study evaluating their performance. En: Ecography. Vol. 36; No. 1; pp. 27 - 46; 16000587; Disponible en: 10.1111/j.1600-0587.2012.07348.x.Heiberger, Maintainer Richard M (2020) Package ‘ HH ’. 978-1-4939-2121-8;Schmitt, Sylvain; Pouteau, Robin; Justeau, Dimitri; de Boissieu, Florian; Birnbaum, Philippe (2017) ssdm: An r package to predict distribution of species richness and composition based on stacked species distribution models. En: Methods in Ecology and Evolution. Vol. 8; No. 12; pp. 1795 - 1803; 2041210X; Disponible en: 10.1111/2041-210X.12841.Hastie, T.J.; Tibshirani, R.J. (1990) Generalized Additive Models. pp. 352 London, Reino Unido: Chapman and Hall/CRC;Smith, Adam B.; Santos, Maria J. (2020) Testing the ability of species distribution models to infer variable importance. En: Ecography. Vol. 43; No. 12; pp. 1801 - 1813; 16000587; Disponible en: 10.1111/ecog.05317.Faith, Daniel P. (1992) Conservation evaluation and phylogenetic diversity. En: Biological Conservation. Vol. 61; No. 1; pp. 1 - 10; 00063207; Disponible en: 10.1016/0006-3207(92)91201-3.Daru, Barnabas H.; Karunarathne, Piyal; Schliep, Klaus (2020) phyloregion: R package for biogeographical regionalization and macroecology. En: Methods in Ecology and Evolution. Vol. 11; No. 11; pp. 1483 - 1491; 2041210X; Disponible en: 10.1111/2041-210X.13478.Rosauer, Dan; Laffan, Shawn W.; Crisp, Michael D.; Donnellan, Stephen C.; Cook, Lyn G. (2009) Phylogenetic endemism: A new approach for identifying geographical concentrations of evolutionary history. En: Molecular Ecology. Vol. 18; No. 19; pp. 4061 - 4072; 09621083; Disponible en: 10.1111/j.1365-294X.2009.04311.x.Liaw, Andy; Wiener, M (2002) Classification and Regression by randomForest. En: R news. Vol. 2; No. December; pp. 18 - 22; 16093631; Disponible en: http://cran.r-project.org/doc/Rnews/.Paz, Andrea; Brown, Jason L.; Cordeiro, Carlos L.O.; Aguirre-Santoro, Julian; Assis, Claydson; Amaro, Renata Cecilia; Raposo do Amaral, Fabio; Bochorny, Thuane; Bacci, Lucas F.; Caddah, Mayara K.; d’Horta, Fernando; Kaehler, Miriam; Lyra, Mariana; Grohmann, Carlos Henrique; Reginato, Marcelo; Silva-Brandão, Karina Lucas; Freitas, André Victor Lucci; Goldenberg, Renato; Lohmann, Lúcia G.; Michelangeli, Fabián A.; Miyaki, Cristina; Rodrigues, Miguel T.; Silva, Thiago S.; Carnaval, Ana C. (2021) Environmental correlates of taxonomic and phylogenetic diversity in the Atlantic Forest. En: Journal of Biogeography. No. March; 13652699; Disponible en: 10.1111/jbi.14083.Venables, W.N.; Ripley, B. D. (2002) Modern applied statistics with S. Vol. 53; pp. 481 : Springer; 978-85-7811-079-6;Karatzoglou, Alexandros; Hornik, Kurt; Smola, Alex; Zeileis, Achim (2004) kernlab. En: Journal of Statistical Software. Vol. 11; pp. 1 - 20; 15487660; Disponible en: 10.18637/jss.v011.i09.Meyer, Leila; Diniz-Filho, José A.F.; Lohmann, Lúcia G. (2017) A comparison of hull methods for estimating species ranges and richness maps. En: Plant Ecology and Diversity. Vol. 10; No. 5-6; pp. 389 - 401; 17551668; Disponible en: https://doi.org/10.1080/17550874.2018.1425505. Disponible en: 10.1080/17550874.2018.1425505.Schivo, Facundo; Bauni, Valeria; Krug, Pamela; Quintana, Rubén Darío (2019) Distribution