Validación de péptido conjugado a nanopartículas magnéticas de óxido de hierro como biomarcador de cambios moleculares en la barrera hematoencefálica bajo condiciones de neuroinflamación
La neuroinflamación crónica se caracteriza por un aumento de la permeabilidad de la barrera hematoencefálica (BHE), lo que provoca cambios moleculares en el sistema nervioso central (SNC) que pueden explorarse con biomarcadores de procesos neuroinflamatorios activos. En este contexto la resonancia m...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2024
- Institución:
- Universidad del Rosario
- Repositorio:
- Repositorio EdocUR - U. Rosario
- Idioma:
- spa
- OAI Identifier:
- oai:repository.urosario.edu.co:10336/45030
- Acceso en línea:
- https://repository.urosario.edu.co/handle/10336/45030
- Palabra clave:
- Neuroinflamación
Barrera hematoencefálica
Nanosondas
Resonancia magnética
Laminina
Nanopartículas de óxido de hierro
Neuroinflammation
Blood brain barrier
Nanoprobe
Magnetic resonance
Laminin
Iron oxide nanoparticles
- Rights
- License
- Attribution-NonCommercial-ShareAlike 4.0 International
id |
EDOCUR2_4dbd2be9082be59a8346a0ff591d648d |
---|---|
oai_identifier_str |
oai:repository.urosario.edu.co:10336/45030 |
network_acronym_str |
EDOCUR2 |
network_name_str |
Repositorio EdocUR - U. Rosario |
repository_id_str |
|
dc.title.none.fl_str_mv |
Validación de péptido conjugado a nanopartículas magnéticas de óxido de hierro como biomarcador de cambios moleculares en la barrera hematoencefálica bajo condiciones de neuroinflamación |
dc.title.TranslatedTitle.none.fl_str_mv |
Validation of peptide conjugated to magnetic iron oxide nanoparticles as a biomarker of molecular changes in the blood-brain barrier under neuroinflammation conditions |
title |
Validación de péptido conjugado a nanopartículas magnéticas de óxido de hierro como biomarcador de cambios moleculares en la barrera hematoencefálica bajo condiciones de neuroinflamación |
spellingShingle |
Validación de péptido conjugado a nanopartículas magnéticas de óxido de hierro como biomarcador de cambios moleculares en la barrera hematoencefálica bajo condiciones de neuroinflamación Neuroinflamación Barrera hematoencefálica Nanosondas Resonancia magnética Laminina Nanopartículas de óxido de hierro Neuroinflammation Blood brain barrier Nanoprobe Magnetic resonance Laminin Iron oxide nanoparticles |
title_short |
Validación de péptido conjugado a nanopartículas magnéticas de óxido de hierro como biomarcador de cambios moleculares en la barrera hematoencefálica bajo condiciones de neuroinflamación |
title_full |
Validación de péptido conjugado a nanopartículas magnéticas de óxido de hierro como biomarcador de cambios moleculares en la barrera hematoencefálica bajo condiciones de neuroinflamación |
title_fullStr |
Validación de péptido conjugado a nanopartículas magnéticas de óxido de hierro como biomarcador de cambios moleculares en la barrera hematoencefálica bajo condiciones de neuroinflamación |
title_full_unstemmed |
Validación de péptido conjugado a nanopartículas magnéticas de óxido de hierro como biomarcador de cambios moleculares en la barrera hematoencefálica bajo condiciones de neuroinflamación |
title_sort |
Validación de péptido conjugado a nanopartículas magnéticas de óxido de hierro como biomarcador de cambios moleculares en la barrera hematoencefálica bajo condiciones de neuroinflamación |
dc.contributor.advisor.none.fl_str_mv |
González Reyes, Rodrigo Esteban Vargas Sánchez, Jeinny Karina |
dc.contributor.gruplac.none.fl_str_mv |
Grupo de Neurociencias de la Universidad del Rosario (NEUROS) |
dc.subject.none.fl_str_mv |
Neuroinflamación Barrera hematoencefálica Nanosondas Resonancia magnética Laminina Nanopartículas de óxido de hierro |
topic |
Neuroinflamación Barrera hematoencefálica Nanosondas Resonancia magnética Laminina Nanopartículas de óxido de hierro Neuroinflammation Blood brain barrier Nanoprobe Magnetic resonance Laminin Iron oxide nanoparticles |
dc.subject.keyword.none.fl_str_mv |
Neuroinflammation Blood brain barrier Nanoprobe Magnetic resonance Laminin Iron oxide nanoparticles |
description |
La neuroinflamación crónica se caracteriza por un aumento de la permeabilidad de la barrera hematoencefálica (BHE), lo que provoca cambios moleculares en el sistema nervioso central (SNC) que pueden explorarse con biomarcadores de procesos neuroinflamatorios activos. En este contexto la resonancia magnética nuclear (RMN) ha sido una herramienta clave para detectar tanto las lesiones como la permeabilidad de la BHE. Además, el uso de nanopartículas superparamagnéticas ultrapequeñas de óxido de hierro (USPIO) como agentes de contraste ha permitido mejorar la resolución y precisión de estas observaciones por RMN. Por lo tanto, en esta tesis doctoral se evaluó la interacción del péptido-88 con laminina, mediante la vectorización del péptido 88 con USPIO (NPS-P88), para explorar las alteraciones moleculares de la BHE que ocurren durante la neuroinflamación como una herramienta potencial para su uso en RMN. Para verificar el marcaje específico de NPS-P88 se realizaron experimentos en células endoteliales (hCMEC/D3) y astrocitos (T98G) bajo inflamación inducida por IL-1β durante 3 y 24 horas. En células hCMEC/D3 tratadas con IL-1β durante 3 horas, se observó un aumentó de expresión y colocalización de la laminina con las NPS-P88, en comparación con los controles. Sin embargo, a las 24 horas no se observaron diferencias significativas entre los grupos control y células hCMEC/D3 con IL-1β. Por otro lado, en las células T98G, las NPS-P88 mostraron un etiquetado inespecífico similar al observado en los controles. Estos resultados sugieren que NPS-P88 tiene una mayor afinidad por las células endoteliales cerebrales que por los astrocitos en condiciones de inflamación. Aunque esta afinidad disminuye con el tiempo a medida que la expresión de la laminina se reduce. Los resultados in vivo indicaron que, 30 minutos después de la inyección de las nanosondas, hay una mayor presencia de NPS-P88 en la sangre y el cerebro, pero que disminuye progresivamente con el tiempo. Además, la síntesis de las USPIO por un segundo método permitió obtener nanopartículas con una mayor estabilidad, biocompatibilidad y biodistribución lo que prolongó su permanencia en sangre. En modelos de neuroinflamación animal inducida por LPS por 24 horas se observó un aumento de expresión de la laminina en cerebro durante procesos inflamatorios, lo que se correlaciona con una mayor presencia de NPS-P88. Asimismo, se confirmó una comarcación de la laminina/NPS-P88 en cerebro. En contraste, en médula se encontró una baja presencia de NPS-P88, sin cambios significativos en la expresión de laminina ni comarcación laminina/NPS-P88. Finalmente, en los animales EAE, la RMN reveló una acumulación significativa de NPS-P88 principalmente en la corteza, atribuida a la inflamación y la alteración de la BHE. En conjunto, estos resultados demuestran que NPS-P88 es un biomarcador para evaluar los cambios en la BHE inducidos por la neuroinflamación mediante RMN en modelos biológicos dirigidos a la laminina. |
publishDate |
2024 |
dc.date.created.none.fl_str_mv |
2024-12-04 |
dc.date.accessioned.none.fl_str_mv |
2025-02-25T15:14:04Z |
dc.date.available.none.fl_str_mv |
2025-02-25T15:14:04Z |
dc.date.embargoEnd.none.fl_str_mv |
info:eu-repo/date/embargoEnd/2027-02-28 |
dc.type.none.fl_str_mv |
doctoralThesis |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_db06 |
dc.type.spa.none.fl_str_mv |
Tesis de doctorado |
dc.identifier.uri.none.fl_str_mv |
https://repository.urosario.edu.co/handle/10336/45030 |
url |
https://repository.urosario.edu.co/handle/10336/45030 |
dc.language.iso.none.fl_str_mv |
spa |
language |
spa |
dc.rights.*.fl_str_mv |
Attribution-NonCommercial-ShareAlike 4.0 International |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_f1cf |
dc.rights.acceso.none.fl_str_mv |
Restringido (Temporalmente bloqueado) |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ |
rights_invalid_str_mv |
Attribution-NonCommercial-ShareAlike 4.0 International Restringido (Temporalmente bloqueado) http://creativecommons.org/licenses/by-nc-sa/4.0/ http://purl.org/coar/access_right/c_f1cf |
dc.format.extent.none.fl_str_mv |
465 pp |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidad del Rosario |
dc.publisher.department.none.fl_str_mv |
Escuela de Medicina y Ciencias de la Salud |
dc.publisher.program.none.fl_str_mv |
Doctorado en Ciencias Biomédicas y Biológicas |
publisher.none.fl_str_mv |
Universidad del Rosario |
institution |
Universidad del Rosario |
dc.source.bibliographicCitation.none.fl_str_mv |
Daneman R, Prat A. The blood-brain barrier. Cold Spring Harb Perspect Biol. 2015 Jan 5;7(1):a020412. Stephenson J, Nutma E, van der Valk P, Amor S. Inflammation in CNS neurodegenerative diseases. Immunology. 2018 Jun;154(2):204–19. Heye AK, Culling RD, Valdés Hernández MDC, Thrippleton MJ, Wardlaw JM. Assessment of blood-brain barrier disruption using dynamic contrast-enhanced MRI. A systematic review. Neuroimage Clin. 2014;6:262–74. Elschot EP, Backes WH, Postma AA, van Oostenbrugge RJ, Staals J, Rouhl RPW, et al. A Comprehensive View on MRI Techniques for Imaging Blood-Brain Barrier Integrity. Invest Radiol. 2021 Jan;56(1):10–9. Essig M, Dinkel J, Gutierrez JE. Use of contrast media in neuroimaging. Magn Reson Imaging Clin N Am. 2012 Nov;20(4):633–48. Iacobellis F, Di Serafino M, Russo C, Ronza R, Caruso M, Dell’Aversano Orabona G, et al. Safe and Informed Use of Gadolinium-Based Contrast Agent in Body Magnetic Resonance Imaging: Where We Were and Where We Are. Journal of Clinical Medicine [Internet]. 2024 Jan [cited 2024 Oct 9];13(8):2193. Available from: https://www.mdpi.com/2077-0383/13/8/2193 Ramalho J, Semelka RC, Ramalho M, Nunes RH, AlObaidy M, Castillo M. Gadolinium-Based Contrast Agent Accumulation and Toxicity: An Update. AJNR Am J Neuroradiol [Internet]. 2016 Jul [cited 2022 Nov 8];37(7):1192–8. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7960350/ Le Fur M, Caravan P. The biological fate of gadolinium-based MRI contrast agents: a call to action for bioinorganic chemists. Metallomics [Internet]. 2019 Feb 20 [cited 2022 Nov 8];11(2):240–54. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6486840/ Neuwelt EA, Hamilton BE, Varallyay CG, Rooney WR, Edelman RD, Jacobs PM, et al. Ultrasmall superparamagnetic iron oxides (USPIOs): a future alternative magnetic resonance (MR) contrast agent for patients at risk for nephrogenic systemic fibrosis (NSF)? Kidney Int. 2009 Mar;75(5):465–74. Israel LL, Galstyan A, Holler E, Ljubimova JY. Magnetic iron oxide nanoparticles for imaging, targeting and treatment of primary and metastatic tumors of the brain. J Control Release [Internet]. 2020 Apr 10 [cited 2022 Nov 8];320:45–62. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7641100/ Cortajarena AL, Ortega D, Ocampo SM, Gonzalez-García A, Couleaud P, Miranda R, et al. Engineering Iron Oxide Nanoparticles for Clinical Settings. Nanobiomedicine (Rij) [Internet]. 2014 Jan 1 [cited 2022 Nov 8];1:2. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6029241/ Tourdias T, Roggerone S, Filippi M, Kanagaki M, Rovaris M, Miller DH, et al. Assessment of disease activity in multiple sclerosis phenotypes with combined gadolinium- and superparamagnetic iron oxide-enhanced MR imaging. Radiology. 2012 Jul;264(1):225–33. Dousset V, Brochet B, Deloire MSA, Lagoarde L, Barroso B, Caille JM, et al. MR Imaging of Relapsing Multiple Sclerosis Patients Using Ultra-Small-Particle Iron Oxide and Compared with Gadolinium. AJNR Am J Neuroradiol [Internet]. 2006 May [cited 2023 Mar 19];27(5):1000–5. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7975759/ Petry KG, Boiziau C, Dousset V, Brochet B. Magnetic resonance imaging of human brain macrophage infiltration. Neurotherapeutics [Internet]. 2007 Jul [cited 2023 Mar 19];4(3):434–42. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7479730/ Sadat U, Taviani V, Patterson AJ, Young VE, Graves MJ, Teng Z, et al. Ultrasmall superparamagnetic iron oxide-enhanced magnetic resonance imaging of abdominal aortic aneurysms--a feasibility study. Eur J Vasc Endovasc Surg. 2011 Feb;41(2):167–74. Stephen ZR, Kievit FM, Zhang M. Magnetite Nanoparticles for Medical MR Imaging. Mater Today (Kidlington) [Internet]. 2011 [cited 2022 Nov 8];14(7–8):330–8. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3290401/ Farrell BT, Hamilton BE, Dósa E, Rimely E, Nasseri M, Gahramanov S, et al. Using iron oxide nanoparticles to diagnose CNS inflammatory diseases and PCNSL. Neurology [Internet]. 2013 Jul 16 [cited 2024 Oct 9];81(3):256–63. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3770167/ Chen C, Ge J, Gao Y, Chen L, Cui J, Zeng J, et al. Ultrasmall superparamagnetic iron oxide nanoparticles: A next generation contrast agent for magnetic resonance imaging. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2022 Jan;14(1):e1740. van Rooy I, Cakir-Tascioglu S, Couraud PO, Romero IA, Weksler B, Storm G, et al. Identification of Peptide Ligands for Targeting to the Blood-Brain Barrier. Pharm Res [Internet]. 2010 [cited 2022 Nov 8];27(4):673–82. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2837178/ van Rooy I, Cakir-Tascioglu S, Hennink WE, Storm G, Schiffelers RM, Mastrobattista E. In vivo methods to study uptake of nanoparticles into the brain. Pharm Res. 2011 Mar;28(3):456–71. Kelly KA, Allport JR, Tsourkas A, Shinde-Patil VR, Josephson L, Weissleder R. Detection of vascular adhesion molecule-1 expression using a novel multimodal nanoparticle. Circ Res. 2005 Feb 18;96(3):327–36. André S, Ansciaux E, Saidi E, Larbanoix L, Stanicki D, Nonclercq D, et al. Validation by Magnetic Resonance Imaging of the Diagnostic Potential of a Heptapeptide-Functionalized Imaging Probe Targeted to Amyloid-β and Able to Cross the Blood-Brain Barrier. Journal of Alzheimer’s Disease [Internet]. 2017 Jan 1 [cited 2022 Nov 8];60(4):1547–65. Available from: https://content.iospress.com/articles/journal-of-alzheimers-disease/jad170563 Vargas-Sanchez K, Vekris A, Petry KG. DNA Subtraction of In Vivo Selected Phage Repertoires for Efficient Peptide Pathology Biomarker Identification in Neuroinflammation Multiple Sclerosis Model. Biomark Insights. 2016;11:19–29. Vargas-Sanchez K, Losada-Barragán M, Mogilevskaya M, Novoa-Herrán S, Medina Y, Buendía-Atencio C, et al. Screening for Interacting Proteins with Peptide Biomarker of Blood-Brain Barrier Alteration under Inflammatory Conditions. Int J Mol Sci. 2021 Apr 29;22(9):4725. Schéele S, Nyström A, Durbeej M, Talts JF, Ekblom M, Ekblom P. Laminin isoforms in development and disease. J Mol Med (Berl). 2007 Aug;85(8):825–36. Boroujerdi A, Welser-Alves JV, Milner R. Extensive vascular remodeling in the spinal cord of pre-symptomatic experimental autoimmune encephalomyelitis mice; increased vessel expression of fibronectin and the α5β1 integrin. Exp Neurol. 2013 Dec;250:43–51. Boroujerdi A, Welser-Alves JV, Milner R. Extensive vascular remodeling in the spinal cord of pre-symptomatic experimental autoimmune encephalomyelitis mice; increased vessel expression of fibronectin and the α5β1 integrin. Exp Neurol. 2013 Dec;250:43–51. Espitia Pinzón N, Brevé JJP, Bol JGJM, Drukarch B, Baron W, van Dam AM. Tissue transglutaminase in astrocytes is enhanced by inflammatory mediators and is involved in the formation of fibronectin fibril-like structures. J Neuroinflammation. 2017 Dec 28;14(1):260. Gautam J, Miner JH, Yao Y. Loss of Endothelial Laminin α5 Exacerbates Hemorrhagic Brain Injury. Transl Stroke Res. 2019 Dec;10(6):705–18. Kangwantas K, Pinteaux E, Penny J. The extracellular matrix protein laminin-10 promotes blood-brain barrier repair after hypoxia and inflammation in vitro. J Neuroinflammation. 2016 Feb 1;13:25. Zapata-Acevedo JF, García-Pérez V, Cabezas-Pérez R, Losada-Barragán M, Vargas-Sánchez K, González-Reyes RE. Laminin as a Biomarker of Blood-Brain Barrier Disruption under Neuroinflammation: A Systematic Review. Int J Mol Sci. 2022 Jun 17;23(12):6788. González-Reyes RE, Aliev G, Ávila-Rodrigues M, Barreto GE. Alterations in Glucose Metabolism on Cognition: A Possible Link Between Diabetes and Dementia. Curr Pharm Des. 2016;22(7):812–8. GBD 2015 Neurological Disorders Collaborator Group. Global, regional, and national burden of neurological disorders during 1990-2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet Neurol. 2017 Nov;16(11):877–97. Deuschl G, Beghi E, Fazekas F, Varga T, Christoforidi KA, Sipido E, et al. The burden of neurological diseases in Europe: an analysis for the Global Burden of Disease Study 2017. Lancet Public Health. 2020 Oct;5(10):e551–67. Hou Y, Dan X, Babbar M, Wei Y, Hasselbalch SG, Croteau DL, et al. Ageing as a risk factor for neurodegenerative disease. Nat Rev Neurol. 2019 Oct;15(10):565–81. Nishat. Tackling the growing burden of brain disorders in Europe [Internet]. Open Access Government. 2019 [cited 2024 Oct 9]. Available from: https://www.openaccessgovernment.org/brain-disorders-in-europe/72909/ P P, Aa B, Ea T, Av A, Kb G. Advances in nanoprobes for molecular MRI of Alzheimer’s disease. Wiley interdisciplinary reviews Nanomedicine and nanobiotechnology [Internet]. 2024 Apr [cited 2024 Oct 9];16(2). Available from: https://pubmed.ncbi.nlm.nih.gov/38426638/ Zhuang D, Zhang H, Hu G, Guo B. Recent development of contrast agents for magnetic resonance and multimodal imaging of glioblastoma. J Nanobiotechnology. 2022 Jun 16;20(1):284. Af AM. Gadolinium Retention after Contrast-Enhanced Magnetic Resonance Imaging: A Narratative Review. Saudi journal of medicine & medical sciences [Internet]. 2022 Apr [cited 2024 Oct 9];10(1). Available from: https://pubmed.ncbi.nlm.nih.gov/35283709/ Koffie RM, Farrar CT, Saidi LJ, William CM, Hyman BT, Spires-Jones TL. Nanoparticles enhance brain delivery of blood-brain barrier-impermeable probes for in vivo optical and magnetic resonance imaging. Proc Natl Acad Sci U S A. 2011 Nov 15;108(46):18837–42. Lammers T, Koczera P, Fokong S, Gremse F, Ehling J, Vogt M, et al. Theranostic USPIO-Loaded Microbubbles for Mediating and Monitoring Blood-Brain Barrier Permeation. Adv Funct Mater. 2015 Jan 7;25(1):36–43. Engelhardt B, Ransohoff RM. Capture, crawl, cross: the T cell code to breach the blood-brain barriers. Trends Immunol. 2012 Dec;33(12):579–89. Sweeney MD, Sagare AP, Zlokovic BV. Blood-brain barrier breakdown in Alzheimer disease and other neurodegenerative disorders. Nat Rev Neurol. 