Daily dataset of precipitation and temperature in the Department of Cauca, Colombia
This study used the geostatistical Kriging methodology to reduce the spatial scale of a host of daily meteorological variables in the Department of Cauca (Colombia), namely, total precipitation and maximum, minimum, and average temperature. The objective was to supply a high-resolution database from...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2023
- Institución:
- Universidad del Rosario
- Repositorio:
- Repositorio EdocUR - U. Rosario
- Idioma:
- eng
- OAI Identifier:
- oai:repository.urosario.edu.co:10336/42107
- Acceso en línea:
- https://repository.urosario.edu.co/handle/10336/42107
- Palabra clave:
- Spatial downscaling
ERA5-Land
CHIRPS
MSWX
Kriging
- Rights
- License
- Attribution-NonCommercial-ShareAlike 4.0 International
id |
EDOCUR2_5605a170516441aa23084608541cbed4 |
---|---|
oai_identifier_str |
oai:repository.urosario.edu.co:10336/42107 |
network_acronym_str |
EDOCUR2 |
network_name_str |
Repositorio EdocUR - U. Rosario |
repository_id_str |
|
spelling |
9a4872b8-2331-40a3-a799-c07cab2e6049911565ff-f773-48e8-aa4c-c6e0f50ecc48d1bf7263-1f6a-4050-a17c-41482703d122400cd254158-0bfb-4fc6-ac68-17aac37a4c2fe8a5cf97-8e8e-46f2-92ca-5d753bc8fc1fba8826ed-49fb-4396-95c8-ab69a8e7b1a44002024-01-31T18:23:09Z2024-01-31T18:23:09Z2023-10-012023This study used the geostatistical Kriging methodology to reduce the spatial scale of a host of daily meteorological variables in the Department of Cauca (Colombia), namely, total precipitation and maximum, minimum, and average temperature. The objective was to supply a high-resolution database from 01/01/2015 to 31/12/2021 in order to support the climate component in a project led by the National Institute of Health (INS) named “Spatial Stratification of dengue based on the identification of risk factors: a pilot study in the Department of Cauca”. The scaling process was applied to available databases from satellite information and reanalysis sources, specifically, CHIRPS (Climate Hazards Group InfraRed Precipitation with Station Data), ERA5-Land (European Centre for Medium-Range Weather Forecasts), and MSWX (Multi-Source Weather). The 0.1° resolution offered by both the MSWX and ERA5-Land databases and the 0.05° resolution found in CHIRPS, was successfully reduced to a scale of 0.01° across all variables. Statistical metrics such as Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), Person Correlation Coefficient (r), and Mean Bias Error (MBE) were used to select the database that best estimated each variable. As a result, it was determined that the scaled ERA5-Land database yielded the best performance for precipitation and minimum daily temperature. On the other hand, the scaled MSWX database showed the best behavior for the other two variables of maximum temperature and daily average temperature. Additionally, using the scaled meteorological databases improved the performance of the regression models implemented by the INS for constructing a dengue early warning system.application/pdf10.1016/j.dib.2023.1095422352-3409https://repository.urosario.edu.co/handle/10336/42107engUniversidad del Rosariohttps://pubmed.ncbi.nlm.nih.gov/37743883/Attribution-NonCommercial-ShareAlike 4.0 InternationalAbierto (Texto Completo)https://creativecommons.org/licenses/by/4.0/http://purl.org/coar/access_right/c_abf2Data in Briefinstname:Universidad del Rosarioreponame:Repositorio Institucional EdocURSpatial downscalingERA5-LandCHIRPSMSWXKrigingDaily dataset of precipitation and temperature in the Department of Cauca, ColombiaarticleArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501Blanco Mantilla, KVillamizar, SMarcelo, CSantamaria, EORIGINALDaily dataset of precipitation.pdfapplication/pdf5412718https://repository.urosario.edu.co/bitstreams/53a25ec7-212b-4258-8ae0-24960510d1f5/download7b5f983e3ce8462a632d15817c45d78aMD51TEXTDaily dataset of precipitation.pdf.txtDaily dataset of precipitation.pdf.txtExtracted texttext/plain25475https://repository.urosario.edu.co/bitstreams/53068273-2ecb-400a-94e2-62202a7510e7/downloadee0f707724ad265bc7973860b6f1eb22MD52THUMBNAILDaily dataset of precipitation.pdf.jpgDaily dataset of precipitation.pdf.jpgGenerated Thumbnailimage/jpeg4629https://repository.urosario.edu.co/bitstreams/6f2181bb-2b03-4b28-82f1-3f15804a89af/download407f038a107eb9cca23ec5d1ae0a3d8bMD5310336/42107oai:repository.urosario.edu.co:10336/421072024-02-01 03:05:50.151https://creativecommons.org/licenses/by/4.0/Attribution-NonCommercial-ShareAlike 4.0 Internationalhttps://repository.urosario.edu.coRepositorio institucional EdocURedocur@urosario.edu.co |
dc.title.spa.fl_str_mv |
Daily dataset of precipitation and temperature in the Department of Cauca, Colombia |
title |
