Daily dataset of precipitation and temperature in the Department of Cauca, Colombia

This study used the geostatistical Kriging methodology to reduce the spatial scale of a host of daily meteorological variables in the Department of Cauca (Colombia), namely, total precipitation and maximum, minimum, and average temperature. The objective was to supply a high-resolution database from...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2023
Institución:
Universidad del Rosario
Repositorio:
Repositorio EdocUR - U. Rosario
Idioma:
eng
OAI Identifier:
oai:repository.urosario.edu.co:10336/42107
Acceso en línea:
https://repository.urosario.edu.co/handle/10336/42107
Palabra clave:
Spatial downscaling
ERA5-Land
CHIRPS
MSWX
Kriging
Rights
License
Attribution-NonCommercial-ShareAlike 4.0 International
id EDOCUR2_5605a170516441aa23084608541cbed4
oai_identifier_str oai:repository.urosario.edu.co:10336/42107
network_acronym_str EDOCUR2
network_name_str Repositorio EdocUR - U. Rosario
repository_id_str
spelling 9a4872b8-2331-40a3-a799-c07cab2e6049911565ff-f773-48e8-aa4c-c6e0f50ecc48d1bf7263-1f6a-4050-a17c-41482703d122400cd254158-0bfb-4fc6-ac68-17aac37a4c2fe8a5cf97-8e8e-46f2-92ca-5d753bc8fc1fba8826ed-49fb-4396-95c8-ab69a8e7b1a44002024-01-31T18:23:09Z2024-01-31T18:23:09Z2023-10-012023This study used the geostatistical Kriging methodology to reduce the spatial scale of a host of daily meteorological variables in the Department of Cauca (Colombia), namely, total precipitation and maximum, minimum, and average temperature. The objective was to supply a high-resolution database from 01/01/2015 to 31/12/2021 in order to support the climate component in a project led by the National Institute of Health (INS) named “Spatial Stratification of dengue based on the identification of risk factors: a pilot study in the Department of Cauca”. The scaling process was applied to available databases from satellite information and reanalysis sources, specifically, CHIRPS (Climate Hazards Group InfraRed Precipitation with Station Data), ERA5-Land (European Centre for Medium-Range Weather Forecasts), and MSWX (Multi-Source Weather). The 0.1° resolution offered by both the MSWX and ERA5-Land databases and the 0.05° resolution found in CHIRPS, was successfully reduced to a scale of 0.01° across all variables. Statistical metrics such as Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), Person Correlation Coefficient (r), and Mean Bias Error (MBE) were used to select the database that best estimated each variable. As a result, it was determined that the scaled ERA5-Land database yielded the best performance for precipitation and minimum daily temperature. On the other hand, the scaled MSWX database showed the best behavior for the other two variables of maximum temperature and daily average temperature. Additionally, using the scaled meteorological databases improved the performance of the regression models implemented by the INS for constructing a dengue early warning system.application/pdf10.1016/j.dib.2023.1095422352-3409https://repository.urosario.edu.co/handle/10336/42107engUniversidad del Rosariohttps://pubmed.ncbi.nlm.nih.gov/37743883/Attribution-NonCommercial-ShareAlike 4.0 InternationalAbierto (Texto Completo)https://creativecommons.org/licenses/by/4.0/http://purl.org/coar/access_right/c_abf2Data in Briefinstname:Universidad del Rosarioreponame:Repositorio Institucional EdocURSpatial downscalingERA5-LandCHIRPSMSWXKrigingDaily dataset of precipitation and temperature in the Department of Cauca, ColombiaarticleArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501Blanco Mantilla, KVillamizar, SMarcelo, CSantamaria, EORIGINALDaily dataset of precipitation.pdfapplication/pdf5412718https://repository.urosario.edu.co/bitstreams/53a25ec7-212b-4258-8ae0-24960510d1f5/download7b5f983e3ce8462a632d15817c45d78aMD51TEXTDaily dataset of precipitation.pdf.txtDaily dataset of precipitation.pdf.txtExtracted texttext/plain25475https://repository.urosario.edu.co/bitstreams/53068273-2ecb-400a-94e2-62202a7510e7/downloadee0f707724ad265bc7973860b6f1eb22MD52THUMBNAILDaily dataset of precipitation.pdf.jpgDaily dataset of precipitation.pdf.jpgGenerated Thumbnailimage/jpeg4629https://repository.urosario.edu.co/bitstreams/6f2181bb-2b03-4b28-82f1-3f15804a89af/download407f038a107eb9cca23ec5d1ae0a3d8bMD5310336/42107oai:repository.urosario.edu.co:10336/421072024-02-01 03:05:50.151https://creativecommons.org/licenses/by/4.0/Attribution-NonCommercial-ShareAlike 4.0 Internationalhttps://repository.urosario.edu.coRepositorio institucional EdocURedocur@urosario.edu.co
dc.title.spa.fl_str_mv Daily dataset of precipitation and temperature in the Department of Cauca, Colombia
title Daily dataset of precipitation and temperature in the Department of Cauca, Colombia
spellingShingle Daily dataset of precipitation and temperature in the Department of Cauca, Colombia