2018 Mar;14(3):133–50. Leigh R, Hitomi E, Hutchison RM, Elkins J. Post-stroke blood-brain barrier disruption predicts poor outcome in patients enrolled in the ACTION study. J Neuroimaging. 2021 Jul;31(4):751–7. Liang S, Qin Q, Tang Y, Liao W, Yang Y, He J, et al. Impact of blood-brain barrier disruption on newly diagnosed neuromyelitis optica spectrum disorder symptoms and prognosis. Ann Palliat Med. 2020 Mar;9(2):324–30. Kim T, Koo J, Kim SH, Song IU, Chung SW, Lee KS. Blood-brain barrier permeability assessed by perfusion computed tomography predicts hemorrhagic transformation in acute reperfusion therapy. Neurol Sci. 2018 Sep;39(9):1579–84. Cramer SP, Modvig S, Simonsen HJ, Frederiksen JL, Larsson HBW. Permeability of the blood-brain barrier predicts conversion from optic neuritis to multiple sclerosis. Brain. 2015 Sep;138(Pt 9):2571–83. Cramer SP, Simonsen HJ, Varatharaj A, Galea I, Frederiksen JL, Larsson HBW. Permeability of the blood-brain barrier predicts no evidence of disease activity at 2 years after natalizumab or fingolimod treatment in relapsing-remitting multiple sclerosis. Ann Neurol. 2018 May;83(5):902–14. Hussain B, Fang C, Chang J. Blood-Brain Barrier Breakdown: An Emerging Biomarker of Cognitive Impairment in Normal Aging and Dementia. Front Neurosci. 2021;15:688090. Ransohoff RM. Animal models of multiple sclerosis: the good, the bad and the bottom line. Nat Neurosci. 2012 Jul 26;15(8):1074–7. C P, V DR, V P, L F, G M. Animal models of Multiple Sclerosis. European journal of pharmacology [Internet]. 2015 Jul 15 [cited 2024 Oct 9];759. Available from: https://pubmed.ncbi.nlm.nih.gov/25823807/ Miner JH, Li C, Mudd JL, Go G, Sutherland AE. Compositional and structural requirements for laminin and basement membranes during mouse embryo implantation and gastrulation. Development. 2004 May;131(10):2247–56. Yao Y. Laminin: loss-of-function studies. Cell Mol Life Sci. 2017 Mar;74(6):1095–115. Tzu J, Marinkovich MP. Bridging structure with function: structural, regulatory, and developmental role of laminins. Int J Biochem Cell Biol. 2008;40(2):199–214. Nirwane A, Yao Y. Laminins and their receptors in the CNS. Biol Rev Camb Philos Soc. 2018/08/04 ed. 2018 Aug 2; Song J, Zhang X, Buscher K, Wang Y, Wang H, Di Russo J, et al. Endothelial Basement Membrane Laminin 511 Contributes to Endothelial Junctional Tightness and Thereby Inhibits Leukocyte Transmigration. Cell Rep. 2017 Jan 31;18(5):1256–69. Wu C, Ivars F, Anderson P, Hallmann R, Vestweber D, Nilsson P, et al. Endothelial basement membrane laminin alpha5 selectively inhibits T lymphocyte extravasation into the brain. Nat Med. 2009 May;15(5):519–27. Ljubimova JY, Lakhter AJ, Loksh A, Yong WH, Riedinger MS, Miner JH, et al. Overexpression of alpha4 chain-containing laminins in human glial tumors identified by gene microarray analysis. Cancer Res. 2001 Jul 15;61(14):5601–10. Ji K, Tsirka SE. Inflammation modulates expression of laminin in the central nervous system following ischemic injury. J Neuroinflammation. 2012/07/05 ed. 2012 Jul 3;9:159. Barkhof F, Calabresi PA, Miller DH, Reingold SC. Imaging outcomes for neuroprotection and repair in multiple sclerosis trials. Nat Rev Neurol. 2009 May;5(5):256–66. Stoll G, Bendszus M. Imaging of inflammation in the peripheral and central nervous system by magnetic resonance imaging. Neuroscience. 2009 Feb 6;158(3):1151–60. Filippi M, Preziosa P, Rocca MA. Magnetic resonance outcome measures in multiple sclerosis trials: time to rethink? Curr Opin Neurol. 2014 Jun;27(3):290–9. Broholm H, Andersen B, Wanscher B, Frederiksen JL, Rubin I, Pakkenberg B, et al. Nitric oxide synthase expression and enzymatic activity in multiple sclerosis. Acta Neurol Scand. 2004 Apr;109(4):261–9. Trebst C, König F, Ransohoff R, Brück W, Stangel M. CCR5 expression on macrophages/microglia is associated with early remyelination in multiple sclerosis lesions. Mult Scler. 2008 Jul;14(6):728–33. Kadry H, Noorani B, Cucullo L. A blood–brain barrier overview on structure, function, impairment, and biomarkers of integrity. Fluids and Barriers of the CNS [Internet]. 2020 Nov 18 [cited 2024 Oct 9];17(1):69. Available from: https://doi.org/10.1186/s12987-020-00230-3 Lewandowski M. Zur Lehre von der Cerebrospinalflüssigkeit. Z Klin Forsch. 1900;40:480–94. R A, Ac H. Edwin Ellen Goldmann (1862-1913). Journal of neurology [Internet]. 2023 May [cited 2024 Oct 9];270(5). Available from: https://pubmed.ncbi.nlm.nih.gov/36976327/ Reese TS, Karnovsky MJ. Fine structural localization of a blood-brain barrier to exogenous peroxidase. J Cell Biol. 1967 Jul;34(1):207–17. Ad W, M Y, Af L, Jd R, De B, Pc S. The blood-brain barrier: an engineering perspective. Frontiers in neuroengineering [Internet]. 2013 Aug 30 [cited 2024 Oct 9];6. Available from: https://pubmed.ncbi.nlm.nih.gov/24009582/ A VR, C E, Ca P, Mf S. The Evolving Concept of the Blood Brain Barrier (BBB): From a Single Static Barrier to a Heterogeneous and Dynamic Relay Center. Frontiers in cellular neuroscience [Internet]. 2019 Sep 20 [cited 2024 Oct 9];13. Available from: https://pubmed.ncbi.nlm.nih.gov/31616251/ Abbott NJ, Patabendige AAK, Dolman DEM, Yusof SR, Begley DJ. Structure and function of the blood-brain barrier. Neurobiol Dis. 2010 Jan;37(1):13–25. Abbott NJ, Rönnbäck L, Hansson E. Astrocyte–endothelial interactions at the blood–brain barrier. Nat Rev Neurosci [Internet]. 2006 Jan [cited 2024 Oct 9];7(1):41–53. Available from: https://www.nature.com/articles/nrn1824 Iadecola C. The Neurovascular Unit Coming of Age: A Journey through Neurovascular Coupling in Health and Disease. Neuron. 2017 Sep 27;96(1):17–42. Han H, Mann A, Ekstein D, Eyal S. Breaking Bad: the Structure and Function of the Blood-Brain Barrier in Epilepsy. AAPS J. 2017 Jul;19(4):973–88. Hawkins BT, Davis TP. The blood-brain barrier/neurovascular unit in health and disease. Pharmacol Rev. 2005 Jun;57(2):173–85. Liebner S, Dijkhuizen RM, Reiss Y, Plate KH, Agalliu D, Constantin G. Functional morphology of the blood–brain barrier in health and disease. Acta Neuropathol [Internet]. 2018 Mar 1 [cited 2024 Oct 9];135(3):311–36. Available from: https://doi.org/10.1007/s00401-018-1815-1 Hayashi Y, Nomura M, Yamagishi S, Harada S, Yamashita J, Yamamoto H. Induction of various blood-brain barrier properties in non-neural endothelial cells by close apposition to co-cultured astrocytes. Glia. 1997 Jan;19(1):13–26. Pardridge WM. Drug and gene delivery to the brain: the vascular route. Neuron. 2002 Nov 14;36(4):555–8. Stamatovic SM, Johnson AM, Keep RF, Andjelkovic AV. Junctional proteins of the blood-brain barrier: New insights into function and dysfunction. Tissue Barriers. 2016;4(1):e1154641. Silva-Adaya D, Garza-Lombó C, Gonsebatt ME. Xenobiotic transport and metabolism in the human brain. Neurotoxicology. 2021 Sep;86:125–38. Michinaga S, Koyama Y. Dual Roles of Astrocyte-Derived Factors in Regulation of Blood-Brain Barrier Function after Brain Damage. Int J Mol Sci. 2019 Jan 29;20(3):571. Campos-Bedolla P, Walter FR, Veszelka S, Deli MA. Role of the Blood–Brain Barrier in the Nutrition of the Central Nervous System. Archives of Medical Research [Internet]. 2014 Nov 1 [cited 2024 Oct 9];45(8):610–38. Available from: https://www.sciencedirect.com/science/article/pii/S0188440914002677 Wf G. Circumventricular organs: definition and role in the regulation of endocrine and autonomic function. Clinical and experimental pharmacology & physiology [Internet]. 2000 Jun [cited 2024 Oct 10];27(5–6). Available from: https://pubmed.ncbi.nlm.nih.gov/10831247/ S M. New aspects in fenestrated capillary and tissue dynamics in the sensory circumventricular organs of adult brains. Frontiers in neuroscience [Internet]. 2015 Oct 27 [cited 2024 Oct 10];9. Available from: https://pubmed.ncbi.nlm.nih.gov/26578857/ Kaur C, Ling EA. The circumventricular organs. Histol Histopathol. 2017 Sep;32(9):879–92. Zhou Y, Danbolt NC. Glutamate as a neurotransmitter in the healthy brain. J Neural Transm (Vienna). 2014 Aug;121(8):799–817. Zaragozá R. Transport of Amino Acids Across the Blood-Brain Barrier. Front Physiol. 2020;11:973. Dahl RH, Berg RMG, Taudorf S, Bailey DM, Lundby C, Larsen FS, et al. A reassessment of the blood–brain barrier transport of large neutral amino acids during acute systemic inflammation in humans. Clinical Physiology and Functional Imaging [Internet]. 2018 [cited 2024 Oct 10];38(4):656–62. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1111/cpf.12463 Saili KS, Zurlinden TJ, Schwab AJ, Silvin A, Baker NC, Hunter ES, et al. Blood-brain barrier development: Systems modeling and predictive toxicology. Birth Defects Res. 2017 Dec 1;109(20):1680–710. Ballabh P, Braun A, Nedergaard M. The blood-brain barrier: an overview: structure, regulation, and clinical implications. Neurobiol Dis. 2004 Jun;16(1):1–13. Butt AM, Jones HC, Abbott NJ. Electrical resistance across the blood-brain barrier in anaesthetized rats: a developmental study. J Physiol. 1990 Oct;429:47–62. Obermeier B, Daneman R, Ransohoff RM. Development, maintenance and disruption of the blood-brain barrier. Nat Med. 2013 Dec;19(12):1584–96. S L, M C, T B, J B, A T, Cj C, et al. Wnt/beta-catenin signaling controls development of the blood-brain barrier. The Journal of cell biology [Internet]. 2008 Mar 11 [cited 2024 Oct 10];183(3). Available from: https://pubmed.ncbi.nlm.nih.gov/18955553/ Stewart PA, Hayakawa K. Early ultrastructural changes in blood-brain barrier vessels of the rat embryo. Brain Res Dev Brain Res. 1994 Mar 18;78(1):25–34. D V, M E, D R, C C, F G, A V, et al. Immunolocalization of tight junction proteins in the adult and developing human brain. Histochemistry and cell biology [Internet]. 2004 Jul [cited 2024 Oct 10];122(1). Available from: https://pubmed.ncbi.nlm.nih.gov/15221411/ C M, Cj E, Zs V. The myth of the immature barrier systems in the developing brain: role in perinatal brain injury. The Journal of physiology [Internet]. 2018 Dec [cited 2024 Oct 10];596(23). Available from: https://pubmed.ncbi.nlm.nih.gov/29528501/ Grontoft O. Intracranial haemorrhage and blood-brain barrier problems in the new-born; a pathologico-anatomical and experimental investigation. Acta Pathol Microbiol Scand Suppl (1926). 1954;100:8–109. Langen UH, Ayloo S, Gu C. Development and Cell Biology of the Blood-Brain Barrier. Annu Rev Cell Dev Biol. 2019 Oct 6;35:591–613. Bosma EK, van Noorden CJF, Schlingemann RO, Klaassen I. The role of plasmalemma vesicle-associated protein in pathological breakdown of blood–brain and blood–retinal barriers: potential novel therapeutic target for cerebral edema and diabetic macular edema. Fluids and Barriers of the CNS [Internet]. 2018 Sep 20 [cited 2024 Oct 10];15(1):24. Available from: https://doi.org/10.1186/s12987-018-0109-2 Blanchette M, Daneman R. Formation and maintenance of the BBB. Mech Dev. 2015 Nov;138 Pt 1:8–16. Daneman R, Zhou L, Kebede AA, Barres BA. Pericytes are required for blood–brain barrier integrity during embryogenesis. Nature [Internet]. 2010 Nov [cited 2024 Oct 10];468(7323):562–6. Available from: https://www.nature.com/articles/nature09513 Bundgaard M, Abbott NJ. All vertebrates started out with a glial blood-brain barrier 4-500 million years ago. Glia. 2008 May;56(7):699–708. Reddy PH, Kshirsagar S, Bose C, Pradeepkiran JA, Hindle A, Singh SP, et al. Corrigendum to “Rlip overexpression reduces oxidative stress and mitochondrial dysfunction in Alzheimer’s disease: Mechanistic insights” [Biochim. Biophys. Acta Mol. Basis Dis. 2023 Oct;1869(7):166759. doi: 10.1016/j.bbadis.2023.166759. Epub 2023 May 22. PMID: 37225106]. Biochim Biophys Acta Mol Basis Dis. 2024 Jun;1870(5):167108. Maiuolo J, Gliozzi M, Musolino V, Scicchitano M, Carresi C, Scarano F, et al. The “Frail” Brain Blood Barrier in Neurodegenerative Diseases: Role of Early Disruption of Endothelial Cell-to-Cell Connections. Int J Mol Sci [Internet]. 2018 Sep 10 [cited 2021 May 16];19(9). Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6164949/ Nitta T, Hata M, Gotoh S, Seo Y, Sasaki H, Hashimoto N, et al. Size-selective loosening of the blood-brain barrier in claudin-5-deficient mice. J Cell Biol. 2003 May 12;161(3):653–60. Navone SE, Marfia G, Nava S, Invernici G, Cristini S, Balbi S, et al. Human and mouse brain-derived endothelial cells require high levels of growth factors medium for their isolation, in vitro maintenance and survival. Vasc Cell. 2013 May 14;5(1):10. Cordon J, Duggan MR, Gomez GT, Pucha KA, Peng Z, Dark HE, et al. Identification of Clinically Relevant Brain Endothelial Cell Biomarkers in Plasma. Stroke. 2023 Nov;54(11):2853–63. Matsuoka RL, Buck LD, Vajrala KP, Quick RE, Card OA. Historical and current perspectives on blood endothelial cell heterogeneity in the brain. Cell Mol Life Sci. 2022 Jun 20;79(7):372. Carvalho C, Moreira PI. Oxidative Stress: A Major Player in Cerebrovascular Alterations Associated to Neurodegenerative Events. Front Physiol. 2018;9:806. Wang Y, Wu J, Wang J, He L, Lai H, Zhang T, et al. Mitochondrial oxidative stress in brain microvascular endothelial cells: Triggering blood-brain barrier disruption. Mitochondrion. 2023 Mar;69:71–82. Rizzo MT, Leaver HA. Brain endothelial cell death: modes, signaling pathways, and relevance to neural development, homeostasis, and disease. Mol Neurobiol. 2010 Aug;42(1):52–63. Caporarello N, D’Angeli F, Cambria MT, Candido S, Giallongo C, Salmeri M, et al. Pericytes in Microvessels: From “Mural” Function to Brain and Retina Regeneration. International Journal of Molecular Sciences [Internet]. 2019 Jan [cited 2024 Oct 10];20(24):6351. Available from: https://www.mdpi.com/1422-0067/20/24/6351 J F, H L, P Y, Z W, P Z. Brain pericyte biology: from physiopathological mechanisms to potential therapeutic applications in ischemic stroke. Frontiers in cellular neuroscience [Internet]. 2023 Sep 14 [cited 2024 Oct 10];17. Available from: https://pubmed.ncbi.nlm.nih.gov/37780206/ Winkler EA, Bell RD, Zlokovic BV. Central nervous system pericytes in health and disease. Nat Neurosci. 2011 Oct 26;14(11):1398–405 Bergers G, Song S. The role of pericytes in blood-vessel formation and maintenance. Neuro Oncol. 2005 Oct;7(4):452–64. ElAli A, Thériault P, Rivest S. The role of pericytes in neurovascular unit remodeling in brain disorders. Int J Mol Sci. 2014 Apr 16;15(4):6453–74. M F. Pericyte signaling in the neurovascular unit. Stroke [Internet]. 2009 Mar [cited 2024 Oct 10];40(3 Suppl). Available from: https://pubmed.ncbi.nlm.nih.gov/19064799/ Yamamoto S, Muramatsu M, Azuma E, Ikutani M, Nagai Y, Sagara H, et al. A subset of cerebrovascular pericytes originates from mature macrophages in the very early phase of vascular development in CNS. Sci Rep [Internet]. 2017 Jun 20 [cited 2024 Oct 10];7(1):3855. Available from: https://www.nature.com/articles/s41598-017-03994-1 A T, S L, F S, D B, Ka M, B B, et al. Brain and Retinal Pericytes: Origin, Function and Role. Frontiers in cellular neuroscience [Internet]. 2016 Apr 2 [cited 2024 Oct 10];10. Available from: https://pubmed.ncbi.nlm.nih.gov/26869887/ P DD. Pericytes: pluripotent cells of the blood brain barrier. Current pharmaceutical design [Internet]. 2008 [cited 2024 Oct 10];14(16). Available from: https://pubmed.ncbi.nlm.nih.gov/18673199/ Sweeney MD, Ayyadurai S, Zlokovic BV. Pericytes of the neurovascular unit: Key functions and signaling pathways. Nat Neurosci [Internet]. 2016 May 26 [cited 2024 Oct 10];19(6):771–83. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5745011/ Armulik A, Genové G, Mäe M, Nisancioglu MH, Wallgard E, Niaudet C, et al. Pericytes regulate the blood–brain barrier. Nature [Internet]. 2010 Nov [cited 2024 Oct 10];468(7323):557–61. Available from: https://www.nature.com/articles/nature09522 Lindahl P, Johansson BR, Levéen P, Betsholtz C. Pericyte loss and microaneurysm formation in PDGF-B-deficient mice. Science. 1997 Jul 11;277(5323):242–5. Md S, Z Z, A M, Ar N, Bv Z. Blood-Brain Barrier: From Physiology to Disease and Back. Physiological reviews [Internet]. 2019 Jan 1 [cited 2023 Sep 29];99(1). Available from: https://pubmed.ncbi.nlm.nih.gov/30280653/ Hall CN, Reynell C, Gesslein B, Hamilton NB, Mishra A, Sutherland BA, et al. Capillary pericytes regulate cerebral blood flow in health and disease. Nature. 2014 Apr 3;508(7494):55–60 Pieper C, Marek JJ, Unterberg M, Schwerdtle T, Galla HJ. Brain capillary pericytes contribute to the immune defense in response to cytokines or LPS in vitro. Brain Res. 2014 Mar 6;1550:1–8. Smyth LCD, Rustenhoven J, Scotter EL, Schweder P, Faull RLM, Park TIH, et al. Markers for human brain pericytes and smooth muscle cells. J Chem Neuroanat. 2018 Oct;92:48–60. Ls B, Cg F, Jm C, Ne K, Dw H, Ba S. Pericytes and Neurovascular Function in the Healthy and Diseased Brain. Frontiers in cellular neuroscience [Internet]. 2019 Jun 28 [cited 2024 Oct 10];13. Available from: https://pubmed.ncbi.nlm.nih.gov/31316352/ Bhattacharya A, Kaushik DK, Lozinski BM, Yong VW. Beyond barrier functions: Roles of pericytes in homeostasis and regulation of neuroinflammation. J Neurosci Res. 2020 Dec;98(12):2390–405. Kettenmann H, Verkhratsky A. Neuroglia: the 150 years after. Trends Neurosci. 2008 Dec;31(12):653–9 Markey KM, Saunders JC, Smuts J, von Reyn CR, Garcia ADR. Astrocyte development-More questions than answers. Front Cell Dev Biol. 2023;11:1063843. Khakh BS, Deneen B. The Emerging Nature of Astrocyte Diversity. Annu Rev Neurosci. 2019 Jul 8;42:187–207 P H, Ivl R, Js S, Rd K, Sa L. Neuroinflammatory astrocyte subtypes in the mouse brain. Nature neuroscience [Internet]. 2021 Oct [cited 2024 Oct 10];24(10). Available from: https://pubmed.ncbi.nlm.nih.gov/34413515/ Araque A, Parpura V, Sanzgiri RP, Haydon PG. Tripartite synapses: glia, the unacknowledged partner. Trends Neurosci. 1999 May;22(5):208–15. Dutta DJ, Woo DH, Lee PR, Pajevic S, Bukalo O, Huffman WC, et al. Regulation of myelin structure and conduction velocity by perinodal astrocytes. Proc Natl Acad Sci U S A. 2018 Nov 13;115(46):11832–7. Stokum JA, Gerzanich V, Simard JM. Molecular pathophysiology of cerebral edema. J Cereb Blood Flow Metab. 2016 Mar;36(3):513–38. L G, T V. Astrocytes in the central nervous system and their functions in health and disease: A review. World journal of clinical cases [Internet]. 2023 May 26 [cited 2024 Oct 10];11(15). Available from: https://pubmed.ncbi.nlm.nih.gov/37383914/ Endo F, Kasai A, Soto JS, Yu X, Qu Z, Hashimoto H, et al. Molecular basis of astrocyte diversity and morphology across the CNS in health and disease. Science. 