and richness of amphibians under different climate change scenarios in a subtropical region of South America. En: Applied Geography. Vol. 103; No. February 2018; pp. 70 - 89; 01436228; Disponible en: 10.1016/j.apgeog.2019.01.003.de Oliveira da Conceição, Eliezer; Mantovano, Tatiane; de Campos, Ramiro; Rangel, Thiago Fernando; Martens, Koen; Bailly, Dayani; Higuti, Janet (2020) Mapping the observed and modelled intracontinental distribution of non-marine ostracods from South America. En: Hydrobiologia. Vol. 847; No. 7; pp. 1663 - 1687; 15735117; Disponible en: 10.1007/s10750-019-04136-6.Amundrud, Sarah L.; Videla, Martin; Srivastava, Diane S. (2018) Dispersal barriers and climate determine the geographic distribution of the helicopter damselfly Mecistogaster modesta. En: Freshwater Biology. Vol. 63; No. 2; pp. 214 - 223; 13652427; Disponible en: 10.1111/fwb.13054.Atauchi, P. Joser; Peterson, Townsend; Flanagan, Jeremy (2017) Species distribution models for Peruvian Plantcutter improve with consideration of biotic interactions. En: Journal of avian biology. Vol. 49; No. 3;Jetz, Walter; Rahbek, Carsten; Colwell, Robert K. (2004) The coincidence of rarity and richness and the potential signature of history in centres of endemism. En: Ecology Letters. Vol. 7; No. 12; pp. 1180 - 1191; 1461023X; Disponible en: 10.1111/j.1461-0248.2004.00678.x.Davies Jonathan, T.; Buckley, Lauren B. (2011) Phylogenetic diversity as a window into the evolutionary and biogeographic histories of present-day richness gradients for mammals. En: Philosophical Transactions of the Royal Society B: Biological Sciences. Vol. 366; No. 1576; pp. 2414 - 2425; 09628436; Disponible en: 10.1098/rstb.2011.0058.Pearson, David L; Carroll, Steven S (2001) Predicting Patterns of Tiger Beetle ( Coleoptera : Cicindelidae ) Species Richness in Northwestern South America. En: Studies on Neotropical Fauna and Environment. Vol. 36; No. 2; pp. 125 - 136;Mullen, Sean P.; Savage, Wesley K.; Wahlberg, Niklas; Willmott, Keith R. (2011) Rapid diversification and not clade age explains high diversity in neotropical Adelpha butterflies. En: Proceedings of the Royal Society B: Biological Sciences. Vol. 278; No. 1713; pp. 1777 - 1785; 09628452; Disponible en: 10.1098/rspb.2010.2140.Arango, Axel; Villalobos, Fabricio; Prieto-Torres, David A.; Guevara, Roger (2021) The phylogenetic diversity and structure of the seasonally dry forests in the Neotropics. En: Journal of Biogeography. Vol. 48; No. 1; pp. 176 - 186; 13652699; Disponible en: 10.1111/jbi.13991.Velazco, Santiago José Elías; Svenning, Jean Christian; Ribeiro, Bruno R.; Laureto, Livia Maira Orlandi (2021) On opportunities and threats to conserve the phylogenetic diversity of Neotropical palms. En: Diversity and Distributions. Vol. 27; No. 3; pp. 512 - 523; 14724642; Disponible en: 10.1111/ddi.13215.Keppel, Gunnar; Gillespie, Thomas W.; Ormerod, Paul; Fricker, Geoffrey A. (2016) Habitat diversity predicts orchid diversity in the tropical south-west Pacific. En: Journal of Biogeography. Vol. 43; No. 12; pp. 2332 - 2342; 13652699; Disponible en: 10.1111/jbi.12805.Rahbek, Carsten; Graves, Gary R. (2001) Multiscale assessment of patterns of avian species richness. En: Proceedings of the National Academy of Sciences of the United States of America. Vol. 98; No. 8; pp. 4534 - 4539; 00278424; Disponible en: 10.1073/pnas.071034898.Sandel, Brody; Weigelt, Patrick; Kreft, Holger; Keppel, Gunnar; van der Sande, Masha T.; Levin, Sam; Smith, Stephen; Craven, Dylan; Knight, Tiffany M. (2020) Current climate, isolation and history drive global patterns of tree phylogenetic endemism. En: Global Ecology and Biogeography. Vol. 29; No. 1; pp. 4 - 15; 14668238; Disponible en: 10.1111/geb.13001.Davies, Richard G.; Orme, C. David L.; Storch, David; Olson, Valerie A.; Thomas, Gavin H.; Ross, Simon G.; Ding, Tzung Su; Rasmussen, Pamela C.; Bennett, Peter M.; Owens, Ian P.F.; Blackburn, Tim M.; Gaston, Kevin J. (2007) Topography, energy and the global distribution of bird species richness. En: Proceedings of the Royal Society B: Biological Sciences. Vol. 274; No. 1614; pp. 1189 - 1197; 14712970; Disponible en: 10.1098/rspb.2006.0061.Hawkins, Bradford A.; Field, Richard; Cornell, Howard V.; Currie, David J.; Guégan, Jean François; Kaufman, Dawn M.; Kerr, Jeremy T.; Mittelbach, Gary G.; Oberdorff, Thierry; O'Brien, Eileen M.; Porter, Eric E.; Turner, John R.G. (2003) Energy, water, and broad-scale geographic patterns of species richness. En: Ecology. Vol. 84; No. 12; pp. 3105 - 3117; 00129658; Disponible en: 10.1890/03-8006.Jetz, Walter; Rahbek, Carsten (2002) Geographic range size and determinants of avian species richness. En: Science. Vol. 297; No. 5586; pp. 1548 - 1551; 00368075; Disponible en: 10.1126/science.1072779.Qian, Hong (2010) Environment-richness relationships for mammals, birds, reptiles, and amphibians at global and regional scales. En: Ecological Research. Vol. 25; No. 3; pp. 629 - 637; 09123814; Disponible en: 10.1007/s11284-010-0695-1.Kreft, Holger; Jetz, Walter (2007) Global patterns and determinants of vascular plant diversity. En: Proceedings of the National Academy of Sciences of the United States of America. Vol. 104; No. 14; pp. 5925 - 5930; 00278424; Disponible en: 10.1073/pnas.0608361104.Varzinczak, Luiz H.; Zanata, Thais B.; Moura, Mauricio O.; Passos, Fernando C. (2020) Geographical patterns and current and short-term historical correlates of phylogenetic diversity and endemism for New World primates. En: Journal of Biogeography. Vol. 47; No. 4; pp. 890 - 902; 13652699; Disponible en: 10.1111/jbi.13767.Beck, Hylke E.; Zimmermann, Niklaus E.; McVicar, Tim R.; Vergopolan, Noemi; Berg, Alexis; Wood, Eric F. (2018) Present and future köppen-geiger climate classification maps at 1-km resolution. En: Scientific Data. Vol. 5; pp. 1 - 12; 20524463; Disponible en: 10.1038/sdata.2018.214.Gotelli, Nicholas J.; Anderson, Marti J.; Arita, Hector T.; Chao, Anne; Colwell, Robert K.; Connolly, Sean R.; Currie, David J.; Dunn, Robert R.; Graves, Gary R.; Green, Jessica L.; Grytnes, John Arvid; Jiang, Yi Huei; Jetz, Walter; Kathleen Lyons, S.; McCain, Christy M.; Magurran, Anne E.; Rahbek, Carsten; Rangel, Thiago F.L.V.B.; Soberón, Jorge; Webb, Campbell O.; Willig, Michael R. (2009) Patterns and causes of species richness: A general simulation model for macroecology. En: Ecology Letters. Vol. 12; No. 9; pp. 873 - 886; 1461023X; Disponible