Geometric stability conditions under autoequivalences and applications: Elliptic surfaces
On a Weierstraß elliptic surface, we describe the action of the relative Fourier-Mukai transform on the geometric chamber of , and in the K3 case we also study the action on one of its boundary components. Using new estimates for the Gieseker chamber we prove that Gieseker stability for polarization...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2023
- Institución:
- Universidad del Rosario
- Repositorio:
- Repositorio EdocUR - U. Rosario
- Idioma:
- eng
- OAI Identifier:
- oai:repository.urosario.edu.co:10336/42126
- Acceso en línea:
- https://repository.urosario.edu.co/handle/10336/42126
- Palabra clave:
- Elliptic surfacesFourier-Mukai transformsStability conditions
- Rights
- License
- Attribution-NonCommercial-NoDerivs 4.0 International
id |
EDOCUR2_4e2e4287fbb41b598026a17d93436e15 |
---|---|
oai_identifier_str |
oai:repository.urosario.edu.co:10336/42126 |
network_acronym_str |
EDOCUR2 |
network_name_str |
Repositorio EdocUR - U. Rosario |
repository_id_str |
|
spelling |
0ad38ff6-e545-4024-86c0-7c988e338c4440063694a8c-fc7d-4362-a6c5-0a41872072bb2024-01-31T18:26:27Z2024-01-31T18:26:27Z2023-12-012023On a Weierstraß elliptic surface, we describe the action of the relative Fourier-Mukai transform on the geometric chamber of , and in the K3 case we also study the action on one of its boundary components. Using new estimates for the Gieseker chamber we prove that Gieseker stability for polarizations on certain Friedman chamber is preserved by the derived dual of the relative Fourier-Mukai transform. As an application of our description of the action, we also prove projectivity for some moduli spaces of Bridgeland semistable objects.application/pdf10.1016/j.geomphys.2023.1049940393-0440https://repository.urosario.edu.co/handle/10336/42126engUniversidad del Rosariohttps://www.sciencedirect.com/science/article/pii/S0393044023002462/pdfft?md5=f0b1f832f93c2aa9cec09858383777b9&pid=1-s2.0-S0393044023002462-main.pdfAttribution-NonCommercial-NoDerivs 4.0 InternationalAbierto (Texto Completo)https://creativecommons.org/licenses/by-nc-nd/4.0/http://purl.org/coar/access_right/c_abf2Journal of Geometry and Physicsinstname:Universidad del Rosarioreponame:Repositorio Institucional EdocURElliptic surfacesFourier-Mukai transformsStability conditionsGeometric stability conditions under autoequivalences and applications: Elliptic surfacesarticleArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501Jason, LoORIGINALGeometric stability conditions.pdfapplication/pdf634564https://repository.urosario.edu.co/bitstreams/77cc8736-25e7-4945-93d1-07d319e5af7d/downloadc756c757c14895c09acc1184c0088c0aMD51TEXTGeometric stability conditions.pdf.txtGeometric stability conditions.pdf.txtExtracted texttext/plain95839https://repository.urosario.edu.co/bitstreams/a3233fc2-231a-4dee-b371-736985eadd16/download7bb795dd55938dbfea2a7774aab34452MD52THUMBNAILGeometric stability conditions.pdf.jpgGeometric stability conditions.pdf.jpgGenerated Thumbnailimage/jpeg3684https://repository.urosario.edu.co/bitstreams/d977668b-3b71-4123-92c9-877c5ae407e2/download0f542a4711ffb7fda4dd2ca1f2c467a5MD5310336/42126oai:repository.urosario.edu.co:10336/421262024-02-01 03:01:21.776https://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivs 4.0 Internationalhttps://repository.urosario.edu.coRepositorio institucional EdocURedocur@urosario.edu.co |
dc.title.spa.fl_str_mv |
Geometric stability conditions under autoequivalences and applications: Elliptic surfaces |
title |
Geometric stability conditions under autoequivalences and applications: Elliptic surfaces |