Daily dataset of precipitation and temperature in the Department of Cauca, Colombia |
spellingShingle |
Daily dataset of precipitation and temperature in the Department of Cauca, Colombia Spatial downscaling ERA5-Land CHIRPS MSWX Kriging |
title_short |
Daily dataset of precipitation and temperature in the Department of Cauca, Colombia |
title_full |
Daily dataset of precipitation and temperature in the Department of Cauca, Colombia |
title_fullStr |
Daily dataset of precipitation and temperature in the Department of Cauca, Colombia |
title_full_unstemmed |
Daily dataset of precipitation and temperature in the Department of Cauca, Colombia |
title_sort |
Daily dataset of precipitation and temperature in the Department of Cauca, Colombia |
dc.creator.spa.fl_str_mv |
|
author |
|
author_facet |
|
author_role |
author |
dc.subject.spa.fl_str_mv |
Spatial downscaling ERA5-Land CHIRPS MSWX Kriging |
topic |
Spatial downscaling ERA5-Land CHIRPS MSWX Kriging |
description |
This study used the geostatistical Kriging methodology to reduce the spatial scale of a host of daily meteorological variables in the Department of Cauca (Colombia), namely, total precipitation and maximum, minimum, and average temperature. The objective was to supply a high-resolution database from 01/01/2015 to 31/12/2021 in order to support the climate component in a project led by the National Institute of Health (INS) named “Spatial Stratification of dengue based on the identification of risk factors: a pilot study in the Department of Cauca”. The scaling process was applied to available databases from satellite information and reanalysis sources, specifically, CHIRPS (Climate Hazards Group InfraRed Precipitation with Station Data), ERA5-Land (European Centre for Medium-Range Weather Forecasts), and MSWX (Multi-Source Weather). The 0.1° resolution offered by both the MSWX and ERA5-Land databases and the 0.05° resolution found in CHIRPS, was successfully reduced to a scale of 0.01° across all variables. Statistical metrics such as Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), Person Correlation Coefficient (r), and Mean Bias Error (MBE) were used to select the database that best estimated each variable. As a result, it was determined that the scaled ERA5-Land database yielded the best performance for precipitation and minimum daily temperature. On the other hand, the scaled MSWX database showed the best behavior for the other two variables of maximum temperature and daily average temperature. Additionally, using the scaled meteorological databases improved the performance of the regression models implemented by the INS for constructing a dengue early warning system. |
publishDate |
2023 |
dc.date.created.spa.fl_str_mv |
2023-10-01 |
dc.date.issued.spa.fl_str_mv |
2023 |
dc.date.accessioned.none.fl_str_mv |
2024-01-31T18:23:09Z |
dc.date.available.none.fl_str_mv |
2024-01-31T18:23:09Z |
dc.type.spa.fl_str_mv |
article |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.spa.spa.fl_str_mv |
Artículo |
dc.identifier.doi.spa.fl_str_mv |
10.1016/j.dib.2023.109542 |
dc.identifier.issn.spa.fl_str_mv |
2352-3409 |
dc.identifier.uri.none.fl_str_mv |
https://repository.urosario.edu.co/handle/10336/42107 |
identifier_str_mv |
10.1016/j.dib.2023.109542 2352-3409 |
url |
https://repository.urosario.edu.co/handle/10336/42107 |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.relation.uri.spa.fl_str_mv |
https://pubmed.ncbi.nlm.nih.gov/37743883/ |
dc.rights.spa.fl_str_mv |
Attribution-NonCommercial-ShareAlike 4.0 International |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.acceso.spa.fl_str_mv |
Abierto (Texto Completo) |
dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by/4.0/ |
rights_invalid_str_mv |
Attribution-NonCommercial-ShareAlike 4.0 International Abierto (Texto Completo) https://creativecommons.org/licenses/by/4.0/ http://purl.org/coar/access_right/c_abf2 |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad del Rosario |
dc.source.spa.fl_str_mv |
Data in Brief |
institution |
Universidad del Rosario |
dc.source.instname.spa.fl_str_mv |
instname:Universidad del Rosario |
dc.source.reponame.spa.fl_str_mv |
reponame:Repositorio Institucional EdocUR |
bitstream.url.fl_str_mv |
https://repository.urosario.edu.co/bitstreams/53a25ec7-212b-4258-8ae0-24960510d1f5/download https://repository.urosario.edu.co/bitstreams/53068273-2ecb-400a-94e2-62202a7510e7/download https://repository.urosario.edu.co/bitstreams/6f2181bb-2b03-4b28-82f1-3f15804a89af/download |
bitstream.checksum.fl_str_mv |
7b5f983e3ce8462a632d15817c45d78a ee0f707724ad265bc7973860b6f1eb22 407f038a107eb9cca23ec5d1ae0a3d8b |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio institucional EdocUR |
repository.mail.fl_str_mv |
edocur@urosario.edu.co |
_version_ |
1814167713113702400 |