en: 10.1111/j.1461-0248.2009.01353.x.Vasconcelos, Tiago S.; da Silva, Fernando R.; dos Santos, Tiago G.; Prado, Vitor H. M.; Provete, Diogo B. (2019) Biogeographic Patterns of South American Anurans. pp. 155 : Springer; 978-3-030-26295-2;Brown, Jason L.; Paz, Andrea; Reginato, Marcelo; Renata, Cecilia Amaro; Assis, Claydson; Lyra, Mariana; Caddah, Mayara K.; Aguirre-Santoro, Julian; d’Horta, Fernando; Raposo do Amaral, Fabio; Goldenberg, Renato; Lucas Silva-Brandão, Karina; Freitas, André Victor Lucci; Rodrigues, Miguel T.; Michelangeli, Fabian A.; Miyaki, Cristina Y.; Carnaval, Ana C. (2020) Seeing the forest through many trees: Multi-taxon patterns of phylogenetic diversity in the Atlantic Forest hotspot. En: Diversity and Distributions. Vol. 26; No. 9; pp. 1160 - 1176; 14724642; Disponible en: 10.1111/ddi.13116.Rosser, Neil; Shirai, L. T.; Dasmahapatra, Kanchon K.; Mallet, James; Freitas, André V.L. (2021) The Amazon river is a suture zone for a polyphyletic group of co-mimetic heliconiine butterflies. En: Ecography. Vol. 44; pp. 177 - 187; Disponible en: doi: 10.1111/ecog.05282.Silva-Flores, Ramón; Pérez-Verdín, Gustavo; Wehenkel, Christian (2014) Patterns of tree species diversity in relation to climatic factors on the Sierra Madre Occidental, Mexico. En: PLoS ONE. Vol. 9; No. 8; 19326203; Disponible en: 10.1371/journal.pone.0105034.López-Aguirre, Camilo; Hand, Suzanne J.; Laffan, Shawn W.; Archer, Michael (2019) Zoogeographical regions and geospatial patterns of phylogenetic diversity and endemism of New World bats. En: Ecography. Vol. 42; No. 6; pp. 1188 - 1199; 16000587; Disponible en: 10.1111/ecog.04194.Svenning, Jens Christian; Borchsenius, Finn; Bjorholm, Stine; Balslev, Henrik (2008) High tropical net diversification drives the New World latitudinal gradient in palm (Arecaceae) species richness. En: Journal of Biogeography. Vol. 35; No. 3; pp. 394 - 406; 03050270; Disponible en: 10.1111/j.1365-2699.2007.01841.x.Daru, Barnabas H.; Farooq, Harith; Antonelli, Alexandre; Faurby, Søren (2020) Endemism patterns are scale dependent. En: Nature Communications. Vol. 11; No. 1; pp. 1 - 11; 20411723; Disponible en: 10.1038/s41467-020-15921-6.Andújar, C.; Arribas, P.; Ruiz, C.; Serrano, J.; Gómez-Zurita, J. (2014) Integration of conflict into integrative taxonomy: fitting hybridization in species delimitation ofMesocarabus(Coleoptera: Carabidae). En: Molecular Ecology. Vol. 23; No. 17; pp. Andújar, - C., Arribas, P., Ruiz, C., Serrano, J., &; Disponible en: 10.1111/mec.12793.Ortego, J.; Gugger, Paul F; Riordan, Erin C; Sork, Victoria L (2014) Influence of climatic niche suitability and geographical overlap on hybridization patterns among southern Californian oaks. En: Journal of Biogeography. Vol. 41; No. 10; pp. 1895 - 1908; Disponible en: 10.1111/jbi.12334.Swenson, N.G.; Fair, J.M.; Heikoop, J. (2008) Water stress and hybridization between Quercus gambelii and Quercus grisea. En: Western North American Naturalist. Vol. 68; pp. 498 - 507;Kuhn, Max (2008) caret Package. En: Journal Of Statistical Software. Vol. 28; No. 5; pp. 1 - 26; Disponible en: 10.18637/jss.v028.i05.Montejo-Kovacevich, Gabriela; Smith, Jennifer E.; Meier, Joana I.; Bacquet, Caroline