2022 Nov 4;378(6619):eadc9020. Verkhratsky A, Nedergaard M. Physiology of Astroglia. Physiol Rev. 2018 Jan 1;98(1):239–389. Attwell D, Buchan AM, Charpak S, Lauritzen M, Macvicar BA, Newman EA. Glial and neuronal control of brain blood flow. Nature. 2010 Nov 11;468(7321):232–43. A A, G C, Pg H, Sh O, R R, A V. Gliotransmitters travel in time and space. Neuron [Internet]. 2014 Feb 19 [cited 2024 Oct 10];81(4). Available from: https://pubmed.ncbi.nlm.nih.gov/24559669/ Ramírez-Guerrero S, Guardo-Maya S, Medina-Rincón GJ, Orrego-González EE, Cabezas-Pérez R, González-Reyes RE. Taurine and Astrocytes: A Homeostatic and Neuroprotective Relationship. Front Mol Neurosci. 2022;15:937789. M B, I A, Pj M. Brain energy metabolism: focus on astrocyte-neuron metabolic cooperation. Cell metabolism [Internet]. 2011 Jul 12 [cited 2024 Oct 10];14(6). Available from: https://pubmed.ncbi.nlm.nih.gov/22152301/ Schousboe A, Scafidi S, Bak LK, Waagepetersen HS, McKenna MC. Glutamate metabolism in the brain focusing on astrocytes. Adv Neurobiol. 2014;11:13–30. Wolburg H, Wolburg-Buchholz K, Fallier-Becker P, Noell S, Mack AF. Structure and functions of aquaporin-4-based orthogonal arrays of particles. Int Rev Cell Mol Biol. 2011;287:1–41. Mv S, Hv V. Astrocytes: biology and pathology. Acta neuropathologica [Internet]. 2010 Jan [cited 2024 Oct 10];119(1). Available from: https://pubmed.ncbi.nlm.nih.gov/20012068/ Lee HG, Lee JH, Flausino LE, Quintana FJ. Neuroinflammation: An astrocyte perspective. Sci Transl Med. 2023 Nov 8;15(721):eadi7828. V R, Fj Q. Control of autoimmune CNS inflammation by astrocytes. Seminars in immunopathology [Internet]. 2015 Nov [cited 2024 Oct 10];37(6). Available from: https://pubmed.ncbi.nlm.nih.gov/26223505/ Eng LF, Ghirnikar RS, Lee YL. Glial fibrillary acidic protein: GFAP-thirty-one years (1969-2000). Neurochem Res. 2000 Oct;25(9–10):1439–51. Zhang Z, Ma Z, Zou W, Guo H, Liu M, Ma Y, et al. The Appropriate Marker for Astrocytes: Comparing the Distribution and Expression of Three Astrocytic Markers in Different Mouse Cerebral Regions. Biomed Res Int. 2019;2019:9605265. Am J, M P, J K, Kz K. Beyond the GFAP-Astrocyte Protein Markers in the Brain. Biomolecules [Internet]. 2021 Sep 14 [cited 2024 Oct 10];11(9). Available from: https://pubmed.ncbi.nlm.nih.gov/34572572/ Hablitz LM, Nedergaard M. The Glymphatic System: A Novel Component of Fundamental Neurobiology. J Neurosci. 2021 Sep 15;41(37):7698–711. Wolburg H, Noell S, Wolburg-Buchholz K, Mack A, Fallier-Becker P. Agrin, aquaporin-4, and astrocyte polarity as an important feature of the blood-brain barrier. Neuroscientist. 2009 Apr;15(2):180–93. Wolburg H, Wolburg-Buchholz K, Fallier-Becker P, Noell S, Mack AF. Chapter one - Structure and Functions of Aquaporin-4-Based Orthogonal Arrays of Particles. In: Jeon KW, editor. International Review of Cell and Molecular Biology [Internet]. Academic Press; 2011 [cited 2024 Oct 10]. p. 1–41. Available from: https://www.sciencedirect.com/science/article/pii/B9780123860439000013 Guérit S, Fidan E, Macas J, Czupalla CJ, Figueiredo R, Vijikumar A, et al. Astrocyte-derived Wnt growth factors are required for endothelial blood-brain barrier maintenance. Prog Neurobiol. 2021 Apr;199:101937. Lochhead JJ, Yang J, Ronaldson PT, Davis TP. Structure, Function, and Regulation of the Blood-Brain Barrier Tight Junction in Central Nervous System Disorders. Front Physiol [Internet]. 2020 Aug 6 [cited 2024 Oct 10];11. Available from: https://www.frontiersin.org/journals/physiology/articles/10.3389/fphys.2020.00914/full Baeten KM, Akassoglou K. Extracellular Matrix and Matrix Receptors in Blood-Brain Barrier Formation and Stroke. Dev Neurobiol [Internet]. 2011 Nov [cited 2021 May 16];71(11):1018–39. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3482610/ Tikiyani V, Babu K. Claudins in the brain: Unconventional functions in neurons. Traffic [Internet]. 2019 [cited 2024 Oct 10];20(11):807–14. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1111/tra.12685 Castro Dias M, Mapunda JA, Vladymyrov M, Engelhardt B. Structure and Junctional Complexes of Endothelial, Epithelial and Glial Brain Barriers. Int J Mol Sci. 2019 Oct 29;20(21):5372. Greene C, Hanley N, Campbell M. Claudin-5: gatekeeper of neurological function. Fluids Barriers CNS. 2019 Jan 29;16(1):3. Daneman R, Zhou L, Agalliu D, Cahoy JD, Kaushal A, Barres BA. The mouse blood-brain barrier transcriptome: a new resource for understanding the development and function of brain endothelial cells. PLoS One. 2010 Oct 29;5(10):e13741. Furuse M, Hirase T, Itoh M, Nagafuchi A, Yonemura S, Tsukita S, et al. Occludin: a novel integral membrane protein localizing at tight junctions. J Cell Biol. 1993 Dec;123(6 Pt 2):1777–88. Sugiyama S, Sasaki T, Tanaka H, Yan H, Ikegami T, Kanki H, et al. The tight junction protein occludin modulates blood-brain barrier integrity and neurological function after ischemic stroke in mice. Sci Rep. 2023 Feb 18;13(1):2892. Yuan S, Liu KJ, Qi Z. Occludin regulation of blood-brain barrier and potential therapeutic target in ischemic stroke. Brain Circ. 2020;6(3):152–62. Pm C. Occludin: one protein, many forms. Molecular and cellular biology [Internet]. 2012 Jan [cited 2024 Oct 10];32(2). Available from: https://pubmed.ncbi.nlm.nih.gov/22083955/ DeMaio L, Rouhanizadeh M, Reddy S, Sevanian A, Hwang J, Hsiai TK. Oxidized phospholipids mediate occludin expression and phosphorylation in vascular endothelial cells. Am J Physiol Heart Circ Physiol. 2006 Feb;290(2):H674-683. Ys C, Kh C, Cc L, Ct L, Ch Y, Kc C, et al. Propofol-induced vascular permeability change is related to the nitric oxide signaling pathway and occludin phosphorylation. Journal of biomedical science [Internet]. 2007 Sep [cited 2024 Oct 10];14(5). Available from: https://pubmed.ncbi.nlm.nih.gov/17394100/ Wittchen ES, Haskins J, Stevenson BR. Protein interactions at the tight junction. Actin has multiple binding partners, and ZO-1 forms independent complexes with ZO-2 and ZO-3. J Biol Chem. 1999 Dec 3;274(49):35179–85. Inoko A, Itoh M, Tamura A, Matsuda M, Furuse M, Tsukita S. Expression and distribution of ZO-3, a tight junction MAGUK protein, in mouse tissues. Genes Cells. 2003 Nov;8(11):837–45. Ka K, D K, Jh K, Yj S, Es K, M A, et al. Autophagy-mediated occludin degradation contributes to blood-brain barrier disruption during ischemia in bEnd.3 brain endothelial cells and rat ischemic stroke models. Fluids and barriers of the CNS [Internet]. 2020 Mar 14 [cited 2024 Oct 10];17(1). Available from: https://pubmed.ncbi.nlm.nih.gov/32169114/ T H, Jm S, M S, Y AA, M I, M F, et al. Occludin as a possible determinant of tight junction permeability in endothelial cells. Journal of cell science [Internet]. 1997 Jul [cited 2024 Oct 10];110 ( Pt 14). Available from: https://pubmed.ncbi.nlm.nih.gov/9247194/ Luissint AC, Artus C, Glacial F, Ganeshamoorthy K, Couraud PO. Tight junctions at the blood brain barrier: physiological architecture and disease-associated dysregulation. Fluids Barriers CNS. 2012 Nov 9;9(1):23. Pan L, Chen J, Yu J, Yu H, Zhang M. The structure of the PDZ3-SH3-GuK tandem of ZO-1 protein suggests a supramodular organization of the membrane-associated guanylate kinase (MAGUK) family scaffold protein core. J Biol Chem. 2011 Nov 18;286(46):40069–74. Hiroaki H, Satomura K, Goda N, Nakakura Y, Hiranuma M, Tenno T, et al. Spatial Overlap of Claudin- and Phosphatidylinositol Phosphate-Binding Sites on the First PDZ Domain of Zonula Occludens 1 Studied by NMR. Molecules [Internet]. 2018 Oct [cited 2024 Oct 10];23(10):2465. Available from: https://www.mdpi.com/1420-3049/23/10/2465 Fanning AS, Jameson BJ, Jesaitis LA, Anderson JM. The tight junction protein ZO-1 establishes a link between the transmembrane protein occludin and the actin cytoskeleton. J Biol Chem. 1998 Nov 6;273(45):29745–53. Bazzoni G, Martinez-Estrada OM, Orsenigo F, Cordenonsi M, Citi S, Dejana E. Interaction of junctional adhesion molecule with the tight junction components ZO-1, cingulin, and occludin. J Biol Chem. 2000 Jul 7;275(27):20520–6. Haskins J, Gu L, Wittchen ES, Hibbard J, Stevenson BR. ZO-3, a novel member of the MAGUK protein family found at the tight junction, interacts with ZO-1 and occludin. J Cell Biol. 1998 Apr 6;141(1):199–208. B B, T HI, Ar H, J K, K X, Da F. A Weak Link with Actin Organizes Tight Junctions to Control Epithelial Permeability. Developmental cell [Internet]. 2020 Sep 28 [cited 2024 Oct 10];54(6). Available from: https://pubmed.ncbi.nlm.nih.gov/32841596/ Liu WY, Wang ZB, Zhang LC, Wei X, Li L. Tight Junction in Blood-Brain Barrier: An Overview of Structure, Regulation, and Regulator Substances. CNS Neuroscience & Therapeutics [Internet]. 2012 [cited 2024 Oct 10];18(8):609–15. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1755-5949.2012.00340.x Bauer H, Zweimueller-Mayer J, Steinbacher P, Lametschwandtner A, Bauer HC. The dual role of zonula occludens (ZO) proteins. J Biomed Biotechnol. 2010;2010:402593. Ld R, Ey K, Se D. MAGI-1 interacts with Slo1 channel proteins and suppresses Slo1 expression on the cell surface. American journal of physiology Cell physiology [Internet]. 2009 Jul [cited 2024 Oct 10];297(1). Available from: https://pubmed.ncbi.nlm.nih.gov/19403801/ Hamazaki Y, Itoh M, Sasaki H, Furuse M, Tsukita S. Multi-PDZ Domain Protein 1 (MUPP1) Is Concentrated at Tight Junctions through Its Possible Interaction with Claudin-1 and Junctional Adhesion Molecule *. Journal of Biological Chemistry [Internet]. 2002 Jan 4 [cited 2024 Oct 10];277(1):455–61. Available from: https://www.jbc.org/article/S0021-9258(20)88032-6/abstract Paris L, Tonutti L, Vannini C, Bazzoni G. Structural organization of the tight junctions. Biochimica et Biophysica Acta (BBA) - Biomembranes [Internet]. 2008 Mar 1 [cited 2024 Oct 10];1778(3):646–59. Available from: https://www.sciencedirect.com/science/article/pii/S0005273607002908 Sladojevic N, Yu B, Liao JK. Regulator of G-Protein Signaling 5 Maintains Brain Endothelial Cell Function in Focal Cerebral Ischemia. J Am Heart Assoc. 2020 Sep 15;9(18):e017533. Denker BM, Saha C, Khawaja S, Nigam SK. Involvement of a heterotrimeric G protein alpha subunit in tight junction biogenesis. J Biol Chem. 1996 Oct 18;271(42):25750–3. Fábián G, Szabó CA, Bozó B, Greenwood J, Adamson P, Deli MA, et al. Expression of G-protein subtypes in cultured cerebral endothelial cells. Neurochem Int. 1998 Aug;33(2):179–85. Adamson P, Wilbourn B, Etienne-Manneville S, Calder V, Beraud E, Milligan G, et al. Lymphocyte trafficking through the blood-brain barrier is dependent on endothelial cell heterotrimeric G-protein signaling. FASEB J. 2002 Aug;16(10):1185–94. Martìn-Padura I, Lostaglio S, Schneemann M, Williams L, Romano M, Fruscella P, et al. Junctional adhesion molecule, a novel member of the immunoglobulin superfamily that distributes at intercellular junctions and modulates monocyte transmigration. J Cell Biol. 1998 Jul 13;142(1):117–27. M AL, C JL, C W, L DP, Ba I. Heterogeneity of endothelial junctions is reflected by differential expression and specific subcellular localization of the three JAM family members. Blood [Internet]. 2001 Dec 15 [cited 2024 Oct 10];98(13). Available from: https://pubmed.ncbi.nlm.nih.gov/11739175/ Scott DW, Tolbert CE, Graham DM, Wittchen E, Bear JE, Burridge K. N-glycosylation controls the function of junctional adhesion molecule-A. Mol Biol Cell. 2015 Sep 15;26(18):3205–14. K E, Cu S, Mk MZB, Gg P, D V. Junctional adhesion molecule interacts with the PDZ domain-containing proteins AF-6 and ZO-1. The Journal of biological chemistry [Internet]. 2000 Aug 9 [cited 2024 Oct 10];275(36). Available from: https://pubmed.ncbi.nlm.nih.gov/10856295 Ebnet K, Suzuki A, Horikoshi Y, Hirose T, Meyer Zu Brickwedde MK, Ohno S, et al. The cell polarity protein ASIP/PAR-3 directly associates with junctional adhesion molecule (JAM). EMBO J. 2001 Jul 16;20(14):3738–48. Marchetti L, Engelhardt B. Immune cell trafficking across the blood-brain barrier in the absence and presence of neuroinflammation. Vasc Biol. 2020;2(1):H1–18. Shapiro L, Weis WI. Structure and biochemistry of cadherins and catenins. Cold Spring Harb Perspect Biol. 2009 Sep;1(3):a003053. Tietz S, Engelhardt B. Brain barriers: Crosstalk between complex tight junctions and adherens junctions. J Cell Biol. 2015 May 25;209(4):493–506. Carmeliet P, Lampugnani MG, Moons L, Breviario F, Compernolle V, Bono F, et al. Targeted deficiency or cytosolic truncation of the VE-cadherin gene in mice impairs VEGF-mediated endothelial survival and angiogenesis. Cell. 1999 Jul 23;98(2):147–57. Crosby CV, Fleming PA, Argraves WS, Corada M, Zanetta L, Dejana E, et al. VE-cadherin is not required for the formation of nascent blood vessels but acts to prevent their disassembly. Blood [Internet]. 2005 Apr 1 [cited 2024 Oct 10];105(7):2771–6. Available from: https://doi.org/10.1182/blood-2004-06-2244 Giampietro C, Taddei A, Corada M, Sarra-Ferraris GM, Alcalay M, Cavallaro U, et al. Overlapping and divergent signaling pathways of N-cadherin and VE-cadherin in endothelial cells. Blood [Internet]. 2012 Mar 1 [cited 2024 Oct 16];119(9):2159–70. Available from: https://doi.org/10.1182/blood-2011-09-381012 I I, S H, R T, B K, S T. The adherens junction: a mosaic of cadherin and nectin clusters bundled by actin filaments. The Journal of investigative dermatology [Internet]. 2013 Nov [cited 2024 Oct 16];133(11). Available from: https://pubmed.ncbi.nlm.nih.gov/23639974/ Privratsky JR, Newman PJ. PECAM-1: regulator of endothelial junctional integrity. Cell Tissue Res. 2014 Mar;355(3):607–19. Xu L, Nirwane A, Yao Y. Basement membrane and blood-brain barrier. Stroke Vasc Neurol. 2019 Jul;4(2):78–82. Sorokin L. The impact of the extracellular matrix on inflammation. Nat Rev Immunol. 2010 Oct;10(10):712–23. Engelhardt B. β1-integrin/matrix interactions support blood-brain barrier integrity. J Cereb Blood Flow Metab. 2011 Oct;31(10):1969–71. McKee KK, Harrison D, Capizzi S, Yurchenco PD. Role of laminin terminal globular domains in basement membrane assembly. J Biol Chem. 2007 Jul 20;282(29):21437–47. Yurchenco PD. Integrating Activities of Laminins that Drive Basement Membrane Assembly and Function. Curr Top Membr. 2015;76:1–30. Thomsen MS, Routhe LJ, Moos T. The vascular basement membrane in the healthy and pathological brain. J Cereb Blood Flow Metab. 2017 Oct;37(10):3300–17. Hallmann R, Horn N, Selg M, Wendler O, Pausch F, Sorokin LM. Expression and function of laminins in the embryonic and mature vasculature. Physiol Rev. 2005 Jul;85(3):979–1000. Hannocks MJ, Pizzo ME, Huppert J, Deshpande T, Abbott NJ, Thorne RG, et al. Molecular characterization of perivascular drainage pathways in the murine brain. J Cereb Blood Flow Metab [Internet]. 2018 Apr 1 [cited 2021 May 16];38(4):669–86. Available from: https://doi.org/10.1177/0271678X17749689 Agrawal S, Anderson P, Durbeej M, van Rooijen N, Ivars F, Opdenakker G, et al. Dystroglycan is selectively cleaved at the parenchymal basement membrane at sites of leukocyte extravasation in experimental autoimmune encephalomyelitis. J Exp Med. 2006 Apr 17;203(4):1007–19. Takada Y, Ye X, Simon S. The integrins. Genome Biol. 2007;8(5):215. Davis MJ, Wu X, Nurkiewicz TR, Kawasaki J, Davis GE, Hill MA, et al. Integrins and mechanotransduction of the vascular myogenic response. Am J Physiol Heart Circ Physiol. 2001 Apr;280(4):H1427-1433. Wang N, Butler JP, Ingber DE. Mechanotransduction across the cell surface and through the cytoskeleton. Science. 1993 May 21;260(5111):1124–7. Hynes RO. Integrins: bidirectional, allosteric signaling machines. Cell. 2002 Sep 20;110(6):673–87. Sk H, A S, R M. The importance of laminin at the blood-brain barrier. Neural regeneration research [Internet]. 2023 Dec [cited 2024 Oct 16];18(12). Available from: https://pubmed.ncbi.nlm.nih.gov/37449589/ Hynes RO. Integrins: versatility, modulation, and signaling in cell adhesion. Cell. 1992 Apr 3;69(1):11–25. C K, F Y, Mh G. Regulation of integrin activation. Annual review of cell and developmental biology [Internet]. 2011 [cited 2024 Oct 16];27. Available from: https://pubmed.ncbi.nlm.nih.gov/21663444/ Eliceiri BP, Cheresh DA. Adhesion events in angiogenesis. Curr Opin Cell Biol. 2001 Oct;13(5):563–8. De Arcangelis A, Georges-Labouesse E. Integrin and ECM functions: roles in vertebrate development. Trends Genet. 2000 Sep;16(9):389–95. McCarty JH, Lacy-Hulbert A, Charest A, Bronson RT, Crowley D, Housman D, et al. Selective ablation of alphav integrins in the central nervous system leads to cerebral hemorrhage, seizures, axonal degeneration and premature death. Development. 2005 Jan;132(1):165–76. Su Y, Iacob RE, Li J, Engen JR, Springer TA. Dynamics of integrin α5β1, fibronectin, and their complex reveal sites of interaction and conformational change. Journal of Biological Chemistry [Internet]. 2022 Sep 1 [cited 2024 Oct 16];298(9). Available from: https://www.jbc.org/article/S0021-9258(22)00765-7/abstract Schaffner F, Ray AM, Dontenwill M. Integrin α5β1, the Fibronectin Receptor, as a Pertinent Therapeutic Target in Solid Tumors. Cancers (Basel). 2013 Jan 15;5(1):27–47. R M, Il C. Developmental regulation of beta1 integrins during angiogenesis in the central nervous system. Molecular and cellular neurosciences [Internet]. 2002 Aug [cited 2024 Oct 16];20(4). Available from: https://pubmed.ncbi.nlm.nih.gov/12213443/ Milner R, Campbell IL. Increased expression of the beta4 and alpha5 integrin subunits in cerebral blood vessels of transgenic mice chronically producing the pro-inflammatory cytokines IL-6 or IFN-alpha in the central nervous system. Mol Cell Neurosci. 2006 Dec;33(4):429–40. Edwards DN, Bix GJ. Roles of blood-brain barrier integrins and extracellular matrix in stroke. Am J Physiol Cell Physiol. 2019 Feb 1;316(2):C252–63. Ar N, Cg B. The roles of dystroglycan in the nervous system: insights from animal models of muscular dystrophy. Disease models & mechanisms [Internet]. 2018 Dec 19 [cited 2024 Oct 16];11(12). Available from: https://pubmed.ncbi.nlm.nih.gov/30578246/ Ibraghimov-Beskrovnaya O, Ervasti JM, Leveille CJ, Slaughter CA, Sernett SW, Campbell KP. Primary structure of dystrophin-associated glycoproteins linking dystrophin to the extracellular matrix. Nature. 