spellingShingle |
Geometric stability conditions under autoequivalences and applications: Elliptic surfaces Elliptic surfacesFourier-Mukai transformsStability conditions |
title_short |
Geometric stability conditions under autoequivalences and applications: Elliptic surfaces |
title_full |
Geometric stability conditions under autoequivalences and applications: Elliptic surfaces |
title_fullStr |
Geometric stability conditions under autoequivalences and applications: Elliptic surfaces |
title_full_unstemmed |
Geometric stability conditions under autoequivalences and applications: Elliptic surfaces |
title_sort |
Geometric stability conditions under autoequivalences and applications: Elliptic surfaces |
dc.creator.spa.fl_str_mv |
|
author |
|
author_facet |
|
author_role |
author |
dc.subject.spa.fl_str_mv |
Elliptic surfacesFourier-Mukai transformsStability conditions |
topic |
Elliptic surfacesFourier-Mukai transformsStability conditions |
description |
On a Weierstraß elliptic surface, we describe the action of the relative Fourier-Mukai transform on the geometric chamber of , and in the K3 case we also study the action on one of its boundary components. Using new estimates for the Gieseker chamber we prove that Gieseker stability for polarizations on certain Friedman chamber is preserved by the derived dual of the relative Fourier-Mukai transform. As an application of our description of the action, we also prove projectivity for some moduli spaces of Bridgeland semistable objects. |
publishDate |
2023 |
dc.date.created.spa.fl_str_mv |
2023-12-01 |
dc.date.issued.spa.fl_str_mv |
2023 |
dc.date.accessioned.none.fl_str_mv |
2024-01-31T18:26:27Z |
dc.date.available.none.fl_str_mv |
2024-01-31T18:26:27Z |
dc.type.spa.fl_str_mv |
article |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.spa.spa.fl_str_mv |
Artículo |
dc.identifier.doi.spa.fl_str_mv |
10.1016/j.geomphys.2023.104994 |
dc.identifier.issn.spa.fl_str_mv |
0393-0440 |
dc.identifier.uri.none.fl_str_mv |
https://repository.urosario.edu.co/handle/10336/42126 |
identifier_str_mv |
10.1016/j.geomphys.2023.104994 0393-0440 |
url |
https://repository.urosario.edu.co/handle/10336/42126 |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.relation.uri.spa.fl_str_mv |
https://www.sciencedirect.com/science/article/pii/S0393044023002462/pdfft?md5=f0b1f832f93c2aa9cec09858383777b9&pid=1-s2.0-S0393044023002462-main.pdf |
dc.rights.spa.fl_str_mv |
Attribution-NonCommercial-NoDerivs 4.0 International |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.acceso.spa.fl_str_mv |
Abierto (Texto Completo) |
dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivs 4.0 International Abierto (Texto Completo) https://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad del Rosario |
dc.source.spa.fl_str_mv |
Journal of Geometry and Physics |
institution |
Universidad del Rosario |
dc.source.instname.spa.fl_str_mv |
instname:Universidad del Rosario |
dc.source.reponame.spa.fl_str_mv |
reponame:Repositorio Institucional EdocUR |
bitstream.url.fl_str_mv |
https://repository.urosario.edu.co/bitstreams/77cc8736-25e7-4945-93d1-07d319e5af7d/download https://repository.urosario.edu.co/bitstreams/a3233fc2-231a-4dee-b371-736985eadd16/download https://repository.urosario.edu.co/bitstreams/d977668b-3b71-4123-92c9-877c5ae407e2/download |
bitstream.checksum.fl_str_mv |
c756c757c14895c09acc1184c0088c0a 7bb795dd55938dbfea2a7774aab34452 0f542a4711ffb7fda4dd2ca1f2c467a5 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio institucional EdocUR |
repository.mail.fl_str_mv |
edocur@urosario.edu.co |
_version_ |
1814167510152380416 |