N.; Whiltshire-Romero, Eva; Nadeau, Nicola J.; Jiggins, Chris D. (2019) Altitude and life-history shape the evolution of Heliconius wings. En: Evolution. Vol. 73; No. 12; pp. 2436 - 2450; 15585646; Disponible en: 10.1111/evo.13865.Assis, J. (2020) R Pipelines to reduce the spatial autocorrelation in Species Distribution Models. En: theMarineDataScientist.Guedes, Thaís B.; Sawaya, Ricardo J.; Zizka, Alexander; Laffan, Shawn; Faurby, Søren; Pyron, R. Alexander; Bérnils, Renato S.; Jansen, Martin; Passos, Paulo; Prudente, Ana L.C.; Cisneros-Heredia, Diego F.; Braz, Henrique B.; Nogueira, Cristiano de C.; Antonelli, Alexandre (2018) Patterns, biases and prospects in the distribution and diversity of Neotropical snakes. En: Global Ecology and Biogeography. Vol. 27; No. 1; pp. 14 - 21; 14668238; Disponible en: 10.1111/geb.12679.Rosauer, Dan F.; Jetz, Walter (2014) Phylogenetic endemism in terrestrial mammals. En: Global Ecology and Biogeography. Vol. 24; No. 2; pp. 168 - 179; 14668238; Disponible en: 10.1111/geb.12237.Mendoza, Angela María; Arita, Héctor T. (2014) Priority setting by sites and by species using rarity, richness and phylogenetic diversity: The case of neotropical glassfrogs (Anura: Centrolenidae). En: Biodiversity and Conservation. Vol. 23; No. 4; pp. 909 - 926; 15729710; Disponible en: 10.1007/s10531-014-0642-5.Jarvis, A.; Reuter, H.I.; Nelson, A.; Guevara, E. (2008) Hole-filled SRTM for the globe Version 4, available from the CGIAR-CSI SRTM 90m Database. Fenker, Jéssica; Tedeschi, Leonardo G.; Pyron, Robert Alexander; Nogueira, Cristiano de C. (2014) Phylogenetic diversity, habitat loss and conservation in South American pitvipers (Crotalinae: Bothrops and Bothrocophias). En: Diversity and Distributions. Vol. 20; No. 10; pp. 1108 - 1119; 14724642; Disponible en: 10.1111/ddi.12217.Arteaga, Maria Clara; Mccormack, John E; Eguiarte, Luis E; Medell, Rodrigo A (2011) Genetic admixture in multidimensional enviromental space : asymetrical niche similarity promotes gene flow in Armadillos (Dasypus Novemcinctus). En: Evolution. Vol. 65; No. 9; pp. 2470 - 2480; Disponible en: 10.1111/j.1558-5646.2011.01329.x.Li, Han; Ralph, Peter (2019) Local PCA shows how the effect of population structure differs along the genome. En: Genetics. Vol. 211; No. 1; pp. 289 - 304; 19432631; Disponible en: 10.1534/genetics.118.301747.Alexander, David H.; Novembre, John; Lange, Kenneth (2009) Fast model-based estimation of ancestry in unrelated individuals. En: Genome Research. Vol. 19; No. 9; pp. 1655 - 1664; 10889051; Disponible en: 10.1101/gr.094052.109.Picq, Sandrine; Lumley, Lisa; Šíchová, Jindra; Laroche, Jérôme; Pouliot, Esther; Brunet, Bryan M.T.; Levesque, Roger C.; Sperling, Felix A.H.; Marec, František; Cusson, Michel (2018) Insights into the structure of the spruce budworm (Choristoneura fumiferana) genome, as revealed by molecular cytogenetic analyses and a high-density linkage map. En: G3: Genes, Genomes, Genetics. Vol. 8; No. 8; pp. 2539 - 2549; 21601836; Disponible en: 10.1534/g3.118.200263.Nguyen, Petr; Sýkorová, Miroslava; Šíchová, Jindra; Kůta, Václav; Dalíková, Martina; Frydrychová, Radmila Čapková; Neven, Lisa G.; Sahara, Ken; Marec, Frantǐsek (2013) Neo-sex