1992 Feb 20;355(6362):696–702. Cohen MW, Jacobson C, Godfrey EW, Campbell KP, Carbonetto S. Distribution of alpha-dystroglycan during embryonic nerve-muscle synaptogenesis. J Cell Biol. 1995 May;129(4):1093–101. Durbeej M, Henry MD, Ferletta M, Campbell KP, Ekblom P. Distribution of dystroglycan in normal adult mouse tissues. J Histochem Cytochem. 1998 Apr;46(4):449–57. Jahncke JN, Wright KM. The many roles of dystroglycan in nervous system development and function. Developmental Dynamics [Internet]. 2023 [cited 2024 Oct 16];252(1):61–80. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1002/dvdy.516 Anderson C, Winder SJ, Borycki AG. Dystroglycan protein distribution coincides with basement membranes and muscle differentiation during mouse embryogenesis. Dev Dyn. 2007 Sep;236(9):2627–35. Zaccaria ML, Di Tommaso F, Brancaccio A, Paggi P, Petrucci TC. Dystroglycan distribution in adult mouse brain: a light and electron microscopy study. Neuroscience. 2001;104(2):311–24. Lévi S, Grady RM, Henry MD, Campbell KP, Sanes JR, Craig AM. Dystroglycan is selectively associated with inhibitory GABAergic synapses but is dispensable for their differentiation. J Neurosci. 2002 Jun 1;22(11):4274–85. Menezes MJ, McClenahan FK, Leiton CV, Aranmolate A, Shan X, Colognato H. The extracellular matrix protein laminin α2 regulates the maturation and function of the blood-brain barrier. J Neurosci. 2014 Nov 12;34(46):15260–80. Tian M, Jacobson C, Gee SH, Campbell KP, Carbonetto S, Jucker M. Dystroglycan in the cerebellum is a laminin alpha 2-chain binding protein at the glial-vascular interface and is expressed in Purkinje cells. Eur J Neurosci. 1996 Dec;8(12):2739–47. Hohenester E. Laminin G-like domains: dystroglycan-specific lectins. Curr Opin Struct Biol. 2019 Jun;56:56–63. Aumailley M. The laminin family. Cell Adh Migr. 2013 Feb;7(1):48–55. Andrews RN, Metheny-Barlow LJ, Peiffer AM, Hanbury DB, Tooze JA, Bourland JD, et al. Cerebrovascular Remodeling and Neuroinflammation is a Late Effect of Radiation-Induced Brain Injury in Non-Human Primates. Radiat Res. 2017 May;187(5):599–611 Labus J, Wöltje K, Stolte KN, Häckel S, Kim KS, Hildmann A, et al. IL-1β promotes transendothelial migration of PBMCs by upregulation of the FN/α5β1 signalling pathway in immortalised human brain microvascular endothelial cells. Exp Cell Res. 2018 Dec 15;373(1–2):99–111. Di Russo J, Luik AL, Yousif L, Budny S, Oberleithner H, Hofschröer V, et al. Endothelial basement membrane laminin 511 is essential for shear stress response. EMBO J. 2017 May 15;36(10):1464. Wu C, Ivars F, Anderson P, Hallmann R, Vestweber D, Nilsson P, et al. Endothelial basement membrane laminin α5 selectively inhibits T lymphocyte extravasation into the brain. Nat Med [Internet]. 2009 May [cited 2024 Oct 16];15(5):519–27. Available from: https://www.nature.com/articles/nm.1957 Baneyx G, Baugh L, Vogel V. Coexisting conformations of fibronectin in cell culture imaged using fluorescence resonance energy transfer. Proc Natl Acad Sci U S A. 2001 Dec 4;98(25):14464–8. Parisi L, Toffoli A, Ghezzi B, Mozzoni B, Lumetti S, Macaluso GM. A glance on the role of fibronectin in controlling cell response at biomaterial interface. Jpn Dent Sci Rev. 2020 Dec;56(1):50–5. Pankov R, Yamada KM. Fibronectin at a glance. J Cell Sci. 2002 Oct 15;115(Pt 20):3861–3. Patel RS, Odermatt E, Schwarzbauer JE, Hynes RO. Organization of the fibronectin gene provides evidence for exon shuffling during evolution. EMBO J. 1987 Sep;6(9):2565–72. Wang J, Milner R. Fibronectin promotes brain capillary endothelial cell survival and proliferation through alpha5beta1 and alphavbeta3 integrins via MAP kinase signalling. J Neurochem. 2006 Jan;96(1):148–59. Plow EF, Haas TA, Zhang L, Loftus J, Smith JW. Ligand binding to integrins. J Biol Chem. 2000 Jul 21;275(29):21785–8. Hudson BG, Reeders ST, Tryggvason K. Type IV collagen: structure, gene organization, and role in human diseases. Molecular basis of Goodpasture and Alport syndromes and diffuse leiomyomatosis. J Biol Chem. 1993 Dec 15;268(35):26033–6. Du F, Shusta EV, Palecek SP. Extracellular matrix proteins in construction and function of in vitro blood-brain barrier models. Front Chem Eng [Internet]. 2023 Feb 20 [cited 2024 Oct 16];5. Available from: https://www.frontiersin.org/journals/chemical-engineering/articles/10.3389/fceng.2023.1130127/full Zhou S, Chen S, Pei YA, Pei M. Nidogen: A matrix protein with potential roles in musculoskeletal tissue regeneration. Genes Dis. 2022 May;9(3):598–609. Kang SH, Kramer JM. Nidogen Is Nonessential and Not Required for Normal Type IV Collagen Localization in Caenorhabditis elegans. Mol Biol Cell [Internet]. 2000 Nov [cited 2021 May 16];11(11):3911–23. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC15046/ Fox JW, Mayer U, Nischt R, Aumailley M, Reinhardt D, Wiedemann H, et al. Recombinant nidogen consists of three globular domains and mediates binding of laminin to collagen type IV. EMBO J. 1991 Nov;10(11):3137–46. Hopf M, Göhring W, Kohfeldt E, Yamada Y, Timpl R. Recombinant domain IV of perlecan binds to nidogens, laminin-nidogen complex, fibronectin, fibulin-2 and heparin. Eur J Biochem. 1999 Feb;259(3):917–25. Sasaki T, Göhring W, Pan TC, Chu ML, Timpl R. Binding of mouse and human fibulin-2 to extracellular matrix ligands. J Mol Biol. 1995 Dec 15;254(5):892–9. Murshed M, Smyth N, Miosge N, Karolat J, Krieg T, Paulsson M, et al. The absence of nidogen 1 does not affect murine basement membrane formation. Mol Cell Biol. 2000 Sep;20(18):7007–12. Steiner E, Enzmann GU, Lyck R, Lin S, Rüegg MA, Kröger S, et al. The heparan sulfate proteoglycan agrin contributes to barrier properties of mouse brain endothelial cells by stabilizing adherens junctions. Cell Tissue Res [Internet]. 2014 Nov 1 [cited 2024 Oct 16];358(2):465–79. Available from: https://doi.org/10.1007/s00441-014-1969-7 Gautam M, Noakes PG, Moscoso L, Rupp F, Scheller RH, Merlie JP, et al. Defective neuromuscular synaptogenesis in agrin-deficient mutant mice. Cell. 1996 May 17;85(4):525–35. Ksiazek I, Burkhardt C, Lin S, Seddik R, Maj M, Bezakova G, et al. Synapse loss in cortex of agrin-deficient mice after genetic rescue of perinatal death. J Neurosci. 2007 Jul 4;27(27):7183–95. Kröger S, Schröder JE. Agrin in the developing CNS: new roles for a synapse organizer. News Physiol Sci. 2002 Oct;17:207–12. Bradshaw AD, Sage EH. SPARC, a matricellular protein that functions in cellular differentiation and tissue response to injury. J Clin Invest. 2001 May;107(9):1049–54. Martinek N, Shahab J, Sodek J, Ringuette M. Is SPARC an evolutionarily conserved collagen chaperone? J Dent Res. 2007 Apr;86(4):296–305. Wong SLI, Sukkar MB. The SPARC protein: an overview of its role in lung cancer and pulmonary fibrosis and its potential role in chronic airways disease. British Journal of Pharmacology [Internet]. 2017 [cited 2024 Oct 16];174(1):3–14. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1111/bph.13653 Brekken RA, Sage EH. SPARC, a matricellular protein: at the crossroads of cell-matrix. Matrix Biol. 2000 Dec;19(7):569–80. Aeschlimann D, Kaupp O, Paulsson M. Transglutaminase-catalyzed matrix cross-linking in differentiating cartilage: identification of osteonectin as a major glutaminyl substrate. J Cell Biol. 1995 May;129(3):881–92. Mendis DB, Malaval L, Brown IR. SPARC, an extracellular matrix glycoprotein containing the follistatin module, is expressed by astrocytes in synaptic enriched regions of the adult brain. Brain Res. 1995 Apr 3;676(1):69–79. Sarrazin S, Lamanna WC, Esko JD. Heparan sulfate proteoglycans. Cold Spring Harb Perspect Biol. 2011 Jul 1;3(7):a004952. Hayes AJ, Farrugia BL, Biose IJ, Bix GJ, Melrose J. Perlecan, A Multi-Functional, Cell-Instructive, Matrix-Stabilizing Proteoglycan With Roles in Tissue Development Has Relevance to Connective Tissue Repair and Regeneration. Front Cell Dev Biol. 2022;10:856261. Roberts J, Kahle MP, Bix GJ. Perlecan and the blood-brain barrier: beneficial proteolysis? Front Pharmacol. 2012;3:155. Göhring W, Sasaki T, Heldin CH, Timpl R. Mapping of the binding of platelet-derived growth factor to distinct domains of the basement membrane proteins BM-40 and perlecan and distinction from the BM-40 collagen-binding epitope. Eur J Biochem. 1998 Jul 1;255(1):60–6. Afratis N, Gialeli C, Nikitovic D, Tsegenidis T, Karousou E, Theocharis AD, et al. Glycosaminoglycans: key players in cancer cell biology and treatment. FEBS J. 2012 Apr;279(7):1177–97. Casale J, Crane JS. Biochemistry, Glycosaminoglycans. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024 [cited 2024 Oct 17]. Available from: http://www.ncbi.nlm.nih.gov/books/NBK544295/ Raman R, Sasisekharan V, Sasisekharan R. Structural insights into biological roles of protein-glycosaminoglycan interactions. Chem Biol. 2005 Mar;12(3):267–77. Prydz K. Determinants of Glycosaminoglycan (GAG) Structure. Biomolecules. 2015 Aug 21;5(3):2003–22. Evans AD, Pournoori N, Saksala E, Oommen OP. Glycosaminoglycans’ for brain health: Harnessing glycosaminoglycan based biomaterials for treating central nervous system diseases and in-vitro modeling. Biomaterials. 2024 Sep;309:122629. Butler WT. The nature and significance of osteopontin. Connect Tissue Res. 1989;23(2–3):123–36. Lin EYH, Xi W, Aggarwal N, Shinohara ML. Osteopontin (OPN)/SPP1: from its biochemistry to biological functions in the innate immune system and the central nervous system (CNS). Int Immunol. 2023 Apr 4;35(4):171–80. Icer MA, Gezmen-Karadag M. The multiple functions and mechanisms of osteopontin. Clin Biochem. 2018 Sep;59:17–24. Lund SA, Giachelli CM, Scatena M. The role of osteopontin in inflammatory processes. J Cell Commun Signal. 2009 Dec;3(3–4):311–22. Patarca R, Freeman GJ, Singh RP, Wei FY, Durfee T, Blattner F, et al. Structural and functional studies of the early T lymphocyte activation 1 (Eta-1) gene. Definition of a novel T cell-dependent response associated with genetic resistance to bacterial infection. J Exp Med. 1989 Jul 1;170(1):145–61. Spitzer D, Guérit S, Puetz T, Khel MI, Armbrust M, Dunst M, et al. Profiling the neurovascular unit unveils detrimental effects of osteopontin on the blood-brain barrier in acute ischemic stroke. Acta Neuropathol. 2022 Aug;144(2):305–37. Keren-Shaul H, Spinrad A, Weiner A, Matcovitch-Natan O, Dvir-Szternfeld R, Ulland TK, et al. A Unique Microglia Type Associated with Restricting Development of Alzheimer’s Disease. Cell. 2017 Jun 15;169(7):1276-1290.e17. Deczkowska A, Keren-Shaul H, Weiner A, Colonna M, Schwartz M, Amit I. Disease-Associated Microglia: A Universal Immune Sensor of Neurodegeneration. Cell. 2018 May 17;173(5):1073–81. Paolinelli R, Corada M, Orsenigo F, Dejana E. The molecular basis of the blood brain barrier differentiation and maintenance. Is it still a mystery? Pharmacol Res. 2011 Mar;63(3):165–71. Iadecola C. Neurogenic control of the cerebral microcirculation: is dopamine minding the store? Nat Neurosci. 1998 Aug;1(4):263–5. Duchemin S, Boily M, Sadekova N, Girouard H. The complex contribution of NOS interneurons in the physiology of cerebrovascular regulation. Front Neural Circuits. 2012;6:51. Deegan BM, Devine ER, Geraghty MC, Jones E, Ólaighin G, Serrador JM. The relationship between cardiac output and dynamic cerebral autoregulation in humans. J Appl Physiol (1985). 2010 Nov;109(5):1424–31. Gordon GRJ, Mulligan SJ, MacVicar BA. Astrocyte control of the cerebrovasculature. Glia. 2007 Sep;55(12):1214–21. Peppiatt CM, Howarth C, Mobbs P, Attwell D. Bidirectional control of CNS capillary diameter by pericytes. Nature. 2006 Oct 12;443(7112):700–4. Lee TJF, Chang HH, Lee HC, Chen PY, Lee YC, Kuo JS, et al. Axo-axonal interaction in autonomic regulation of the cerebral circulation. Acta Physiol (Oxf). 2011 Sep;203(1):25–35. Iadecola C, Li J, Ebner TJ, Xu X. Nitric oxide contributes to functional hyperemia in cerebellar cortex. Am J Physiol. 1995 May;268(5 Pt 2):R1153-1162. Kim KJ, Filosa JA. Advanced in vitro approach to study neurovascular coupling mechanisms in the brain microcirculation. J Physiol. 2012 Apr 1;590(7):1757–70. Muoio V, Persson PB, Sendeski MM. The neurovascular unit – concept review. Acta Physiologica [Internet]. 2014 [cited 2024 Oct 17];210(4):790–8. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1111/apha.12250 Abbott NJ, Friedman A. Overview and introduction: the blood-brain barrier in health and disease. Epilepsia. 2012 Nov;53 Suppl 6(0 6):1–6. McCarty JH. Integrin-mediated regulation of neurovascular development, physiology and disease. Cell Adh Migr. 2009;3(2):211–5 Chen Y, Liu L. Modern methods for delivery of drugs across the blood-brain barrier. Adv Drug Deliv Rev. 2012 May 15;64(7):640–65. Puris E, Fricker G, Gynther M. Targeting Transporters for Drug Delivery to the Brain: Can We Do Better? Pharm Res [Internet]. 2022 Jul 1 [cited 2024 Oct 17];39(7):1415–55. Available from: https://doi.org/10.1007/s11095-022-03241-x de Boer AG, van der Sandt ICJ, Gaillard PJ. The role of drug transporters at the blood-brain barrier. Annu Rev Pharmacol Toxicol. 2003;43:629–56. Cecchelli R, Berezowski V, Lundquist S, Culot M, Renftel M, Dehouck MP, et al. Modelling of the blood-brain barrier in drug discovery and development. Nat Rev Drug Discov. 2007 Aug;6(8):650–61. Koepsell H. Glucose transporters in brain in health and disease. Pflugers Arch. 2020 Sep;472(9):1299–343. Rautio J, Gynther M, Laine K. LAT1-mediated prodrug uptake: a way to breach the blood-brain barrier? Ther Deliv. 2013 Mar;4(3):281–4. Temsamani J, Rousselle C, Rees AR, Scherrmann JM. Vector-mediated drug delivery to the brain. Expert Opin Biol Ther. 2001 Sep;1(5):773–82 Pardridge WM. Drug transport across the blood-brain barrier. J Cereb Blood Flow Metab. 2012 Nov;32(11):1959–72. Vlieghe P, Khrestchatisky M. Medicinal chemistry based approaches and nanotechnology-based systems to improve CNS drug targeting and delivery. Med Res Rev. 2013 May;33(3):457–516. Clark DE. In silico prediction of blood-brain barrier permeation. Drug Discov Today. 2003 Oct 15;8(20):927–33. Fong CW. Permeability of the Blood-Brain Barrier: Molecular Mechanism of Transport of Drugs and Physiologically Important Compounds. J Membr Biol. 2015 Aug;248(4):651–69. Ronaldson PT, Davis TP. Transport Mechanisms at the Blood–Brain Barrier and in Cellular Compartments of the Neurovascular Unit: Focus on CNS Delivery of Small Molecule Drugs. Pharmaceutics [Internet]. 2022 Jul [cited 2024 Oct 18];14(7):1501. Available from: https://www.mdpi.com/1999-4923/14/7/1501 Miller DW, Line S, Safa NA, Zhang Y. Blood–Brain Barrier Transporters and Central Nervous System Drug Response and Toxicity. In: Transporters and Drug-Metabolizing Enzymes in Drug Toxicity [Internet]. John Wiley & Sons, Ltd; 2021 [cited 2024 Oct 18]. p. 377–412. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1002/9781119171003.ch12 Zha S, Liu H, Li H, Li H, Wong KL, All AH. Functionalized Nanomaterials Capable of Crossing the Blood–Brain Barrier. ACS Nano [Internet]. 2024 Jan 23 [cited 2024 Oct 18];18(3):1820–45. Available from: https://doi.org/10.1021/acsnano.3c10674 Enerson BE, Drewes LR. The rat blood-brain barrier transcriptome. J Cereb Blood Flow Metab. 2006 Jul;26(7):959–73. Nies AT. The role of membrane transporters in drug delivery to brain tumors. Cancer Lett. 2007 Aug 28;254(1):11–29. Wu WZ, Bai YP. Endothelial GLUTs and vascular biology. Biomedicine & Pharmacotherapy [Internet]. 2023 Feb 1 [cited 2024 Oct 18];158:114151. Available from: https://www.sciencedirect.com/science/article/pii/S0753332222015402 Ogoh S. Interaction between the respiratory system and cerebral blood flow regulation. J Appl Physiol (1985). 2019 Nov 1;127(5):1197–205. Hu C, Tao L, Cao X, Chen L. The solute carrier transporters and the brain: Physiological and pharmacological implications. Asian J Pharm Sci. 2020 Mar;15(2):131–44. Song W, Li D, Tao L, Luo Q, Chen L. Solute carrier transporters: the metabolic gatekeepers of immune cells. Acta Pharm Sin B. 2020 Jan;10(1):61–78. Liu X. SLC Family Transporters. Adv Exp Med Biol. 2019;1141:101–202. Gosselet F, Loiola RA, Roig A, Rosell A, Culot M. Central nervous system delivery of molecules across the blood-brain barrier. Neurochemistry International [Internet]. 2021 Mar 1 [cited 2024 Oct 18];144:104952. Available from: https://www.sciencedirect.com/science/article/pii/S0197018620303430 Mahringer A, Fricker G. ABC transporters at the blood–brain barrier. Expert Opinion on Drug Metabolism & Toxicology [Internet]. 2016 May 3 [cited 2024 Oct 18];12(5):499–508. Available from: https://doi.org/10.1517/17425255.2016.1168804 Rees DC, Johnson E, Lewinson O. ABC transporters: the power to change. Nat Rev Mol Cell Biol [Internet]. 2009 Mar [cited 2024 Oct 20];10(3):218–27. Available from: https://www.nature.com/articles/nrm2646 Löscher W, Potschka H. Blood-brain barrier active efflux transporters: ATP-binding cassette gene family. NeuroRx. 2005 Jan;2(1):86–98. Shen S, Zhang W. ABC transporters and drug efflux at the blood-brain barrier. Rev Neurosci. 2010;21(1):29–53. Schäfer AM, Meyer Zu Schwabedissen HE, Grube M. Expression and Function of Organic Anion Transporting Polypeptides in the Human Brain: Physiological and Pharmacological Implications. Pharmaceutics. 2021 Jun 4;13(6):834. Bossaerts L, Cacace R, Van Broeckhoven C. The role of ATP-binding cassette subfamily A in the etiology of Alzheimer’s disease. Molecular Neurodegeneration [Internet]. 2022 Apr 27 [cited 2024 Oct 20];17(1):31. Available from: https://doi.org/10.1186/s13024-022-00536-w Sanchez-Covarrubias L, Slosky LM, Thompson BJ, Davis TP, Ronaldson PT. Transporters at CNS barrier sites: obstacles or opportunities for drug delivery? Curr Pharm Des. 2014;20(10):1422–49. Morris ME, Rodriguez-Cruz V, Felmlee MA. SLC and ABC Transporters: Expression, Localization, and Species Differences at the Blood-Brain and the Blood-Cerebrospinal Fluid Barriers. AAPS J. 2017 Sep;19(5):1317–31. Azarmi M, Maleki H, Nikkam N, Malekinejad H. Transcellular brain drug delivery: A review on recent advancements. Int J Pharm. 2020 Aug 30;586:119582. Hervé F, Ghinea N, Scherrmann JM. CNS delivery via adsorptive transcytosis. AAPS J. 2008 Sep;10(3):455–72. Walter FR, Santa-Maria AR, Mészáros M, Veszelka S, Dér A, Deli MA. Surface charge, glycocalyx, and blood-brain barrier function. Tissue Barriers. 2021 Jul 3;9(3):1904773. Drin G, Rousselle C, Scherrmann JM, Rees AR, Temsamani J. Peptide delivery to the brain via adsorptive-mediated endocytosis: advances with SynB vectors. AAPS PharmSci. 