Mass and secondary structure propensity of amino acids explain their mutability and evolutionary replacements

Why is an amino acid replacement in a protein accepted during evolution? The answer given by bioinformatics relies on the frequency of change of each amino acid by another one and the propensity of each to remain unchanged. We propose that these replacement rules are recoverable from the secondary s...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2017
Institución:
Universidad del Rosario
Repositorio:
Repositorio EdocUR - U. Rosario
Idioma:
eng
OAI Identifier:
oai:repository.urosario.edu.co:10336/23284
Acceso en línea:
https://doi.org/10.1038/s41598-017-08041-7
https://repository.urosario.edu.co/handle/10336/23284
Palabra clave:
aminoacids
mutability
evolutionary
replacements
Rights
License
Abierto (Texto Completo)
id EDOCUR2_4ff3f6537663a075afe4fedffe671169
oai_identifier_str oai:repository.urosario.edu.co:10336/23284
network_acronym_str EDOCUR2
network_name_str Repositorio EdocUR - U. Rosario
repository_id_str
spelling 833582ab-fa8b-4587-a40e-adb44fa7fc51-185e2385a-174f-4c6b-87d7-def493015d27-110ecd4f9-843f-4ef2-bec0-7d39d3381a13-12020-05-26T00:00:54Z2020-05-26T00:00:54Z2017Why is an amino acid replacement in a protein accepted during evolution? The answer given by bioinformatics relies on the frequency of change of each amino acid by another one and the propensity of each to remain unchanged. We propose that these replacement rules are recoverable from the secondary structural trends of amino acids. A distance measure between high-resolution Ramachandran distributions reveals that structurally similar residues coincide with those found in substitution matrices such as BLOSUM: Asn Asp, Phe Tyr, Lys Arg, Gln Glu, Ile Val, Met ? Leu; with Ala, Cys, His, Gly, Ser, Pro, and Thr, as structurally idiosyncratic residues. We also found a high average correlation (\overline{R} R = 0.85) between thirty amino acid mutability scales and the mutational inertia (I X ), which measures the energetic cost weighted by the number of observations at the most probable amino acid conformation. These results indicate that amino acid substitutions follow two optimally-efficient principles: (a) amino acids interchangeability privileges their secondary structural similarity, and (b) the amino acid mutability depends directly on its biosynthetic energy cost, and inversely with its frequency. These two principles are the underlying rules governing the observed amino acid substitutions. © 2017 The Author(s).application/pdfhttps://doi.org/10.1038/s41598-017-08041-720452322https://repository.urosario.edu.co/handle/10336/23284engNature Publishing GroupNo. 1Scientific ReportsVol. 7Scientific Reports, ISSN:20452322, Vol.7, No.1 (2017)https://www.scopus.com/inward/record.uri?eid=2-s2.0-85042941481&doi=10.1038%2fs41598-017-08041-7&partnerID=40&md5=6d6943620354c2adb0dd5b2f6f79f913Abierto (Texto Completo)http://purl.org/coar/access_right/c_abf2instname:Universidad del Rosarioreponame:Repositorio Institucional EdocURaminoacidsmutabilityevolutionaryreplacementsMass and secondary structure propensity of amino acids explain their mutability and evolutionary replacementsarticleArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501Bohórquez, Hugo J.Suárez, Carlos F.Patarroyo, Manuel E.10336/23284oai:repository.urosario.edu.co:10336/232842022-05-02 07:37:20.922619https://repository.urosario.edu.coRepositorio institucional EdocURedocur@urosario.edu.co
dc.title.spa.fl_str_mv Mass and secondary structure propensity of amino acids explain their mutability and evolutionary replacements
title Mass and secondary structure propensity of amino acids explain their mutability and evolutionary replacements
spellingShingle Mass and secondary structure propensity of amino acids explain their mutability and evolutionary replacements
aminoacids
mutability
evolutionary
replacements
title_short Mass and secondary structure propensity of amino acids explain their mutability and evolutionary replacements
title_full Mass and secondary structure propensity of amino acids explain their mutability and evolutionary replacements
title_fullStr Mass and secondary structure propensity of amino acids explain their mutability and evolutionary replacements
title_full_unstemmed Mass and secondary structure propensity of amino acids explain their mutability and evolutionary replacements
title_sort Mass and secondary structure propensity of amino acids explain their mutability and evolutionary replacements
dc.subject.keyword.spa.fl_str_mv aminoacids
mutability
evolutionary
replacements
topic aminoacids
mutability
evolutionary
replacements
description Why is an amino acid replacement in a protein accepted during evolution? The answer given by bioinformatics relies on the frequency of change of each amino acid by another one and the propensity of each to remain unchanged. We propose that these replacement rules are recoverable from the secondary structural trends of amino acids. A distance measure between high-resolution Ramachandran distributions reveals that structurally similar residues coincide with those found in substitution matrices such as BLOSUM: Asn Asp, Phe Tyr, Lys Arg, Gln Glu, Ile Val, Met ? Leu; with Ala, Cys, His, Gly, Ser, Pro, and Thr, as structurally idiosyncratic residues. We also found a high average correlation (\overline{R} R = 0.85) between thirty amino acid mutability scales and the mutational inertia (I X ), which measures the energetic cost weighted by the number of observations at the most probable amino acid conformation. These results indicate that amino acid substitutions follow two optimally-efficient principles: (a) amino acids interchangeability privileges their secondary structural similarity, and (b) the amino acid mutability depends directly on its biosynthetic energy cost, and inversely with its frequency. These two principles are the underlying rules governing the observed amino acid substitutions. © 2017 The Author(s).
publishDate 2017
dc.date.created.spa.fl_str_mv 2017
dc.date.accessioned.none.fl_str_mv 2020-05-26T00:00:54Z
dc.date.available.none.fl_str_mv 2020-05-26T00:00:54Z
dc.type.eng.fl_str_mv article
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.spa.spa.fl_str_mv Artículo
dc.identifier.doi.none.fl_str_mv https://doi.org/10.1038/s41598-017-08041-7
dc.identifier.issn.none.fl_str_mv 20452322
dc.identifier.uri.none.fl_str_mv https://repository.urosario.edu.co/handle/10336/23284
url https://doi.org/10.1038/s41598-017-08041-7
https://repository.urosario.edu.co/handle/10336/23284
identifier_str_mv 20452322
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.citationIssue.none.fl_str_mv No. 1
dc.relation.citationTitle.none.fl_str_mv Scientific Reports
dc.relation.citationVolume.none.fl_str_mv Vol. 7
dc.relation.ispartof.spa.fl_str_mv Scientific Reports, ISSN:20452322, Vol.7, No.1 (2017)
dc.relation.uri.spa.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-85042941481&doi=10.1038%2fs41598-017-08041-7&partnerID=40&md5=6d6943620354c2adb0dd5b2f6f79f913
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.acceso.spa.fl_str_mv Abierto (Texto Completo)
rights_invalid_str_mv Abierto (Texto Completo)
http://purl.org/coar/access_right/c_abf2
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Nature Publishing Group
institution Universidad del Rosario
dc.source.instname.spa.fl_str_mv instname:Universidad del Rosario
dc.source.reponame.spa.fl_str_mv reponame:Repositorio Institucional EdocUR
repository.name.fl_str_mv Repositorio institucional EdocUR
repository.mail.fl_str_mv edocur@urosario.edu.co
_version_ 1814167516990144512