chromosomes and adaptive potential in tortricid pests. En: Proceedings of the National Academy of Sciences of the United States of America. Vol. 110; No. 17; pp. 6931 - 6936; 00278424; Disponible en: 10.1073/pnas.1220372110.Smith, David A.S.; Gordon, Ian J.; Traut, Walther; Herren, Jeremy; Collins, Steve; Martins, Dino J.; Saitoti, Kennedy; Ireri, Piera; Ffrench-Constant, Richard (2016) A neo-W chromosome in a tropical butterfly links colour pattern, male-killing, and speciation. En: Proceedings of the Royal Society B: Biological Sciences. Vol. 283; No. 1835; 14712954; Disponible en: 10.1098/rspb.2016.0821.Šíchová, Jindra; Ohno, Mizuki; Dincă, Vlad; Watanabe, Michihito; Sahara, Ken; Marec, František (2016) Fissions, fusions, and translocations shaped the karyotype and multiple sex chromosome constitution of the northeast-Asian wood white butterfly, Leptidea amurensis. En: Biological Journal of the Linnean Society. Vol. 118; No. 3; pp. 457 - 471; 10958312; Disponible en: 10.1111/bij.12756.Yoshido, A.; Sahara, K.; Marec, F.; Matsuda, Y. (2011) Step-by-step evolution of neo-sex chromosomes in geographical populations of wild silkmoths, Samia cynthia ssp. En: Heredity. Vol. 106; No. 4; pp. 614 - 624; 0018067X; Disponible en: http://dx.doi.org/10.1038/hdy.2010.94. Disponible en: 10.1038/hdy.2010.94.Šíchová, Jindra; Voleníková, Anna; Dincə, Vlad; Nguyen, Petr; Vila, Roger; Sahara, Ken; Marec, František (2015) Dynamic karyotype evolution and unique sex determination systems in Leptidea wood white butterflies Speciation and evolutionary genetics. En: BMC Evolutionary Biology. Vol. 15; No. 1; pp. 1 - 16; 14712148; Disponible en: 10.1186/s12862-015-0375-4.Mongue, Andrew J.; Nguyen, Petr; Voleníková, Anna; Walters, James R. (2017) Neo-sex chromosomes in the monarch butterfly, Danaus plexippus. En: G3: Genes, Genomes, Genetics. Vol. 7; No. 10; pp. 3281 - 3294; 21601836; Disponible en: 10.1534/g3.117.300187.Davey, John W.; Chouteau, Mathieu; Barker, Sarah L.; Maroja, Luana; Baxter, Simon W.; Simpson, Fraser; Joron, Mathieu; Mallet, James; Dasmahapatra, Kanchon K.; Jiggins, Chris D. (2016) Major improvements to the Heliconius melpomene genome assembly used to confirm 10 chromosome fusion events in 6 million years of butterfly evolution. En: G3: Genes, Genomes, Genetics. Vol. 6; No. 3; pp. 695 - 708; 21601836; Disponible en: 10.1534/g3.115.023655.instname:Universidad del Rosarioreponame:Repositorio Institucional EdocURModelos de distribución de especiesRearreglos cromosomalesEcologia químicaHeliconiusSpecies distribution modelsChromosomal rearrangementsChemical ecologyHeliconiusDrivers of diversification in Heliconius, with special focus on the sara/sapho cladeFactores de diversificación en Heliconius, con especial atención al clado sara/saphobachelorThesisTrabajo de gradoTrabajo de gradohttp://purl.org/coar/resource_type/c_7a1fFacultad de Ciencias