2002;4(4):E26. Xiao G, Gan LS. Receptor-mediated endocytosis and brain delivery of therapeutic biologics. Int J Cell Biol. 2013;2013:703545. Claudio L, Kress Y, Norton WT, Brosnan CF. Increased vesicular transport and decreased mitochondrial content in blood-brain barrier endothelial cells during experimental autoimmune encephalomyelitis. Am J Pathol. 1989 Dec;135(6):1157–68. Pulgar VM. Transcytosis to Cross the Blood Brain Barrier, New Advancements and Challenges. Front Neurosci. 2018;12:1019. Pardridge WM, Chou T. Mathematical Models of Blood-Brain Barrier Transport of Monoclonal Antibodies Targeting the Transferrin Receptor and the Insulin Receptor. Pharmaceuticals (Basel). 2021 Jun 3;14(6):535. Zhang Y, Pardridge WM. Mediated efflux of IgG molecules from brain to blood across the blood–brain barrier. Journal of Neuroimmunology [Internet]. 2001 Mar 1 [cited 2024 Oct 20];114(1):168–72. Available from: https://www.jni-journal.com/article/S0165-5728(01)00242-9/abstract Pardridge WM. Brain gene therapy with Trojan horse lipid nanoparticles. Trends Mol Med. 2023 May;29(5):343–53. Markowicz-Piasecka M, Markiewicz A, Darłak P, Sikora J, Adla SK, Bagina S, et al. Current Chemical, Biological, and Physiological Views in the Development of Successful Brain-Targeted Pharmaceutics. Neurotherapeutics [Internet]. 2022 Apr 1 [cited 2024 Oct 20];19(3):942–76. Available from: https://doi.org/10.1007/s13311-022-01228-5 Tian X, Nyberg S, S Sharp P, Madsen J, Daneshpour N, Armes SP, et al. LRP-1-mediated intracellular antibody delivery to the Central Nervous System. Sci Rep. 2015 Jul 20;5:11990. Molino Y, David M, Varini K, Jabès F, Gaudin N, Fortoul A, et al. Use of LDL receptor—targeting peptide vectors for in vitro and in vivo cargo transport across the blood-brain barrier. The FASEB Journal [Internet]. 2017 [cited 2024 Oct 20];31(5):1807–27. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1096/fj.201600827R Nguyen LN, Ma D, Shui G, Wong P, Cazenave-Gassiot A, Zhang X, et al. Mfsd2a is a transporter for the essential omega-3 fatty acid docosahexaenoic acid. Nature. 2014 May 22;509(7501):503–6. Traub LM. Sorting it out: AP-2 and alternate clathrin adaptors in endocytic cargo selection. J Cell Biol. 2003 Oct 27;163(2):203–8. Virgintino D, Robertson D, Errede M, Benagiano V, Tauer U, Roncali L, et al. Expression of caveolin-1 in human brain microvessels. Neuroscience. 2002;115(1):145–52. Jodoin J, Demeule M, Fenart L, Cecchelli R, Farmer S, Linton KJ, et al. P-glycoprotein in blood-brain barrier endothelial cells: interaction and oligomerization with caveolins. J Neurochem. 2003 Nov;87(4):1010–23. Okamoto T, Schlegel A, Scherer PE, Lisanti MP. Caveolins, a family of scaffolding proteins for organizing “preassembled signaling complexes” at the plasma membrane. J Biol Chem. 1998 Mar 6;273(10):5419–22. Zenaro E, Piacentino G, Constantin G. The blood-brain barrier in Alzheimer’s disease. Neurobiol Dis. 2017 Nov;107:41–56. Minagar A, Alexander JS. Blood-brain barrier disruption in multiple sclerosis. Mult Scler. 2003 Dec;9(6):540–9. Nishihara H, Perriot S, Gastfriend BD, Steinfort M, Cibien C, Soldati S, et al. Intrinsic blood-brain barrier dysfunction contributes to multiple sclerosis pathogenesis. Brain. 2022 Jan 27;awac019. Bencurova E, Mlynarcik P, Bhide M. An insight into the ligand–receptor interactions involved in the translocation of pathogens across blood–brain barrier. FEMS Immunology & Medical Microbiology [Internet]. 2011 Dec 1 [cited 2024 Oct 20];63(3):297–318. Available from: https://doi.org/10.1111/j.1574-695X.2011.00867.x Saraiva C, Praça C, Ferreira R, Santos T, Ferreira L, Bernardino L. Nanoparticle-mediated brain drug delivery: Overcoming blood-brain barrier to treat neurodegenerative diseases. J Control Release. 2016 Aug 10;235:34–47. Zhao Y, Gan L, Ren L, Lin Y, Ma C, Lin X. Factors influencing the blood-brain barrier permeability. Brain Research [Internet]. 2022 Aug 1 [cited 2024 Oct 21];1788:147937. Available from: https://www.sciencedirect.com/science/article/pii/S0006899322001615 Peng X, Luo Z, He S, Zhang L, Li Y. Blood-Brain Barrier Disruption by Lipopolysaccharide and Sepsis-Associated Encephalopathy. Front Cell Infect Microbiol. 2021;11:768108. Kelleher RJ, Soiza RL. Evidence of endothelial dysfunction in the development of Alzheimer’s disease: Is Alzheimer’s a vascular disorder? American Journal of Cardiovascular Disease [Internet]. 2013 Nov 1 [cited 2024 Oct 21];3(4):197. Available from: https://pmc.ncbi.nlm.nih.gov/articles/PMC3819581/ Saunders NR, Dziegielewska KM, Møllgård K, Habgood MD. Markers for blood-brain barrier integrity: how appropriate is Evans blue in the twenty-first century and what are the alternatives? Front Neurosci. 2015;9:385. Saria A, Lundberg JM. Evans blue fluorescence: quantitative and morphological evaluation of vascular permeability in animal tissues. J Neurosci Methods. 1983 May;8(1):41–9. Chen KB, Kuo EY, Poon KS, Cheng KS, Chang CS, Liu YC, et al. Increase in Evans blue dye extravasation into the brain in the late developmental stage. Neuroreport. 2012 Aug 22;23(12):699–701 Emmett M, Cerniglia CE, Crowle AJ. Differential serum protein binding of benzidine- and benzidine-congener based dyes and their derivatives. Arch Toxicol. 1985 Jun;57(2):130–5. Moos T, Møllgård K. Cerebrovascular permeability to azo dyes and plasma proteins in rodents of different ages. Neuropathol Appl Neurobiol. 1993 Apr;19(2):120–7. Taheri S, Gasparovic C, Shah NJ, Rosenberg GA. Quantitative measurement of blood-brain barrier permeability in human using dynamic contrast-enhanced MRI with fast T1 mapping. Magn Reson Med. 2011 Apr;65(4):1036–42. Srinivasan B, Kolli AR, Esch MB, Abaci HE, Shuler ML, Hickman JJ. TEER measurement techniques for in vitro barrier model systems. J Lab Autom. 2015 Apr;20(2):107–26. Hajal C, Le Roi B, Kamm RD, Maoz BM. Biology and Models of the Blood–Brain Barrier. Annual Review of Biomedical Engineering [Internet]. 2021 [cited 2022 Nov 10];23(1):359–84. Available from: https://doi.org/10.1146/annurev-bioeng-082120-042814 Bernas MJ, Cardoso FL, Daley SK, Weinand ME, Campos AR, Ferreira AJG, et al. Establishment of primary cultures of human brain microvascular endothelial cells to provide an in vitro cellular model of the blood-brain barrier. Nat Protoc. 2010 Jul;5(7):1265–72. Chaulagain B, Gothwal A, Lamptey RNL, Trivedi R, Mahanta AK, Layek B, et al. Experimental Models of In Vitro Blood-Brain Barrier for CNS Drug Delivery: An Evolutionary Perspective. Int J Mol Sci. 2023 Jan 31;24(3):2710. Rahman NA, Rasil ANHM, Meyding-Lamade U, Craemer EM, Diah S, Tuah AA, et al. Immortalized endothelial cell lines for in vitro blood-brain barrier models: A systematic review. Brain Res. 2016 Jul 1;1642:532–45. Rauh J, Meyer J, Beuckmann C, Galla HJ. Development of an in vitro cell culture system to mimic the blood-brain barrier. Prog Brain Res. 1992;91:117–21. Stone NL, England TJ, O’Sullivan SE. A Novel Transwell Blood Brain Barrier Model Using Primary Human Cells. Front Cell Neurosci. 2019;13:230. Bischel LL, Coneski PN, Lundin JG, Wu PK, Giller CB, Wynne J, et al. Electrospun gelatin biopapers as substrate for in vitro bilayer models of blood-brain barrier tissue. J Biomed Mater Res A. 2016 Apr;104(4):901–9. Ahn SI, Sei YJ, Park HJ, Kim J, Ryu Y, Choi JJ, et al. Microengineered human blood-brain barrier platform for understanding nanoparticle transport mechanisms. Nat Commun. 2020 Jan 10;11(1):175. Xu H, Li Z, Yu Y, Sizdahkhani S, Ho WS, Yin F, et al. A dynamic in vivo-like organotypic blood-brain barrier model to probe metastatic brain tumors. Sci Rep [Internet]. 2016 Nov 10 [cited 2022 Nov 10];6:36670. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5103210/ Katt ME, Linville RM, Mayo LN, Xu ZS, Searson PC. Functional brain-specific microvessels from iPSC-derived human brain microvascular endothelial cells: the role of matrix composition on monolayer formation. Fluids and Barriers of the CNS [Internet]. 2018 Feb 20 [cited 2022 Nov 10];15(1):7. Available from: https://doi.org/10.1186/s12987-018-0092-7 Sun XY, Ju XC, Li Y, Zeng PM, Wu J, Zhou YY, et al. Generation of vascularized brain organoids to study neurovascular interactions. Elife. 2022 May 4;11:e76707. Wang YI, Abaci HE, Shuler ML. Microfluidic blood-brain barrier model provides in vivo-like barrier properties for drug permeability screening. Biotechnol Bioeng. 2017 Jan;114(1):184–94. Yeon JH, Na D, Choi K, Ryu SW, Choi C, Park JK. Reliable permeability assay system in a microfluidic device mimicking cerebral vasculatures. Biomed Microdevices. 2012 Dec;14(6):1141–8. Shin Y, Choi SH, Kim E, Bylykbashi E, Kim JA, Chung S, et al. Blood–Brain Barrier Dysfunction in a 3D In Vitro Model of Alzheimer’s Disease. Advanced Science [Internet]. 2019 [cited 2024 Oct 21];6(20):1900962. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1002/advs.201900962 Bajaj P, Schweller RM, Khademhosseini A, West JL, Bashir R. 3D biofabrication strategies for tissue engineering and regenerative medicine. Annu Rev Biomed Eng. 2014 Jul 11;16:247–76. Yue K, Trujillo-de Santiago G, Alvarez MM, Tamayol A, Annabi N, Khademhosseini A. Synthesis, properties, and biomedical applications of gelatin methacryloyl (GelMA) hydrogels. Biomaterials. 2015 Dec;73:254–71. Zhang Z, Jin Y, Yin J, Xu C, Xiong R, Christensen K, et al. Evaluation of bioink printability for bioprinting applications. Applied Physics Reviews [Internet]. 2018 Dec 10 [cited 2024 Oct 21];5(4):041304. Available from: https://doi.org/10.1063/1.5053979 Yi HG, Jeong YH, Kim Y, Choi YJ, Moon HE, Park SH, et al. A bioprinted human-glioblastoma-on-a-chip for the identification of patient-specific responses to chemoradiotherapy. Nat Biomed Eng. 2019 Jul;3(7):509–19. Pardridge WM. The blood-brain barrier: bottleneck in brain drug development. NeuroRx. 2005 Jan;2(1):3–14. Begley DJ. Delivery of therapeutic agents to the central nervous system: the problems and the possibilities. Pharmacol Ther. 2004 Oct;104(1):29–45. Deli MA, Abrahám CS, Kataoka Y, Niwa M. Permeability studies on in vitro blood-brain barrier models: physiology, pathology, and pharmacology. Cell Mol Neurobiol. 2005 Feb;25(1):59–127. Wilhelm I, Krizbai IA. In vitro models of the blood-brain barrier for the study of drug delivery to the brain. Mol Pharm. 2014 Jul 7;11(7):1949–63. Moyaert P, Padrela BE, Morgan CA, Petr J, Versijpt J, Barkhof F, et al. Imaging blood-brain barrier dysfunction: A state-of-the-art review from a clinical perspective. Frontiers in Aging Neuroscience [Internet]. 2023 Apr 17 [cited 2024 Oct 21];15:1132077. Available from: https://pmc.ncbi.nlm.nih.gov/articles/PMC10150073/ Pinheiro RGR, Coutinho AJ, Pinheiro M, Neves AR. Nanoparticles for Targeted Brain Drug Delivery: What Do We Know? Int J Mol Sci. 2021 Oct 28;22(21):11654. Teleanu DM, Chircov C, Grumezescu AM, Volceanov A, Teleanu RI. Blood-Brain Delivery Methods Using Nanotechnology. Pharmaceutics. 2018 Dec 11;10(4):269. Herndon JM, Tome ME, Davis TP. Chapter 9 - Development and Maintenance of the Blood–Brain Barrier. In: Caplan LR, Biller J, Leary MC, Lo EH, Thomas AJ, Yenari M, et al., editors. Primer on Cerebrovascular Diseases (Second Edition) [Internet]. San Diego: Academic Press; 2017 [cited 2024 Oct 21]. p. 51–6. Available from: https://www.sciencedirect.com/science/article/pii/B9780128030585000096 Batrakova EV, Kim MS. Using exosomes, naturally-equipped nanocarriers, for drug delivery. J Control Release. 2015 Dec 10;219:396–405. Kovacs ZI, Kim S, Jikaria N, Qureshi F, Milo B, Lewis BK, et al. Disrupting the blood-brain barrier by focused ultrasound induces sterile inflammation. Proc Natl Acad Sci U S A. 2017 Jan 3;114(1):E75–84. Patel T, Zhou J, Piepmeier JM, Saltzman WM. Polymeric nanoparticles for drug delivery to the central nervous system. Adv Drug Deliv Rev. 2012 May 15;64(7):701–5. Biomarkers Definitions Working Group. Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin Pharmacol Ther. 2001 Mar;69(3):89–95. Califf RM. Biomarker definitions and their applications. Exp Biol Med (Maywood). 2018 Feb;243(3):213–21. Lesko LJ, Atkinson AJ. Use of biomarkers and surrogate endpoints in drug development and regulatory decision making: criteria, validation, strategies. Annu Rev Pharmacol Toxicol. 2001;41:347–66. Zapata-Acevedo JF, Mantilla-Galindo A, Vargas-Sánchez K, González-Reyes RE. Chapter One - Blood-brain barrier biomarkers. In: Makowski GS, editor. Advances in Clinical Chemistry [Internet]. Elsevier; 2024 [cited 2024 Oct 21]. p. 1–88. (Advances in Clinical Chemistry; vol. 121). Available from: https://www.sciencedirect.com/science/article/pii/S0065242324000659 Bodaghi A, Fattahi N, Ramazani A. Biomarkers: Promising and valuable tools towards diagnosis, prognosis and treatment of Covid-19 and other diseases. Heliyon. 2023 Feb;9(2):e13323. Sandoval KE, Witt KA. Blood-brain barrier tight junction permeability and ischemic stroke. Neurobiol Dis. 2008 Nov;32(2):200–19. Enzmann G, Mysiorek C, Gorina R, Cheng YJ, Ghavampour S, Hannocks MJ, et al. The neurovascular unit as a selective barrier to polymorphonuclear granulocyte (PMN) infiltration into the brain after ischemic injury. Acta Neuropathol. 2013 Mar;125(3):395–412. Kirk J, Plumb J, Mirakhur M, McQuaid S. Tight junctional abnormality in multiple sclerosis white matter affects all calibres of vessel and is associated with blood–brain barrier leakage and active demyelination. The Journal of Pathology [Internet]. 2003 [cited 2024 Oct 21];201(2):319–27. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1002/path.1434 Libro R, Bramanti P, Mazzon E. The role of the Wnt canonical signaling in neurodegenerative diseases. Life Sci. 2016 Aug 1;158:78–88. Majno G, Palade GE, Schoefl GI. Studies on inflammation. II. The site of action of histamine and serotonin along the vascular tree: a topographic study. J Biophys Biochem Cytol. 1961 Dec;11(3):607–26. Kaya M, Ahishali B. Assessment of permeability in barrier type of endothelium in brain using tracers: Evans blue, sodium fluorescein, and horseradish peroxidase. Methods Mol Biol. 2011;763:369–82. Miah MK, Chowdhury EA, Bickel U, Mehvar R. Evaluation of [14C] and [13C]Sucrose as Blood–Brain Barrier Permeability Markers. JPharmSci [Internet]. 2017 Jun 1 [cited 2024 Oct 21];106(6):1659–69. Available from: https://jpharmsci.org/article/S0022-3549(17)30083-7/fulltext Koh SXT, Lee JKW. S100B as a marker for brain damage and blood-brain barrier disruption following exercise. Sports Med. 2014 Mar;44(3):369–85. Montagne A, Barnes SR, Sweeney MD, Halliday MR, Sagare AP, Zhao Z, et al. Blood-brain barrier breakdown in the aging human hippocampus. Neuron. 2015 Jan 21;85(2):296–302. Janelidze S, Lindqvist D, Francardo V, Hall S, Zetterberg H, Blennow K, et al. Increased CSF biomarkers of angiogenesis in Parkinson disease. Neurology. 2015 Nov 24;85(21):1834–42. Ivens S, Kaufer D, Flores LP, Bechmann I, Zumsteg D, Tomkins O, et al. TGF-β receptor-mediated albumin uptake into astrocytes is involved in neocortical epileptogenesis. Brain [Internet]. 2007 Feb 1 [cited 2024 Oct 21];130(2):535–47. Available from: https://doi.org/10.1093/brain/awl317 Braganza O, Bedner P, Hüttmann K, von Staden E, Friedman A, Seifert G, et al. Albumin is taken up by hippocampal NG2 cells and astrocytes and decreases gap junction coupling. Epilepsia. 2012 Nov;53(11):1898–906. Hanzel CE, Iulita MF, Eyjolfsdottir H, Hjorth E, Schultzberg M, Eriksdotter M, et al. Analysis of matrix metallo-proteases and the plasminogen system in mild cognitive impairment and Alzheimer’s disease cerebrospinal fluid. J Alzheimers Dis. 2014;40(3):667–78. Craig-Schapiro R, Kuhn M, Xiong C, Pickering EH, Liu J, Misko TP, et al. Multiplexed immunoassay panel identifies novel CSF biomarkers for Alzheimer’s disease diagnosis and prognosis. PLoS One. 2011 Apr 19;6(4):e18850. Bernardo-Castro S, Sousa JA, Brás A, Cecília C, Rodrigues B, Almendra L, et al. Pathophysiology of Blood–Brain Barrier Permeability Throughout the Different Stages of Ischemic Stroke and Its Implication on Hemorrhagic Transformation and Recovery. Front Neurol [Internet]. 2020 Dec 9 [cited 2024 Oct 21];11. Available from: https://www.frontiersin.org/journals/neurology/articles/10.3389/fneur.2020.594672/full Erickson MA, Banks WA. Age-Associated Changes in the Immune System and Blood–Brain Barrier Functions. International Journal of Molecular Sciences [Internet]. 2019 Jan [cited 2024 Oct 21];20(7):1632. Available from: https://www.mdpi.com/1422-0067/20/7/1632 Varatharaj A, Liljeroth M, Darekar A, Larsson HBW, Galea I, Cramer SP. Blood–brain barrier permeability measured using dynamic contrast-enhanced magnetic resonance imaging: a validation study. The Journal of Physiology [Internet]. 2019 [cited 2024 Oct 21];597(3):699–709. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1113/JP276887 Montagne A, Nation DA, Pa J, Sweeney MD, Toga AW, Zlokovic BV. Brain imaging of neurovascular dysfunction in Alzheimer’s disease. Acta Neuropathol [Internet]. 2016 May 1 [cited 2024 Oct 21];131(5):687–707. Available from: https://doi.org/10.1007/s00401-016-1570-0 Lee RL, Funk KE. Imaging blood–brain barrier disruption in neuroinflammation and Alzheimer’s disease. Front Aging Neurosci [Internet]. 2023 Mar 17 [cited 2024 Oct 21];15. Available from: https://www.frontiersin.org/journals/aging-neuroscience/articles/10.3389/fnagi.2023.1144036/full Donato R, Cannon BR, Sorci G, Riuzzi F, Hsu K, Weber DJ, et al. Functions of S100 proteins. Curr Mol Med. 2013 Jan;13(1):24–57. Donato R, Sorci G, Riuzzi F, Arcuri C, Bianchi R, Brozzi F, et al. S100B’s double life: intracellular regulator and extracellular signal. Biochim Biophys Acta. 2009 Jun;1793(6):1008–22. Michetti F, Corvino V, Geloso MC, Lattanzi W, Bernardini C, Serpero L, et al. The S100B protein in biological fluids: more than a lifelong biomarker of brain distress. J Neurochem. 2012 Mar;120(5):644–59. Kleindienst A, Hesse F, Bullock MR, Buchfelder M. The neurotrophic protein S100B: value as a marker of brain damage and possible therapeutic implications. Prog Brain Res. 2007;161:317–25. OʼConnell B, Kelly ÁM, Mockler D, Orešič M, Denvir K, Farrell G, et al. Use of Blood Biomarkers in the Assessment of Sports-Related Concussion-A Systematic Review in the Context of Their Biological Significance. Clin J Sport Med. 2018 Nov;28(6):561–71. Michetti F, Clementi ME, Di Liddo R, Valeriani F, Ria F, Rende M, et al. The S100B Protein: A Multifaceted Pathogenic Factor More Than a Biomarker. Int J Mol Sci. 2023 May 31;24(11):9605. Janigro D, Kawata K, Silverman E, Marchi N, Diaz-Arrastia R. Is Salivary S100B a Biomarker of Traumatic Brain Injury? A Pilot Study. Front Neurol. 