Spatial downscaling
ERA5-Land
CHIRPS
MSWX
Kriging
title_short Daily dataset of precipitation and temperature in the Department of Cauca, Colombia
title_full Daily dataset of precipitation and temperature in the Department of Cauca, Colombia
title_fullStr Daily dataset of precipitation and temperature in the Department of Cauca, Colombia
title_full_unstemmed Daily dataset of precipitation and temperature in the Department of Cauca, Colombia
title_sort Daily dataset of precipitation and temperature in the Department of Cauca, Colombia
dc.creator.spa.fl_str_mv

author
author_facet
author_role author
dc.subject.spa.fl_str_mv Spatial downscaling
ERA5-Land
CHIRPS
MSWX
Kriging
topic Spatial downscaling
ERA5-Land
CHIRPS
MSWX
Kriging
description This study used the geostatistical Kriging methodology to reduce the spatial scale of a host of daily meteorological variables in the Department of Cauca (Colombia), namely, total precipitation and maximum, minimum, and average temperature. The objective was to supply a high-resolution database from 01/01/2015 to 31/12/2021 in order to support the climate component in a project led by the National Institute of Health (INS) named “Spatial Stratification of dengue based on the identification of risk factors: a pilot study in the Department of Cauca”. The scaling process was applied to available databases from satellite information and reanalysis sources, specifically, CHIRPS (Climate Hazards Group InfraRed Precipitation with Station Data), ERA5-Land (European Centre for Medium-Range Weather Forecasts), and MSWX (Multi-Source Weather). The 0.1° resolution offered by both the MSWX and ERA5-Land databases and the 0.05° resolution found in CHIRPS, was successfully reduced to a scale of 0.01° across all variables. Statistical metrics such as Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), Person Correlation Coefficient (r), and Mean Bias Error (MBE) were used to select the database that best estimated each variable. As a result, it was determined that the scaled ERA5-Land database yielded the best performance for precipitation and minimum daily temperature. On the other hand, the scaled MSWX database showed the best behavior for the other two variables of maximum temperature and daily average temperature. Additionally, using the scaled meteorological databases improved the performance of the regression models implemented by the INS for constructing a dengue early warning system.
publishDate 2023
dc.date.created.spa.fl_str_mv 2023-10-01
dc.date.issued.spa.fl_str_mv 2023
dc.date.accessioned.none.fl_str_mv 2024-01-31T18:23:09Z
dc.date.available.none.fl_str_mv 2024-01-31T18:23:09Z
dc.type.spa.fl_str_mv article
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.spa.spa.fl_str_mv Artículo
dc.identifier.doi.spa.fl_str_mv 10.1016/j.dib.2023.109542
dc.identifier.issn.spa.fl_str_mv 2352-3409
dc.identifier.uri.none.fl_str_mv https://repository.urosario.edu.co/handle/10336/42107
identifier_str_mv 10.1016/j.dib.2023.109542
2352-3409
url https://repository.urosario.edu.co/handle/10336/42107
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.uri.spa.fl_str_mv https://pubmed.ncbi.nlm.nih.gov/37743883/
dc.rights.spa.fl_str_mv Attribution-NonCommercial-ShareAlike 4.0 International
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.acceso.spa.fl_str_mv Abierto (Texto Completo)
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by/4.0/
rights_invalid_str_mv Attribution-NonCommercial-ShareAlike 4.0 International
Abierto (Texto Completo)
https://creativecommons.org/licenses/by/4.0/
http://purl.org/coar/access_right/c_abf2
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad del Rosario
dc.source.spa.fl_str_mv Data in Brief
institution Universidad del Rosario
dc.source.instname.spa.fl_str_mv instname:Universidad del Rosario
dc.source.reponame.spa.fl_str_mv reponame:Repositorio Institucional EdocUR
bitstream.url.fl_str_mv https://repository.urosario.edu.co/bitstreams/53a25ec7-212b-4258-8ae0-24960510d1f5/download
https://repository.urosario.edu.co/bitstreams/53068273-2ecb-400a-94e2-62202a7510e7/download
https://repository.urosario.edu.co/bitstreams/6f2181bb-2b03-4b28-82f1-3f15804a89af/download
bitstream.checksum.fl_str_mv 7b5f983e3ce8462a632d15817c45d78a
ee0f707724ad265bc7973860b6f1eb22
407f038a107eb9cca23ec5d1ae0a3d8b
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio institucional EdocUR
repository.mail.fl_str_mv edocur@urosario.edu.co
_version_ 1814167713113702400