Geometric stability conditions under autoequivalences and applications: Elliptic surfaces

On a Weierstraß elliptic surface, we describe the action of the relative Fourier-Mukai transform on the geometric chamber of , and in the K3 case we also study the action on one of its boundary components. Using new estimates for the Gieseker chamber we prove that Gieseker stability for polarization...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2023
Institución:
Universidad del Rosario
Repositorio:
Repositorio EdocUR - U. Rosario
Idioma:
eng
OAI Identifier:
oai:repository.urosario.edu.co:10336/42126
Acceso en línea:
https://repository.urosario.edu.co/handle/10336/42126
Palabra clave:
Elliptic surfacesFourier-Mukai transformsStability conditions
Rights
License
Attribution-NonCommercial-NoDerivs 4.0 International
Description
Summary:On a Weierstraß elliptic surface, we describe the action of the relative Fourier-Mukai transform on the geometric chamber of , and in the K3 case we also study the action on one of its boundary components. Using new estimates for the Gieseker chamber we prove that Gieseker stability for polarizations on certain Friedman chamber is preserved by the derived dual of the relative Fourier-Mukai transform. As an application of our description of the action, we also prove projectivity for some moduli spaces of Bridgeland semistable objects.