2020;11:528. Roche M, Rondeau P, Singh NR, Tarnus E, Bourdon E. The antioxidant properties of serum albumin. FEBS Lett. 2008 Jun 11;582(13):1783–7. Gounden V, Vashisht R, Jialal I. Hypoalbuminemia. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2023 [cited 2023 Sep 30]. Available from: http://www.ncbi.nlm.nih.gov/books/NBK526080/ Cui N, Hu M, Khalil RA. Chapter One - Biochemical and Biological Attributes of Matrix Metalloproteinases. In: Khalil RA, editor. Progress in Molecular Biology and Translational Science [Internet]. Academic Press; 2017 [cited 2024 Oct 21]. p. 1–73. (Matrix Metalloproteinases and Tissue Remodeling in Health and Disease: Cardiovascular Remodeling; vol. 147). Available from: https://www.sciencedirect.com/science/article/pii/S1877117317300327 Yang Y, Rosenberg GA. Matrix metalloproteinases as therapeutic targets for stroke. Brain Res. 2015 Oct 14;1623:30–8. McColl BW, Rothwell NJ, Allan SM. Systemic inflammation alters the kinetics of cerebrovascular tight junction disruption after experimental stroke in mice. Journal of Neuroscience [Internet]. 2008;28(38):9451–62. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-58149357031&doi=10.1523%2fJNEUROSCI.2674-08.2008&partnerID=40&md5=f7b0b322e0ebebcd13dd523533fdb3a9 Lee JY, Lee HE, Kang SR, Choi HY, Ryu JH, Yune TY. Fluoxetine inhibits transient global ischemia-induced hippocampal neuronal death and memory impairment by preventing blood-brain barrier disruption. Neuropharmacology [Internet]. 2014;79:161–71. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84890368028&doi=10.1016%2fj.neuropharm.2013.11.011&partnerID=40&md5=95182e261e038b1ad97112f5374b7fbe Amtul Z, Yang J, Nikolova S, Lee TY, Bartha R, Cechetto DF. The Dynamics of Impaired Blood-Brain Barrier Restoration in a Rat Model of Co-morbid Injury. Molecular Neurobiology [Internet]. 2018;55(10):8071–83. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85044528264&doi=10.1007%2fs12035-018-0904-4&partnerID=40&md5=a400f06d62c4b522402e9e3f37c1dba7 Nygårdas PT, Hinkkanen AE. Up-regulation of MMP-8 and MMP-9 activity in the BALB/c mouse spinal cord correlates with the severity of experimental autoimmune encephalomyelitis. Clin Exp Immunol. 2002 May;128(2):245–54. Lee HS, Namkoong K, Kim DH, Kim KJ, Cheong YH, Kim SS, et al. Hydrogen peroxide-induced alterations of tight junction proteins in bovine brain microvascular endothelial cells. Microvasc Res. 2004 Nov;68(3):231–8. Lenglet S, Montecucco F, Mach F. Role of matrix metalloproteinases in animal models of ischemic stroke. Curr Vasc Pharmacol. 2015;13(2):161–6. Wang J, Zhang D, Fu X, Yu L, Lu Z, Gao Y, et al. Carbon monoxide-releasing molecule-3 protects against ischemic stroke by suppressing neuroinflammation and alleviating blood-brain barrier disruption. J Neuroinflammation. 2018/06/23 ed. 2018 Jun 21;15(1):188. Welser JV, Halder SK, Kant R, Boroujerdi A, Milner R. Endothelial α6β4 integrin protects during experimental autoimmune encephalomyelitis-induced neuroinflammation by maintaining vascular integrity and tight junction protein expression. J Neuroinflammation. 2017/11/11 ed. 2017 Nov 9;14(1):217. Girolamo F, Errede M, Longo G, Annese T, Alias C, Ferrara G, et al. Defining the role of NG2-expressing cells in experimental models of multiple sclerosis. A biofunctional analysis of the neurovascular unit in wild type and NG2 null mice. PLoS ONE [Internet]. 2019;14(3). Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85062958806&doi=10.1371%2fjournal.pone.0213508&partnerID=40&md5=88907e5853c3eebe5d7226b4f3a19456 Campbell SJ, Carare-Nnadi RO, Losey PH, Anthony DC. Loss of the atypical inflammatory response in juvenile and aged rats. Neuropathology and Applied Neurobiology [Internet]. 2007;33(1):108–20. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-33846154280&doi=10.1111%2fj.1365-2990.2006.00773.x&partnerID=40&md5=dc579b02d9de6f8d8a12d6dc8f82331d Jiao H, Wang Z, Liu Y, Wang P, Xue Y. Specific role of tight junction proteins claudin-5, occludin, and ZO-1 of the blood-brain barrier in a focal cerebral ischemic insult. J Mol Neurosci. 2011 Jun;44(2):130–9. Hamann GF, Liebetrau M, Martens H, Burggraf D, Kloss CUA, Bültemeier G, et al. Microvascular basal lamina injury after experimental focal cerebral ischemia and reperfusion in the rat. J Cereb Blood Flow Metab. 2002 May;22(5):526–33. Härtig W, Mages B, Aleithe S, Nitzsche B, Altmann S, Barthel H, et al. Damaged Neocortical Perineuronal Nets Due to Experimental Focal Cerebral Ischemia in Mice, Rats and Sheep. Front Integr Neurosci. 2017;11:15. Brooks GA. The Science and Translation of Lactate Shuttle Theory. Cell Metab. 2018 Apr 3;27(4):757–85. Magistretti PJ, Allaman I. Lactate in the brain: from metabolic end-product to signalling molecule. Nat Rev Neurosci. 2018 Apr;19(4):235–49. Lee HW, Xu Y, Zhu X, Jang C, Choi W, Bae H, et al. Endothelium-derived lactate is required for pericyte function and blood-brain barrier maintenance. EMBO J. 2022 May 2;41(9):e109890. Vazana U, Veksler R, Pell GS, Prager O, Fassler M, Chassidim Y, et al. Glutamate-Mediated Blood-Brain Barrier Opening: Implications for Neuroprotection and Drug Delivery. J Neurosci. 2016 Jul 20;36(29):7727–39. Deracinois B, Lenfant AM, Dehouck MP, Flahaut C. Tissue Non-specific Alkaline Phosphatase (TNAP) in Vessels of the Brain. Subcell Biochem. 2015;76:125–51. Brennan PN, Dillon JF, Tapper EB. Gamma-Glutamyl Transferase (γ-GT) - an old dog with new tricks? Liver Int. 2022 Jan;42(1):9–15. Fujii J, Osaki T, Soma Y, Matsuda Y. Critical Roles of the Cysteine-Glutathione Axis in the Production of γ-Glutamyl Peptides in the Nervous System. Int J Mol Sci. 2023 Apr 28;24(9):8044. Arbaizar-Rovirosa M, Gallizioli M, Lozano JJ, Sidorova J, Pedragosa J, Figuerola S, et al. Transcriptomics and translatomics identify a robust inflammatory gene signature in brain endothelial cells after ischemic stroke. J Neuroinflammation. 2023 Sep 11;20(1):207. Munji RN, Soung AL, Weiner GA, Sohet F, Semple BD, Trivedi A, et al. Profiling the mouse brain endothelial transcriptome in health and disease models reveals a core blood-brain barrier dysfunction module. Nat Neurosci. 2019 Nov;22(11):1892–902. Huang SH, Wang L, Chi F, Wu CH, Cao H, Zhang A, et al. Circulating brain microvascular endothelial cells (cBMECs) as potential biomarkers of the blood-brain barrier disorders caused by microbial and non-microbial factors. PLoS One. 2013;8(4):e62164. Couch Y, Akbar N, Roodselaar J, Evans MC, Gardiner C, Sargent I, et al. Circulating endothelial cell-derived extracellular vesicles mediate the acute phase response and sickness behaviour associated with CNS inflammation. Sci Rep. 2017 Aug 29;7(1):9574. Ramos-Zaldívar HM, Polakovicova I, Salas-Huenuleo E, Corvalán AH, Kogan MJ, Yefi CP, et al. Extracellular vesicles through the blood-brain barrier: a review. Fluids Barriers CNS. 2022 Jul 25;19(1):60. Morel N, Morel O, Petit L, Hugel B, Cochard JF, Freyssinet JM, et al. Generation of procoagulant microparticles in cerebrospinal fluid and peripheral blood after traumatic brain injury. J Trauma. 2008 Mar;64(3):698–704. Nekludov M, Bellander BM, Gryth D, Wallen H, Mobarrez F. Brain-Derived Microparticles in Patients with Severe Isolated TBI. Brain Inj. 2017;31(13–14):1856–62. Beard DJ, Brown LS, Sutherland BA. The rise of pericytes in neurovascular research. J Cereb Blood Flow Metab. 2020 Dec;40(12):2366–73. Bondjers C, He L, Takemoto M, Norlin J, Asker N, Hellström M, et al. Microarray analysis of blood microvessels from PDGF-B and PDGF-Rbeta mutant mice identifies novel markers for brain pericytes. FASEB J. 2006 Aug;20(10):1703–5. Bell RD, Winkler EA, Sagare AP, Singh I, LaRue B, Deane R, et al. Pericytes Control Key Neurovascular Functions and Neuronal Phenotype in the Adult Brain and during Brain Aging. Neuron [Internet]. 2010;68(3):409–27. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-78049279739&doi=10.1016%2fj.neuron.2010.09.043&partnerID=40&md5=5870b31f5295c8b322793f7a64016b34 Potokar M, Morita M, Wiche G, Jorgačevski J. The Diversity of Intermediate Filaments in Astrocytes. Cells. 2020 Jul 2;9(7):1604. Messing A, Brenner M. GFAP at 50. ASN Neuro. 2020;12:1759091420949680. Lundgaard I, Osório MJ, Kress BT, Sanggaard S, Nedergaard M. White matter astrocytes in health and disease. Neuroscience. 2014 Sep 12;276:161–73. Janigro D, Mondello S, Posti JP, Unden J. GFAP and S100B: What You Always Wanted to Know and Never Dared to Ask. Front Neurol. 2022;13:835597. Moreels M, Vandenabeele F, Dumont D, Robben J, Lambrichts I. Alpha-smooth muscle actin (alpha-SMA) and nestin expression in reactive astrocytes in multiple sclerosis lesions: potential regulatory role of transforming growth factor-beta 1 (TGF-beta1). Neuropathol Appl Neurobiol. 2008 Oct;34(5):532–46. Abbott NJ. Inflammatory mediators and modulation of blood-brain barrier permeability. Cell Mol Neurobiol. 2000 Apr;20(2):131–47. Walsh J, Tozer DJ, Sari H, Hong YT, Drazyk A, Williams G, et al. Microglial activation and blood-brain barrier permeability in cerebral small vessel disease. Brain. 2021 Jun 22;144(5):1361–71. da Fonseca ACC, Matias D, Garcia C, Amaral R, Geraldo LH, Freitas C, et al. The impact of microglial activation on blood-brain barrier in brain diseases. Front Cell Neurosci. 2014;8:362 Xue F, Du H. TREM2 Mediates Microglial Anti-Inflammatory Activations in Alzheimer’s Disease: Lessons Learned from Transcriptomics. Cells. 2021 Feb 4;10(2):321. Ulland TK, Colonna M. TREM2 - a key player in microglial biology and Alzheimer disease. Nat Rev Neurol. 2018 Nov;14(11):667–75. Wang D, Chen F, Han Z, Yin Z, Ge X, Lei P. Relationship Between Amyloid-β Deposition and Blood-Brain Barrier Dysfunction in Alzheimer’s Disease. Front Cell Neurosci. 2021;15:695479. Jurga AM, Paleczna M, Kuter KZ. Overview of General and Discriminating Markers of Differential Microglia Phenotypes. Front Cell Neurosci. 2020;14:198. Rodriguez-Mogeda C, Rodríguez-Lorenzo S, Attia J, van Horssen J, Witte ME, de Vries HE. Breaching Brain Barriers: B Cell Migration in Multiple Sclerosis. Biomolecules. 2022 Jun 7;12(6):800. Chou ML, Babamale AO, Walker TL, Cognasse F, Blum D, Burnouf T. Blood-brain crosstalk: the roles of neutrophils, platelets, and neutrophil extracellular traps in neuropathologies. Trends Neurosci. 2023 Sep;46(9):764–79. Shu Y, Peng F, Zhao B, Liu C, Li Q, Li H, et al. Transfer of patient’s peripheral blood mononuclear cells (PBMCs) disrupts blood-brain barrier and induces anti-NMDAR encephalitis: a study of novel humanized PBMC mouse model. J Neuroinflammation. 2023 Jul 13;20(1):164. Cheng F, Yuan Q, Yang J, Wang W, Liu H. The prognostic value of serum neuron-specific enolase in traumatic brain injury: systematic review and meta-analysis. PLoS One. 2014;9(9):e106680. Ye W, Tang Y, Dong X, Chen G, Yan Y, Zhou L, et al. Predictive Value and Correlation of Neuron-Specific Enolase for Prognosis in Patients with Coma: A Systematic Review and Meta-Analysis. Eur Neurol. 2020;83(6):555–65. Correale J, Rabinowicz AL, Heck CN, Smith TD, Loskota WJ, DeGiorgio CM. Status epilepticus increases CSF levels of neuron-specific enolase and alters the blood-brain barrier. Neurology. 1998 May;50(5):1388–91. Kawata K, Liu CY, Merkel SF, Ramirez SH, Tierney RT, Langford D. Blood biomarkers for brain injury: What are we measuring? Neurosci Biobehav Rev. 2016 Sep;68:460–73. van der Plas E, Long JD, Koscik TR, Magnotta V, Monckton DG, Cumming SA, et al. Blood-Based Markers of Neuronal Injury in Adult-Onset Myotonic Dystrophy Type 1. Front Neurol. 2021;12:791065. Siman R, Cui H, Wewerka SS, Hamel L, Smith DH, Zwank MD. Serum SNTF, a Surrogate Marker of Axonal Injury, Is Prognostic for Lasting Brain Dysfunction in Mild TBI Treated in the Emergency Department. Front Neurol. 2020;11:249. Papa L, Rosenthal K, Silvestri F, Axley JC, Kelly JM, Lewis SB. Evaluation of alpha-II-spectrin breakdown products as potential biomarkers for early recognition and severity of aneurysmal subarachnoid hemorrhage. Sci Rep. 2018 Sep 6;8(1):13308. Plog BA, Dashnaw ML, Hitomi E, Peng W, Liao Y, Lou N, et al. Biomarkers of traumatic injury are transported from brain to blood via the glymphatic system. J Neurosci. 2015 Jan 14;35(2):518–26. Lindland ES, Solheim AM, Andreassen S, Bugge R, Eikeland R, Reiso H, et al. Dynamic contrast-enhanced MRI shows altered blood-brain barrier function of deep gray matter structures in neuroborreliosis: a case-control study. Eur Radiol Exp. 2023 Sep 15;7(1):52. Gupta N, Simpkins AN, Hitomi E, Dias C, Leigh R, NIH Natural History of Stroke Investigators. White Matter Hyperintensity-Associated Blood-Brain Barrier Disruption and Vascular Risk Factors. J Stroke Cerebrovasc Dis. 2018 Feb;27(2):466–71. Thrippleton MJ, Backes WH, Sourbron S, Ingrisch M, van Osch MJP, Dichgans M, et al. Quantifying blood-brain barrier leakage in small vessel disease: Review and consensus recommendations. Alzheimers Dement. 2019 Jun;15(6):840–58. Sourbron SP, Buckley DL. Classic models for dynamic contrast-enhanced MRI. NMR Biomed. 2013 Aug;26(8):1004–27. Cho AH, Cho YP, Lee DH, Kwon TW, Kwon SU, Suh DC, et al. Reperfusion injury on magnetic resonance imaging after carotid revascularization. Stroke. 2014 Feb;45(2):602–4. Pintaske J, Martirosian P, Graf H, Erb G, Lodemann KP, Claussen CD, et al. Relaxivity of Gadopentetate Dimeglumine (Magnevist), Gadobutrol (Gadovist), and Gadobenate Dimeglumine (MultiHance) in human blood plasma at 0.2, 1.5, and 3 Tesla. Invest Radiol. 2006 Mar;41(3):213–21. Notohamiprodjo M, Pedersen M, Glaser C, Helck AD, Lodemann KP, Jespersen B, et al. Comparison of Gd-DTPA and Gd-BOPTA for studying renal perfusion and filtration. J Magn Reson Imaging. 2011 Sep;34(3):595–607. Thomsen HS, Morcos SK, Almén T, Bellin MF, Bertolotto M, Bongartz G, et al. Nephrogenic systemic fibrosis and gadolinium-based contrast media: updated ESUR Contrast Medium Safety Committee guidelines. Eur Radiol. 2013 Feb;23(2):307–18. Wong HL, Wu XY, Bendayan R. Nanotechnological advances for the delivery of CNS therapeutics. Adv Drug Deliv Rev. 2012 May 15;64(7):686–700. Nissen JC. Microglial Function across the Spectrum of Age and Gender. Int J Mol Sci. 2017 Mar 4;18(3):561. DiSabato DJ, Quan N, Godbout JP. Neuroinflammation: the devil is in the details. J Neurochem. 2016 Oct;139 Suppl 2(Suppl 2):136–53. Cui J, Chen Y, Wang HY, Wang RF. Mechanisms and pathways of innate immune activation and regulation in health and cancer. Hum Vaccin Immunother. 2014;10(11):3270–85. Heneka MT, Kummer MP, Latz E. Innate immune activation in neurodegenerative disease. Nat Rev Immunol. 2014 Jul;14(7):463–77. Akira S, Uematsu S, Takeuchi O. Pathogen recognition and innate immunity. Cell. 2006 Feb 24;124(4):783–801. Iwasaki A, Medzhitov R. Toll-like receptor control of the adaptive immune responses. Nat Immunol. 2004 Oct;5(10):987–95. Kircheis R, Planz O. The Role of Toll-like Receptors (TLRs) and Their Related Signaling Pathways in Viral Infection and Inflammation. Int J Mol Sci. 2023 Apr 4;24(7):6701. Wang L, Lin F, Ren M, Liu X, Xie W, Zhang A, et al. The PICK1/TLR4 complex on microglia is involved in the regulation of LPS-induced sepsis-associated encephalopathy. Int Immunopharmacol. 2021 Nov;100:108116. Hoving JC, Wilson GJ, Brown GD. Signalling C-type lectin receptors, microbial recognition and immunity. Cell Microbiol. 2014 Feb;16(2):185–94. Drummond RA, Brown GD. Signalling C-type lectins in antimicrobial immunity. PLoS Pathog. 2013;9(7):e1003417. Sundaram B, Tweedell RE, Kumar SP, Kanneganti TD. The NLR family of innate immune and cell death sensors. Immunity [Internet]. 2024 Apr 9 [cited 2024 Oct 21];57(4):674–99. Available from: https://www.cell.com/immunity/abstract/S1074-7613(24)00133-X Elinav E, Strowig T, Henao-Mejia J, Flavell RA. Regulation of the antimicrobial response by NLR proteins. Immunity. 2011 May 27;34(5):665–79. Waisman A, Liblau RS, Becher B. Innate and adaptive immune responses in the CNS. Lancet Neurol. 2015 Sep;14(9):945–55. Engelhardt B. T cell migration into the central nervous system during health and disease: Different molecular keys allow access to different central nervous system compartments. Clinical and Experimental Neuroimmunology [Internet]. 2010 [cited 2024 Oct 21];1(2):79–93. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1759-1961.2010.009.x Aydin S, Pareja J, Schallenberg VM, Klopstein A, Gruber T, Page N, et al. Antigen recognition detains CD8+ T cells at the blood-brain barrier and contributes to its breakdown. Nat Commun [Internet]. 2023 May 30 [cited 2024 Oct 21];14(1):3106. Available from: https://www.nature.com/articles/s41467-023-38703-2 Ellwardt E, Walsh JT, Kipnis J, Zipp F. Understanding the Role of T Cells in CNS Homeostasis. Trends Immunol. 2016 Feb;37(2):154–65. Hickey WF, Hsu BL, Kimura H. T-lymphocyte entry into the central nervous system. J Neurosci Res. 1991 Feb;28(2):254–60. Engelhardt B, Ransohoff RM. The ins and outs of T-lymphocyte trafficking to the CNS: anatomical sites and molecular mechanisms. Trends Immunol. 2005 Sep;26(9):485–95. Gadani SP, Cronk JC, Norris GT, Kipnis J. IL-4 in the brain: a cytokine to remember. J Immunol. 2012 Nov 1;189(9):4213–9. Davoust N, Vuaillat C, Androdias G, Nataf S. From bone marrow to microglia: barriers and avenues. Trends Immunol. 2008 May;29(5):227–34. Glezer I, Simard AR, Rivest S. Neuroprotective role of the innate immune system by microglia. Neuroscience. 2007 Jul 29;147(4):867–83. Menassa DA, Gomez-Nicola D. Microglial Dynamics During Human Brain Development. Front Immunol. 2018;9:1014. Mapunda JA, Tibar H, Regragui W, Engelhardt B. How Does the Immune System Enter the Brain? Frontiers in Immunology [Internet]. 2022 [cited 2023 Sep 30];13. Available from: https://www.frontiersin.org/articles/10.3389/fimmu.2022.805657 Abbaoui A, Fatoba O, Yamashita T. Meningeal T cells function in the central nervous system homeostasis and neurodegenerative diseases. Front Cell Neurosci. 2023;17:1181071. Kawakami N, Flügel A. Knocking at the brain’s door: intravital two-photon imaging of autoreactive T cell interactions with CNS structures. Semin Immunopathol [Internet]. 2010 Sep 1 [cited 2024 Oct 21];32(3):275–87. Available from: https://doi.org/10.1007/s00281-010-0216-x Giunti D, Borsellino G, Benelli R, Marchese M, Capello E, Valle MT, et al. Phenotypic and functional analysis of T cells homing into the CSF of subjects with inflammatory diseases of the CNS. J Leukoc Biol. 2003 May;73(5):584–90. Engelhardt B, Wolburg H. Mini-review: Transendothelial migration of leukocytes: through the front door or around the side of the house? Eur J Immunol. 