NaturalesORIGINALDrivers-of-diversification-in-heliconius-Nicol-Magaly-Rueda-Muñoz.pdfDrivers-of-diversification-in-heliconius-Nicol-Magaly-Rueda-Muñoz.pdfapplication/pdf35724770https://repository.urosario.edu.co/bitstreams/07bae3fb-b985-476a-9e62-abe98fe43d24/download6082b987fa602e8bc453909c7b5cd3f7MD51Bibliografia.risBibliografia.risapplication/x-research-info-systems251943https://repository.urosario.edu.co/bitstreams/a24ffc74-de4e-4917-978f-ee0ea374e65f/downloaddb83b429fd3fec89eb4bcced90502f11MD52LICENSElicense.txtlicense.txttext/plain1483https://repository.urosario.edu.co/bitstreams/8899d94d-e544-4ffe-94be-0237fa4a4204/downloadb2825df9f458e9d5d96ee8b7cd74fde6MD53CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8899https://repository.urosario.edu.co/bitstreams/b88c61ab-5c66-4f9e-a17b-5bd07e64d5b5/download3b6ce8e9e36c89875e8cf39962fe8920MD54TEXTDrivers-of-diversification-in-heliconius-Nicol-Magaly-Rueda-Muñoz.pdf.txtDrivers-of-diversification-in-heliconius-Nicol-Magaly-Rueda-Muñoz.pdf.txtExtracted texttext/plain100359https://repository.urosario.edu.co/bitstreams/c1870d68-4b0c-4f72-bdc5-a58c560c830a/downloaddf5503a11fe4af87081901f5efabe229MD55THUMBNAILDrivers-of-diversification-in-heliconius-Nicol-Magaly-Rueda-Muñoz.pdf.jpgDrivers-of-diversification-in-heliconius-Nicol-Magaly-Rueda-Muñoz.pdf.jpgGenerated Thumbnailimage/jpeg2437https://repository.urosario.edu.co/bitstreams/3f0d306b-16be-4451-9f7f-df919d33a615/download93281570dd5527452a5710e1b5f85a32MD5610336/40996oai:repository.urosario.edu.co:10336/409962024-11-07 15:07:30.338http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internationalhttps://repository.urosario.edu.coRepositorio institucional EdocURedocur@urosario.edu.coRUwoTE9TKSBBVVRPUihFUyksIG1hbmlmaWVzdGEobWFuaWZlc3RhbW9zKSBxdWUgbGEgb2JyYSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIHJlYWxpesOzIHNpbiB2aW9sYXIgbyB1c3VycGFyIGRlcmVjaG9zIGRlIGF1dG9yIGRlIHRlcmNlcm9zLCBwb3IgbG8gdGFudG8gbGEgb2JyYSBlcyBkZSBleGNsdXNpdmEgYXV0b3LDrWEgeSB0aWVuZSBsYSB0aXR1bGFyaWRhZCBzb2JyZSBsYSBtaXNtYS4KPGJyLz4KUEFSQUdSQUZPOiBFbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbiwgRUwgQVVUT1IsIGFzdW1pcsOhIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkLCB5IHNhbGRyw6EgZW4gZGVmZW5zYSBkZSBsb3MgZGVyZWNob3MgYXF1w60gYXV0b3JpemFkb3M7IHBhcmEgdG9kb3MgbG9zIGVmZWN0b3MgbGEgdW5pdmVyc2lkYWQgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4KPGhyLz4KRUwgQVVUT1IsIGF1dG9yaXphIGEgTEEgVU5JVkVSU0lEQUQgREVMIFJPU0FSSU8sICBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgTGV5IDQ0IGRlIDE5OTMsIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbm9ybWFzIGdlbmVyYWxlcyBzb2JyZSBsYSBtYXRlcmlhLCAgdXRpbGljZSB5IHVzZSBsYSBvYnJhIG9iamV0byBkZSBsYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuLgoKLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0KClBPTElUSUNBIERFIFRSQVRBTUlFTlRPIERFIERBVE9TIFBFUlNPTkFMRVMuIERlY2xhcm8gcXVlIGF1dG9yaXpvIHByZXZpYSB5IGRlIGZvcm1hIGluZm9ybWFkYSBlbCB0cmF0YW1pZW50byBkZSBtaXMgZGF0b3MgcGVyc29uYWxlcyBwb3IgcGFydGUgZGUgTEEgVU5JVkVSU0lEQUQgREVMIFJPU0FSSU8gIHBhcmEgZmluZXMgYWNhZMOpbWljb3MgeSBlbiBhcGxpY2FjacOzbiBkZSBjb252ZW5pb3MgY29uIHRlcmNlcm9zIG8gc2VydmljaW9zIGNvbmV4b3MgY29uIGFjdGl2aWRhZGVzIHByb3BpYXMgZGUgbGEgYWNhZGVtaWEsIGNvbiBlc3RyaWN0byBjdW1wbGltaWVudG8gZGUgbG9zIHByaW5jaXBpb3MgZGUgbGV5LiBQYXJhIGVsIGNvcnJlY3RvIGVqZXJjaWNpbyBkZSBtaSBkZXJlY2hvIGRlIGhhYmVhcyBkYXRhICBjdWVudG8gY29uIGxhIGN1ZW50YSBkZSBjb3JyZW8gaGFiZWFzZGF0YUB1cm9zYXJpby5lZHUuY28sIGRvbmRlIHByZXZpYSBpZGVudGlmaWNhY2nDs24gIHBvZHLDqSBzb2xpY2l0YXIgbGEgY29uc3VsdGEsIGNvcnJlY2Npw7NuIHkgc3VwcmVzacOzbiBkZSBtaXMgZGF0b3MuCg==