2004 Nov;34(11):2955–63. Deczkowska A, Amit I, Schwartz M. Microglial immune checkpoint mechanisms. Nat Neurosci. 2018 Jun;21(6):779–86. Wong D, Dorovini-Zis K. Expression of vascular cell adhesion molecule-1 (VCAM-1) by human brain microvessel endothelial cells in primary culture. Microvasc Res. 1995 May;49(3):325–39. Carman CV, Martinelli R. T Lymphocyte–Endothelial Interactions: Emerging Understanding of Trafficking and Antigen-Specific Immunity. Front Immunol [Internet]. 2015 Nov 24 [cited 2024 Oct 21];6. Available from: https://www.frontiersin.org/journals/immunology/articles/10.3389/fimmu.2015.00603/full Cayrol R, Wosik K, Berard JL, Dodelet-Devillers A, Ifergan I, Kebir H, et al. Activated leukocyte cell adhesion molecule promotes leukocyte trafficking into the central nervous system. Nat Immunol. 2008 Feb;9(2):137–45. Marchetti L, Francisco D, Soldati S, Haghayegh Jahromi N, Barcos S, Gruber I, et al. ACKR1 favors transcellular over paracellular T-cell diapedesis across the blood-brain barrier in neuroinflammation in vitro. Eur J Immunol. 2022 Jan;52(1):161–77. Minten C, Alt C, Gentner M, Frei E, Deutsch U, Lyck R, et al. DARC shuttles inflammatory chemokines across the blood–brain barrier during autoimmune central nervous system inflammation. Brain [Internet]. 2014 May 1 [cited 2024 Oct 21];137(5):1454–69. Available from: https://doi.org/10.1093/brain/awu045 Nourshargh S, Alon R. Leukocyte migration into inflamed tissues. Immunity. 2014 Nov 20;41(5):694–707. Sathiyanadan K, Coisne C, Enzmann G, Deutsch U, Engelhardt B. PSGL-1 and E/P-selectins are essential for T-cell rolling in inflamed CNS microvessels but dispensable for initiation of EAE. Eur J Immunol. 2014 Aug;44(8):2287–94. Horng S, Therattil A, Moyon S, Gordon A, Kim K, Argaw AT, et al. Astrocytic tight junctions control inflammatory CNS lesion pathogenesis. J Clin Invest. 2017 Aug 1;127(8):3136–51. Owens T, Bechmann I, Engelhardt B. Perivascular spaces and the two steps to neuroinflammation. J Neuropathol Exp Neurol. 2008 Dec;67(12):1113–21. Larochelle C, Cayrol R, Kebir H, Alvarez JI, Lécuyer MA, Ifergan I, et al. Melanoma cell adhesion molecule identifies encephalitogenic T lymphocytes and promotes their recruitment to the central nervous system. Brain. 2012 Oct;135(Pt 10):2906–24. Chen WW, Zhang X, Huang WJ. Role of neuroinflammation in neurodegenerative diseases (Review). Mol Med Rep [Internet]. 2016/02/29 ed. 2016 Apr;13(4):3391–6. Available from: https://www.ncbi.nlm.nih.gov/pubmed/26935478 Norden DM, Trojanowski PJ, Villanueva E, Navarro E, Godbout JP. Sequential activation of microglia and astrocyte cytokine expression precedes increased Iba-1 or GFAP immunoreactivity following systemic immune challenge. Glia. 2016 Feb;64(2):300–16. Hirsch EC, Vyas S, Hunot S. Neuroinflammation in Parkinson’s disease. Parkinsonism Relat Disord [Internet]. 2012 Jan;18 Suppl 1:S210-2. Available from: https://www.ncbi.nlm.nih.gov/pubmed/22166438 Heneka MT, Carson MJ, El Khoury J, Landreth GE, Brosseron F, Feinstein DL, et al. Neuroinflammation in Alzheimer’s disease. Lancet Neurol [Internet]. 2015 Apr;14(4):388–405. Available from: https://www.ncbi.nlm.nih.gov/pubmed/25792098 Naegele M, Martin R. The good and the bad of neuroinflammation in multiple sclerosis. Handb Clin Neurol [Internet]. 2014;122:59–87. Available from: https://www.ncbi.nlm.nih.gov/pubmed/24507513 Louveau A, Harris TH, Kipnis J. Revisiting the Mechanisms of CNS Immune Privilege. Trends Immunol. 2015 Oct;36(10):569–77. Erickson MA, Banks WA. Neuroimmune Axes of the Blood-Brain Barriers and Blood-Brain Interfaces: Bases for Physiological Regulation, Disease States, and Pharmacological Interventions. Pharmacol Rev. 2018 Apr;70(2):278–314. Louveau A, Plog BA, Antila S, Alitalo K, Nedergaard M, Kipnis J. Understanding the functions and relationships of the glymphatic system and meningeal lymphatics. J Clin Invest. 2017 Sep 1;127(9):3210–9. Glass CK, Saijo K, Winner B, Marchetto MC, Gage FH. Mechanisms underlying inflammation in neurodegeneration. Cell. 2010 Mar 19;140(6):918–34. Imeri L, Opp MR. How (and why) the immune system makes us sleep. Nat Rev Neurosci. 2009 Mar;10(3):199–210. Sroga JM, Jones TB, Kigerl KA, McGaughy VM, Popovich PG. Rats and mice exhibit distinct inflammatory reactions after spinal cord injury. J Comp Neurol. 2003 Jul 21;462(2):223–40. Streit WJ, Mrak RE, Griffin WS. Microglia and neuroinflammation: a pathological perspective. J Neuroinflammation [Internet]. 2004/07/30 ed. 2004 Jul;1(1):14. Available from: https://www.ncbi.nlm.nih.gov/pubmed/15285801 Pieper C, Pieloch P, Galla HJ. Pericytes support neutrophil transmigration via interleukin-8 across a porcine co-culture model of the blood-brain barrier. Brain Res. 2013 Aug 2;1524:1–11. Kim DY, Zhang H, Park S, Kim Y, Bae CR, Kim YM, et al. CU06-1004 (endothelial dysfunction blocker) ameliorates astrocyte end-feet swelling by stabilizing endothelial cell junctions in cerebral ischemia/reperfusion injury. Journal of Molecular Medicine [Internet]. 2020;98(6):875–86. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85084653191&doi=10.1007%2fs00109-020-01920-z&partnerID=40&md5=8b1314b7d9e71b8ee774745ff11ab8bd Gautam J, Xu L, Nirwane A, Nguyen B, Yao Y. Loss of mural cell-derived laminin aggravates hemorrhagic brain injury. J Neuroinflammation. 2020/04/08 ed. 2020 Apr 6;17(1):103. Zeng J, Zhào H, Liu Z, Zhang W, Huang Y. Lipopolysaccharide Induces Subacute Cerebral Microhemorrhages with Involvement of Nitric Oxide Synthase in Rats. Journal of Stroke and Cerebrovascular Diseases [Internet]. 2018;27(7):1905–13. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85044266841&doi=10.1016%2fj.jstrokecerebrovasdis.2018.02.044&partnerID=40&md5=26cea409ce4e07922816a716c1afcbd5 Wolf SA, Boddeke HWGM, Kettenmann H. Microglia in Physiology and Disease. Annu Rev Physiol. 2017 Feb 10;79:619–43. Borst K, Dumas AA, Prinz M. Microglia: Immune and non-immune functions. Immunity. 2021 Oct 12;54(10):2194–208. Prinz M, Jung S, Priller J. Microglia Biology: One Century of Evolving Concepts. Cell. 2019 Oct 3;179(2):292–311. Schafer DP, Stevens B. Phagocytic glial cells: sculpting synaptic circuits in the developing nervous system. Curr Opin Neurobiol. 2013 Dec;23(6):1034–40. Orihuela R, McPherson CA, Harry GJ. Microglial M1/M2 polarization and metabolic states. Br J Pharmacol. 2016 Feb;173(4):649–65. Qin J, Ma Z, Chen X, Shu S. Microglia activation in central nervous system disorders: A review of recent mechanistic investigations and development efforts. Front Neurol. 2023;14:1103416. Shao F, Wang X, Wu H, Wu Q, Zhang J. Microglia and Neuroinflammation: Crucial Pathological Mechanisms in Traumatic Brain Injury-Induced Neurodegeneration. Front Aging Neurosci. 2022;14:825086. Zhou H, Lapointe BM, Clark SR, Zbytnuik L, Kubes P. A requirement for microglial TLR4 in leukocyte recruitment into brain in response to lipopolysaccharide. J Immunol. 2006 Dec 1;177(11):8103–10. Russo MV, McGavern DB. Immune Surveillance of the CNS following Infection and Injury. Trends Immunol. 2015 Oct;36(10):637–50. Davalos D, Grutzendler J, Yang G, Kim JV, Zuo Y, Jung S, et al. ATP mediates rapid microglial response to local brain injury in vivo. Nat Neurosci. 2005 Jun;8(6):752–8. Norden DM, Godbout JP. Review: microglia of the aged brain: primed to be activated and resistant to regulation. Neuropathol Appl Neurobiol. 2013 Feb;39(1):19–34. Colangelo AM, Alberghina L, Papa M. Astrogliosis as a therapeutic target for neurodegenerative diseases. Neurosci Lett. 2014 Apr 17;565:59–64. Robel S. Astroglial Scarring and Seizures: A Cell Biological Perspective on Epilepsy. Neuroscientist. 2017 Apr;23(2):152–68. Correale J, Farez MF. The Role of Astrocytes in Multiple Sclerosis Progression. Front Neurol. 2015;6:180. Brosnan CF, Raine CS. The astrocyte in multiple sclerosis revisited. Glia. 2013 Apr;61(4):453–65. Argaw AT, Gurfein BT, Zhang Y, Zameer A, John GR. VEGF-mediated disruption of endothelial CLN-5 promotes blood-brain barrier breakdown. Proc Natl Acad Sci U S A. 2009 Feb 10;106(6):1977–82. Avison MJ, Nath A, Greene-Avison R, Schmitt FA, Greenberg RN, Berger JR. Neuroimaging correlates of HIV-associated BBB compromise. J Neuroimmunol. 2004 Dec;157(1–2):140–6. Erickson MA, Banks WA. Blood-brain barrier dysfunction as a cause and consequence of Alzheimer’s disease. J Cereb Blood Flow Metab. 2013 Oct;33(10):1500–13. Takata F, Nakagawa S, Matsumoto J, Dohgu S. Blood-Brain Barrier Dysfunction Amplifies the Development of Neuroinflammation: Understanding of Cellular Events in Brain Microvascular Endothelial Cells for Prevention and Treatment of BBB Dysfunction. Frontiers in Cellular Neuroscience [Internet]. 2021 [cited 2023 Mar 12];15. Available from: https://www.frontiersin.org/articles/10.3389/fncel.2021.661838 Chan Y, Chen W, Wan W, Chen Y, Li Y, Zhang C. Aβ1–42 oligomer induces alteration of tight junction scaffold proteins via RAGE-mediated autophagy in bEnd.3 cells. Experimental Cell Research [Internet]. 2018 Aug 15 [cited 2024 Oct 21];369(2):266–74. Available from: https://www.sciencedirect.com/science/article/pii/S0014482718302969 Cuevas E, Rosas-Hernandez H, Burks SM, Ramirez-Lee MA, Guzman A, Imam SZ, et al. Amyloid Beta 25–35 induces blood-brain barrier disruption in vitro. Metab Brain Dis [Internet]. 2019 Oct 1 [cited 2023 Sep 30];34(5):1365–74. Available from: https://doi.org/10.1007/s11011-019-00447-8 Chitnis T, Weiner HL. CNS inflammation and neurodegeneration. J Clin Invest. 2017 Oct 2;127(10):3577–87 Liddelow SA, Guttenplan KA, Clarke LE, Bennett FC, Bohlen CJ, Schirmer L, et al. Neurotoxic reactive astrocytes are induced by activated microglia. Nature. 2017 Jan 26;541(7638):481–7. Saini V, Guada L, Yavagal DR. Global Epidemiology of Stroke and Access to Acute Ischemic Stroke Interventions. Neurology. 2021 Nov 16;97(20 Suppl 2):S6–16. Heo JH, Han SW, Lee SK. Free radicals as triggers of brain edema formation after stroke. Free Radic Biol Med. 2005 Jul 1;39(1):51–70. Yang C, Hawkins KE, Doré S, Candelario-Jalil E. Neuroinflammatory mechanisms of blood-brain barrier damage in ischemic stroke. Am J Physiol Cell Physiol. 2019 Feb 1;316(2):C135–53. Nian K, Harding IC, Herman IM, Ebong EE. Blood-Brain Barrier Damage in Ischemic Stroke and Its Regulation by Endothelial Mechanotransduction. Front Physiol. 2020;11:605398. Sladojevic N, Stamatovic SM, Johnson AM, Choi J, Hu A, Dithmer S, et al. Claudin-1-Dependent Destabilization of the Blood–Brain Barrier in Chronic Stroke. J Neurosci [Internet]. 2019 Jan 23 [cited 2024 Oct 21];39(4):743–57. Available from: https://www.jneurosci.org/content/39/4/743 Scheltens P, De Strooper B, Kivipelto M, Holstege H, Chételat G, Teunissen CE, et al. Alzheimer’s disease. Lancet. 2021 Apr 24;397(10284):1577–90. Erkkinen MG, Kim MO, Geschwind MD. Clinical Neurology and Epidemiology of the Major Neurodegenerative Diseases. Cold Spring Harb Perspect Biol. 2018 Apr 2;10(4):a033118. Trejo-Lopez JA, Yachnis AT, Prokop S. Neuropathology of Alzheimer’s Disease. Neurotherapeutics. 2022 Jan;19(1):173–85. Guerreiro R, Hardy J. Genetics of Alzheimer’s disease. Neurotherapeutics. 2014 Oct;11(4):732–7. Sun YY, Wang Z, Huang HC. Roles of ApoE4 on the Pathogenesis in Alzheimer’s Disease and the Potential Therapeutic Approaches. Cell Mol Neurobiol. 2023 Oct;43(7):3115–36. Lee ST, Chu K, Jung KH, Park HK, Kim DH, Bahn JJ, et al. Reduced circulating angiogenic cells in Alzheimer disease. Neurology. 2009 May 26;72(21):1858–63. Solé M, Miñano-Molina AJ, Unzeta M. Cross-talk between Aβ and endothelial SSAO/VAP-1 accelerates vascular damage and Aβ aggregation related to CAA-AD. Neurobiol Aging. 2015 Feb;36(2):762–75. Sun E, Motolani A, Campos L, Lu T. The Pivotal Role of NF-kB in the Pathogenesis and Therapeutics of Alzheimer’s Disease. Int J Mol Sci. 2022 Aug 11;23(16):8972. Simon DK, Tanner CM, Brundin P. Parkinson Disease Epidemiology, Pathology, Genetics, and Pathophysiology. Clin Geriatr Med. 2020 Feb;36(1):1–12. Cerri S, Mus L, Blandini F. Parkinson’s Disease in Women and Men: What’s the Difference? Journal of Parkinson’s Disease [Internet]. 2019 Jan 1 [cited 2024 Oct 21];9(3):501–15. Available from: https://content.iospress.com/articles/journal-of-parkinsons-disease/jpd191683 Bloem BR, Okun MS, Klein C. Parkinson’s disease. Lancet. 2021 Jun 12;397(10291):2284–303. Ascherio A, Schwarzschild MA. The epidemiology of Parkinson’s disease: risk factors and prevention. Lancet Neurol. 2016 Nov;15(12):1257–72. Jankovic J, Tan EK. Parkinson’s disease: etiopathogenesis and treatment. J Neurol Neurosurg Psychiatry [Internet]. 2020 Aug 1 [cited 2024 Oct 21];91(8):795–808. Available from: https://jnnp.bmj.com/content/91/8/795 Cacabelos R. Parkinson’s Disease: From Pathogenesis to Pharmacogenomics. International Journal of Molecular Sciences [Internet]. 2017 Mar [cited 2024 Oct 21];18(3):551. Available from: https://www.mdpi.com/1422-0067/18/3/551 Spillantini MG, Schmidt ML, Lee VMY, Trojanowski JQ, Jakes R, Goedert M. α-Synuclein in Lewy bodies. Nature [Internet]. 1997 Aug [cited 2024 Oct 21];388(6645):839–40. Available from: https://www.nature.com/articles/42166 Deas E, Cremades N, Angelova PR, Ludtmann MHR, Yao Z, Chen S, et al. Alpha-Synuclein Oligomers Interact with Metal Ions to Induce Oxidative Stress and Neuronal Death in Parkinson’s Disease. Antioxid Redox Signal. 2016 Mar 1;24(7):376–91. Bendor JT, Logan TP, Edwards RH. The function of α-synuclein. Neuron. 2013 Sep 18;79(6):1044–66. Rocha EM, De Miranda B, Sanders LH. Alpha-synuclein: Pathology, mitochondrial dysfunction and neuroinflammation in Parkinson’s disease. Neurobiology of Disease [Internet]. 2018 Jan 1 [cited 2024 Oct 21];109:249–57. Available from: https://www.sciencedirect.com/science/article/pii/S0969996117300803 Zheng H, Wang T, Shi C, Fan L, Su Y, Fan Y, et al. Increased PRR14 and VCAM-1 level in serum of patients with Parkinson’s disease. Front Neurol. 2022;13:993940. Perner C, Perner F, Gaur N, Zimmermann S, Witte OW, Heidel FH, et al. Plasma VCAM1 levels correlate with disease severity in Parkinson’s disease. Journal of Neuroinflammation [Internet]. 2019 May 8 [cited 2024 Oct 21];16(1):94. Available from: https://doi.org/10.1186/s12974-019-1482-8 Kim H, Shin JY, Lee YS, Yun SP, Maeng HJ, Lee Y. Brain Endothelial P-Glycoprotein Level Is Reduced in Parkinson’s Disease via a Vitamin D Receptor-Dependent Pathway. International Journal of Molecular Sciences [Internet]. 2020 Jan [cited 2024 Oct 21];21(22):8538. Available from: https://www.mdpi.com/1422-0067/21/22/8538 Herrera AJ, Tomás-Camardiel M, Venero JL, Cano J, Machado A. Inflammatory process as a determinant factor for the degeneration of substantia nigra dopaminergic neurons. J Neural Transm (Vienna). 2005 Jan;112(1):111–9. García-Domínguez I, Veselá K, García-Revilla J, Carrillo-Jiménez A, Roca-Ceballos MA, Santiago M, et al. Peripheral Inflammation Enhances Microglia Response and Nigral Dopaminergic Cell Death in an in vivo MPTP Model of Parkinson’s Disease. Front Cell Neurosci [Internet]. 2018 Nov 6 [cited 2024 Oct 21];12. Available from: https://www.frontiersin.org/journals/cellular-neuroscience/articles/10.3389/fncel.2018.00398/full Li W, Chen S, Luo Y, Xia Y, Ma Q, Yao Q, et al. Interaction between ICAM1 in endothelial cells and LFA1 in T cells during the pathogenesis of experimental Parkinson’s disease. Exp Ther Med. 2020 Aug;20(2):1021–9. Miklossy J, Doudet DD, Schwab C, Yu S, McGeer EG, McGeer PL. Role of ICAM-1 in persisting inflammation in Parkinson disease and MPTP monkeys. Exp Neurol. 2006 Feb;197(2):275–83. Marogianni C, Sokratous M, Dardiotis E, Hadjigeorgiou GM, Bogdanos D, Xiromerisiou G. Neurodegeneration and Inflammation—An Interesting Interplay in Parkinson’s Disease. International Journal of Molecular Sciences [Internet]. 2020 Jan [cited 2024 Oct 21];21(22):8421. Available from: https://www.mdpi.com/1422-0067/21/22/8421 Imamura K, Hishikawa N, Ono K, Suzuki H, Sawada M, Nagatsu T, et al. Cytokine production of activated microglia and decrease in neurotrophic factors of neurons in the hippocampus of Lewy body disease brains. Acta Neuropathol. 2005 Feb;109(2):141–50. Calvani R, Picca A, Landi G, Marini F, Biancolillo A, Coelho-Junior HJ, et al. A novel multi-marker discovery approach identifies new serum biomarkers for Parkinson’s disease in older people: an EXosomes in PArkiNson Disease (EXPAND) ancillary study. GeroScience [Internet]. 2020 Oct 1 [cited 2024 Oct 21];42(5):1323–34. Available from: https://doi.org/10.1007/s11357-020-00192-2 Dogra N, Mani RJ, Katare DP. The Gut-Brain Axis: Two Ways Signaling in Parkinson’s Disease. Cell Mol Neurobiol [Internet]. 2022 Mar 1 [cited 2024 Oct 21];42(2):315–32. Available from: https://doi.org/10.1007/s10571-021-01066-7 Tan AH, Lim SY, Lang AE. The microbiome–gut–brain axis in Parkinson disease — from basic research to the clinic. Nat Rev Neurol [Internet]. 2022 Aug [cited 2024 Oct 21];18(8):476–95. Available from: https://www.nature.com/articles/s41582-022-00681-2 Mou Y, Du Y, Zhou L, Yue J, Hu X, Liu Y, et al. Gut Microbiota Interact With the Brain Through Systemic Chronic Inflammation: Implications on Neuroinflammation, Neurodegeneration, and Aging. Front Immunol. 2022;13:796288. Claudino Dos Santos JC, Lima MPP, Brito GA de C, Viana GS de B. Role of enteric glia and microbiota-gut-brain axis in parkinson disease pathogenesis. Ageing Res Rev. 2023 Feb;84:101812. Sá MJ. Physiopathology of symptoms and signs in multiple sclerosis. Arq Neuropsiquiatr. 2012 Sep;70(9):733–40. Dobson R, Giovannoni G. Multiple sclerosis - a review. Eur J Neurol. 2019 Jan;26(1):27–40. Jakimovski D, Bittner S, Zivadinov R, Morrow SA, Benedict RH, Zipp F, et al. Multiple sclerosis. Lancet. 2024 Jan 13;403(10422):183–202. Pierson E, Simmons SB, Castelli L, Goverman JM. Mechanisms regulating regional localization of inflammation during CNS autoimmunity. Immunol Rev. 2012 Jul;248(1):205–15. Solomon AJ, Arrambide G, Brownlee WJ, Flanagan EP, Amato MP, Amezcua L, et al. Differential diagnosis of suspected multiple sclerosis: an updated consensus approach. Lancet Neurol. 2023 Aug;22(8):750–68. Achiron A, Dreyer-Alster S, Gurevich M, Menascu S, Magalashvili D, Dolev M, et al. Definitions of primary-progressive multiple sclerosis trajectories by rate of clinical disability progression. Multiple Sclerosis and Related Disorders [Internet]. 2021 May 1 [cited 2024 Oct 22];50. Available from: https://www.msard-journal.com/article/S2211-0348(21)00080-8/abstract Klineova S, Lublin FD. Clinical Course of Multiple Sclerosis. Cold Spring Harb Perspect Med. 2018 Sep 4;8(9):a028928. Oh J, Vidal-Jordana A, Montalban X. Multiple sclerosis: clinical aspects. Curr Opin Neurol. 2018 Dec;31(6):752–9. Papiri G, D’Andreamatteo G, Cacchiò G, Alia S, Silvestrini M, Paci C, et al. Multiple Sclerosis: Inflammatory and Neuroglial Aspects. Curr Issues Mol Biol. 2023 Feb 8;45(2):1443–70. Balasa R, Barcutean L, Mosora O, Manu D. Reviewing the Significance of Blood-Brain Barrier Disruption in Multiple Sclerosis Pathology and Treatment. Int J Mol Sci. 2021 Aug 4;22(16):8370. Bennett J, Basivireddy J, Kollar A, Biron KE, Reickmann P, Jefferies WA, et al. Blood–brain barrier disruption and enhanced vascular permeability in the multiple sclerosis model EAE. Journal of Neuroimmunology [Internet]. 2010 Dec 15 [cited 2021 Nov 15];229(1):180–91. Available from: https://www.sciencedirect.com/science/article/pii/S0165572810003759 Fabis MJ, Scott GS, Kean RB, Koprowski H, Hooper DC. Loss of blood–brain barrier integrity in the spinal cord is common to experimental allergic encephalomyelitis in knockout mouse models. PNAS [Internet]. 2007 Mar 27 [cited 2021 Nov 15];104(13):5656–61. Available from: https://www.pnas.org/content/104/13/5656 Alvarez JI, Saint-Laurent O, Godschalk A, Terouz S, Briels C, Larouche S, et al. Focal disturbances in the blood–brain barrier are associated with formation of neuroinflammatory lesions. Neurobiology of Disease [Internet]. 2015 Feb 1 [cited 2021 Nov 15];74:14–24. Available from: https://www.sciencedirect.com/science/article/pii/S0969996114002885 Deane R, LaRue B, Sagare AP, Castellino FJ, Zhong Z, Zlokovic BV. Endothelial Protein C Receptor-Assisted Transport of Activated Protein C across the Mouse Blood—Brain Barrier. J Cereb Blood Flow Metab [Internet]. 2009 Jan 1 [cited 2024 Oct 22];29(1):25–33. Available from: https://doi.org/10.1038/jcbfm.2008.117 Nagtegaal MA, Hermann I, Weingärtner S, Martinez-Heras E, Solana E, Llufriu S, et al. White matter changes measured by multi-component MR Fingerprinting in multiple sclerosis. NeuroImage: Clinical [Internet]. 2023 Jan 1 [cited 2024 Oct 22];40:103528. Available from: https://www.sciencedirect.com/science/article/pii/S221315822300219X Floris S, Goes A van der, Killestein J, Knol DL, Barkhof F, Polman CH, et al. Monocyte activation and disease activity in multiple sclerosis. A longitudinal analysis of serum MRP8/14 levels. Journal of Neuroimmunology [Internet]. 2004 Mar 1 [cited 2021 Nov 15];148(1):172–7. Available from: https://www.jni-journal.com/article/S0165-5728(03)00495-8/fulltext El-behi M, Rostami A, Ciric B. Current views on the roles of Th1 and Th17 cells in experimental autoimmune encephalomyelitis. J Neuroimmune Pharmacol. 2010 Jun;5(2):189–97. Brucklacher-Waldert V, Stuerner K, Kolster M, Wolthausen J, Tolosa E. Phenotypical and functional characterization of T helper 17 cells in multiple sclerosis. Brain. 2009 Dec;132(Pt 12):3329–41. Jadidi-Niaragh F, Mirshafiey A. Th17 cell, the new player of neuroinflammatory process in multiple sclerosis. Scand J Immunol. 2011 Jul;74(1):1–13. Segal BM. Stage-specific immune dysregulation in multiple sclerosis. J Interferon Cytokine Res. 2014 Aug;34(8):633–40. Wang K, Song F, Fernandez-Escobar A, Luo G, Wang JH, Sun Y. The Properties of Cytokines in Multiple Sclerosis: Pros and Cons. Am J Med Sci. 2018 Dec;356(6):552–60. Constantinescu CS, Farooqi N, O’Brien K, Gran B. Experimental autoimmune encephalomyelitis (EAE) as a model for multiple sclerosis (MS). Br J Pharmacol [Internet]. 2011 Oct [cited 2021 Nov 15];164(4):1079–106. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3229753/ Filippi M, Dousset V, McFarland HF, Miller DH, Grossman RI. Role of magnetic resonance imaging in the diagnosis and monitoring of multiple sclerosis: consensus report of the White Matter Study Group. J Magn Reson Imaging. 2002 May;15(5):499–504. Ford H. Clinical presentation and diagnosis of multiple sclerosis. Clin Med (Lond). 2020 Jul;20(4):380–3. Wattjes MP, Ciccarelli O, Reich DS, Banwell B, Stefano N de, Enzinger C, et al. 2021 MAGNIMS–CMSC–NAIMS consensus recommendations on the use of MRI in patients with multiple sclerosis. The Lancet Neurology [Internet]. 2021 Aug 1 [cited 2024 Oct 22];20(8):653–70. Available from: https://www.thelancet.com/journals/laneur/article/PIIS1474-4422(21)00095-8/abstract Waubant E. Biomarkers indicative of blood-brain barrier disruption in multiple sclerosis. Dis Markers. 2006;22(4):235–44. Claudio L, Raine CS, Brosnan CF. Evidence of persistent blood-brain barrier abnormalities in chronic-progressive multiple sclerosis. Acta Neuropathol. 1995;90(3):228–38. Olsson A, Gustavsen S, Langkilde AR, Hansen TH, Sellebjerg F, Bach Søndergaard H, et al. Circulating levels of tight junction proteins in multiple sclerosis: Association with inflammation and disease activity before and after disease modifying therapy. Mult Scler Relat Disord. 2021 Sep;54:103136. Camara-Lemarroy CR, Silva C, Greenfield J, Liu WQ, Metz LM, Yong VW. Biomarkers of intestinal barrier function in multiple sclerosis are associated with disease activity. Mult Scler. 2020 Oct;26(11):1340–50. Alruwaili M, Al-Kuraishy HM, Alexiou A, Papadakis M, ALRashdi BM, Elhussieny O, et al. Pathogenic Role of Fibrinogen in the Neuropathology of Multiple Sclerosis: A Tale of Sorrows and Fears. Neurochem Res. 2023 Nov;48(11):3255–69. Lutz SE, Smith JR, Kim DH, Olson CVL, Ellefsen K, Bates JM, et al. Caveolin1 Is Required for Th1 Cell Infiltration, but Not Tight Junction Remodeling, at the Blood-Brain Barrier in Autoimmune Neuroinflammation. Cell Rep. 2017 Nov 21;21(8):2104–17. Paul D, Cowan AE, Ge S, Pachter JS. Novel 3D analysis of Claudin-5 reveals significant endothelial heterogeneity among CNS microvessels. Microvasc Res. 2013 Mar;86:1–10. Waubant E, Goodkin DE, Gee L, Bacchetti P, Sloan R, Stewart T, et al. Serum MMP-9 and TIMP-1 levels are related to MRI activity in relapsing multiple sclerosis. Neurology. 1999 Oct 22;53(7):1397–401. Avolio C, Ruggieri M, Giuliani F, Liuzzi GM, Leante R, Riccio P, et al. Serum MMP-2 and MMP-9 are elevated in different multiple sclerosis subtypes. J Neuroimmunol. 2003 Mar;136(1–2):46–53. Koleganova N, Piecha G, Ritz E, Bekeredjian R, Schirmacher P, Schmitt CP, et al. Interstitial fibrosis and microvascular disease of the heart in uremia: amelioration by a calcimimetic. Laboratory Investigation [Internet]. 2009 May 1 [cited 2023 Sep 30];89(5):520–30. Available from: https://www.laboratoryinvestigation.org/article/S0023-6837(22)02217-6/fulltext Zhao Q, Zhang J, Li H, Li H, Xie F. Models of traumatic brain injury-highlights and drawbacks. Front Neurol. 2023;14:1151660. Buras JA, Holzmann B, Sitkovsky M. Animal models of sepsis: setting the stage. Nat Rev Drug Discov. 2005 Oct;4(10):854–65. Hoogland ICM, Houbolt C, van Westerloo DJ, van Gool WA, van de Beek D. Systemic inflammation and microglial activation: systematic review of animal experiments. J Neuroinflammation. 2015 Jun 6;12:114. Drummond E, Wisniewski T. Alzheimer’s disease: experimental models and reality. Acta Neuropathol. 2017 Feb;133(2):155–75. Heuer E, Rosen RF, Cintron A, Walker LC. Nonhuman primate models of Alzheimer-like cerebral proteopathy. Curr Pharm Des. 2012;18(8):1159–69. Torre-Fuentes L, Moreno-Jiménez L, Pytel V, Matías-Guiu JA, Gómez-Pinedo U, Matías-Guiu J. Experimental models of demyelination and remyelination. Neurologia (Engl Ed). 2020;35(1):32–9. Zhao J, Bi W, Xiao S, Lan X, Cheng X, Zhang J, et al. Neuroinflammation induced by lipopolysaccharide causes cognitive impairment in mice. Sci Rep [Internet]. 2019 Apr 8 [cited 2024 Oct 22];9(1):5790. Available from: https://www.nature.com/articles/s41598-019-42286-8 Beutler B. Tlr4: central component of the sole mammalian LPS sensor. Curr Opin Immunol. 2000 Feb;12(1):20–6. Lehnardt S, Lachance C, Patrizi S, Lefebvre S, Follett PL, Jensen FE, et al. The Toll-Like Receptor TLR4 Is Necessary for Lipopolysaccharide-Induced Oligodendrocyte Injury in the CNS. J Neurosci [Internet]. 2002 Apr 1 [cited 2024 Oct 22];22(7):2478–86. Available from: https://www.jneurosci.org/content/22/7/2478 Shen Y, Qin H, Chen J, Mou L, He Y, Yan Y, et al. Postnatal activation of TLR4 in astrocytes promotes excitatory synaptogenesis in hippocampal neurons. J Cell Biol. 2016 Dec 5;215(5):719–34. Mrak RE, Griffin WST. Glia and their cytokines in progression of neurodegeneration. Neurobiol Aging. 2005 Mar;26(3):349–54. Layé S, Parnet P, Goujon E, Dantzer R. Peripheral administration of lipopolysaccharide induces the expression of cytokine transcripts in the brain and pituitary of mice. Brain Res Mol Brain Res. 1994 Nov;27(1):157–62. Sheng JG, Bora SH, Xu G, Borchelt DR, Price DL, Koliatsos VE. Lipopolysaccharide-induced-neuroinflammation increases intracellular accumulation of amyloid precursor protein and amyloid beta peptide in APPswe transgenic mice. Neurobiol Dis. 2003 Oct;14(1):133–45. Qin L, Wu X, Block ML, Liu Y, Breese GR, Hong JS, et al. Systemic LPS causes chronic neuroinflammation and progressive neurodegeneration. Glia. 2007 Apr 1;55(5):453–62. Kitazawa M, Oddo S, Yamasaki TR, Green KN, LaFerla FM. Lipopolysaccharide-induced inflammation exacerbates tau pathology by a cyclin-dependent kinase 5-mediated pathway in a transgenic model of Alzheimer’s disease. J Neurosci. 2005 Sep 28;25(39):8843–53. Yang L, Zhou R, Tong Y, Chen P, Shen Y, Miao S, et al. Neuroprotection by dihydrotestosterone in LPS-induced neuroinflammation. Neurobiol Dis. 2020 Jul;140:104814. Knirel YA, Anisimov AP, Kislichkina AA, Kondakova AN, Bystrova OV, Vagaiskaya AS, et al. Lipopolysaccharide of the Yersinia pseudotuberculosis Complex. Biomolecules. 2021 Sep 26;11(10):1410. Mazgaeen L, Gurung P. Recent Advances in Lipopolysaccharide Recognition Systems. Int J Mol Sci. 2020 Jan 7;21(2):379. Gern OL, Mulenge F, Pavlou A, Ghita L, Steffen I, Stangel M, et al. Toll-like Receptors in Viral Encephalitis. Viruses. 2021 Oct 14;13(10):2065. Garcia-Vello P, Di Lorenzo F, Zucchetta D, Zamyatina A, De Castro C, Molinaro A. Lipopolysaccharide lipid A: A promising molecule for new immunity-based therapies and antibiotics. Pharmacol Ther. 2022 Feb;230:107970. Leitner GR, Wenzel TJ, Marshall N, Gates EJ, Klegeris A. Targeting toll-like receptor 4 to modulate neuroinflammation in central nervous system disorders. Expert Opin Ther Targets. 2019 Oct;23(10):865–82. Mitra A, Ahuja A, Rahmawati L, Kim HG, Woo BY, Hong YD, et al. Caragana rosea Turcz Methanol Extract Inhibits Lipopolysaccharide-Induced Inflammatory Responses by Suppressing the TLR4/NF-κB/IRF3 Signaling Pathways. Molecules. 2021 Nov 3;26(21):6660. Skrzypczak-Wiercioch A, Sałat K. Lipopolysaccharide-Induced Model of Neuroinflammation: Mechanisms of Action, Research Application and Future Directions for Its Use. Molecules [Internet]. 2022 Aug 26 [cited 2024 Oct 22];27(17):5481. Available from: https://pmc.ncbi.nlm.nih.gov/articles/PMC9457753/ Zeng ML, Cheng JJ, Kong S, Yang XL, Jia XL, Cheng XL, et al. Inhibition of Transient Receptor Potential Vanilloid 4 (TRPV4) Mitigates Seizures. Neurotherapeutics. 2022 Mar;19(2):660–81. Smith AP, Creagh EM. Caspase-4 and -5 Biology in the Pathogenesis of Inflammatory Bowel Disease. Front Pharmacol [Internet]. 2022 May 31 [cited 2024 Oct 22];13. Available from: https://www.frontiersin.org/journals/pharmacology/articles/10.3389/fphar.2022.919567/full Lykhmus O, Mishra N, Koval L, Kalashnyk O, Gergalova G, Uspenska K, et al. Molecular Mechanisms Regulating LPS-Induced Inflammation in the Brain. Front Mol Neurosci. 2016;9:19. Noh H, Jeon J, Seo H. Systemic injection of LPS induces region-specific neuroinflammation and mitochondrial dysfunction in normal mouse brain. Neurochem Int. 2014 Apr;69:35–40. Craft JM, Watterson DM, Van Eldik LJ. Human amyloid beta-induced neuroinflammation is an early event in neurodegeneration. Glia. 2006 Apr 1;53(5):484–90. Nazem A, Sankowski R, Bacher M, Al-Abed Y. Rodent models of neuroinflammation for Alzheimer’s disease. J Neuroinflammation. 2015 Apr 17;12:74. Meseguer V, Alpizar YA, Luis E, Tajada S, Denlinger B, Fajardo O, et al. TRPA1 channels mediate acute neurogenic inflammation and pain produced by bacterial endotoxins. Nat Commun. 2014;5:3125. Batista CRA, Gomes GF, Candelario-Jalil E, Fiebich BL, de Oliveira ACP. Lipopolysaccharide-Induced Neuroinflammation as a Bridge to Understand Neurodegeneration. Int J Mol Sci. 2019 May 9;20(9):2293. Batista CRA, Gomes GF, Candelario-Jalil E, Fiebich BL, de Oliveira ACP. Lipopolysaccharide-Induced Neuroinflammation as a Bridge to Understand Neurodegeneration. Int J Mol Sci. 2019 May 9;20(9):2293. Deng I, Bobrovskaya L. Lipopolysaccharide mouse models for Parkinson’s disease research: a critical appraisal. Neural Regen Res. 2022 Nov;17(11):2413–7. Rojas OL, Pröbstel AK, Porfilio EA, Wang AA, Charabati M, Sun T, et al. Recirculating Intestinal IgA-Producing Cells Regulate Neuroinflammation via IL-10. Cell. 2019 Jan 24;176(3):610-624.e18. Inglis HR, Greer JM, McCombe PA. Gene Expression in the Spinal Cord in Female Lewis Rats with Experimental Autoimmune Encephalomyelitis Induced with Myelin Basic Protein. PLOS ONE [Internet]. 2012 Nov 6 [cited 2024 Oct 22];7(11):e48555. Available from: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0048555 Sriram S, Steiner I. Experimental allergic encephalomyelitis: A misleading model of multiple sclerosis. Annals of Neurology [Internet]. 2005 [cited 2024 Oct 22];58(6):939–45. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1002/ana.20743 Kurkowska-Jastrzębska I, Swiątkiewicz M, Zaremba M, Cudna A, Piechal A, Pyrzanowska J, et al. Neurodegeneration and inflammation in hippocampus in experimental autoimmune encephalomyelitis induced in rats by one--time administration of encephalitogenic T cells. Neuroscience. 2013 Sep 17;248:690–8. Stepaniak JA, Gould KE, Sun D, Swanborg RH. A comparative study of experimental autoimmune encephalomyelitis in Lewis and DA rats. J Immunol. 1995 Sep 1;155(5):2762–9. Stosic-Grujicic S, Ramic Z, Bumbasirevic V, Harhaji L, Mostarica-Stojkovic M. Induction of experimental autoimmune encephalomyelitis in Dark Agouti rats without adjuvant. Clinical & Experimental Immunology [Internet]. 2004 [cited 2024 Oct 22];136(1):49–55. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-2249.2004.02418.x Pitarokoili K, Ambrosius B, Gold R. Lewis Rat Model of Experimental Autoimmune Encephalomyelitis. Curr Protoc Neurosci. 2017 Oct 23;81:9.61.1-9.61.20. Silva RV, Morr AS, Herthum H, Koch SP, Mueller S, Batzdorf CS, et al. Cortical matrix remodeling as a hallmark of relapsing–remitting neuroinflammation in MR elastography and quantitative MRI. Acta Neuropathologica [Internet]. 2024 Jan 4 [cited 2024 Oct 22];147(1):8. Available from: https://pmc.ncbi.nlm.nih.gov/articles/PMC10766667/ Huntemann N, Vogelsang A, Groeneweg L, Willison A, Herrmann AM, Meuth SG, et al. An optimized and validated protocol for inducing chronic experimental autoimmune encephalomyelitis in C57BL/6J mice. J Neurosci Methods. 2022 Feb 1;367:109443. Hughes RA, Stedronska J. The susceptibility of rat strains to experimental allergic encephalomyelitis. Immunology. 1973 May;24(5):879–84. Engelhardt B, Coisne C. Fluids and barriers of the CNS establish immune privilege by confining immune surveillance to a two-walled castle moat surrounding the CNS castle. Fluids Barriers CNS. 2011 Jan 18;8(1):4. Stromnes IM, Goverman JM. Active induction of experimental allergic encephalomyelitis. Nat Protoc. 2006;1(4):1810–9. Alvord EC, Driscoll BF, Kies MW. Large subpial plaques of demyelination in a new form of chronic experimental allergic encephalomyelitis in the guinea pig. Neurochem Pathol. 1985;3(3):195–214. Raine CS, Wiśniewski HM, Iqbal K, Grundkeiqbal I, Norton WT. Studies on the encephalitogenic effects of purified preparations of human and bovine oligodendrocytes. Brain Res. 1977 Jan 21;120(2):269–86. Stromnes IM, Goverman JM. Passive induction of experimental allergic encephalomyelitis. Nat Protoc. 2006;1(4):1952–60. Day MJ. Histopathology of EAE. In: Lavi E, Constantinescu CS, editors. Experimental Models of Multiple Sclerosis [Internet]. Boston, MA: Springer US; 2005 [cited 2024 Oct 22]. p. 25–43. Available from: https://doi.org/10.1007/0-387-25518-4_3 Bannerman PG, Hahn A, Ramirez S, Morley M, Bönnemann C, Yu S, et al. Motor neuron pathology in experimental autoimmune encephalomyelitis: studies in THY1-YFP transgenic mice. Brain. 2005 Aug;128(Pt 8):1877–86. McRae BL, Vanderlugt CL, Dal Canto MC, Miller SD. Functional evidence for epitope spreading in the relapsing pathology of experimental autoimmune encephalomyelitis. J Exp Med. 1995 Jul 1;182(1):75–85. Tanuma N, Shin T, Matsumoto Y. Characterization of acute versus chronic relapsing autoimmune encephalomyelitis in DA rats. J Neuroimmunol. 2000 Aug 1;108(1–2):171–80. Tognarelli JM, Dawood M, Shariff MIF, Grover VPB, Crossey MME, Cox IJ, et al. Magnetic Resonance Spectroscopy: Principles and Techniques: Lessons for Clinicians. J Clin Exp Hepatol. 2015 Dec;5(4):320–8. Wood R, Bassett K, Foerster null, Spry C, Tong L. 1.5 tesla magnetic resonance imaging scanners compared with 3.0 tesla magnetic resonance imaging scanners: systematic review of clinical effectiveness. CADTH Technol Overv. 2012;2(2):e2201. Versace A, Hitchens TK, Wallace CT, Watkins SC, D’Aiuto L. 11.7T Diffusion Magnetic Resonance Imaging and Tractography to Probe Human Brain Organoid Microstructure. Biol Psychiatry Glob Open Sci. 2024 Sep;4(5):100344. Riedl KA, Kampf T, Herold V, Behr VC, Bauer WR. Wall shear stress analysis using 17.6 Tesla MRI: A longitudinal study in ApoE-/- mice with histological analysis. PLoS One. 2020;15(8):e0238112. Mukhatov A, Le TA, Pham TT, Do TD. A comprehensive review on magnetic imaging techniques for biomedical applications. Nano Select [Internet]. 2023 [cited 2024 Oct 22];4(3):213–30. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1002/nano.202200219 Keeler J, Morris FRS GA. Ray Freeman. 6 January 1932—1 May 2022. Biographical Memoirs of Fellows of the Royal Society [Internet]. 2024 Jan 10 [cited 2024 Oct 22];76:201–20. Available from: https://royalsocietypublishing.org/doi/10.1098/rsbm.2023.0026 Lauterbur PC. Image Formation by Induced Local Interactions: Examples Employing Nuclear Magnetic Resonance. Nature [Internet]. 1973 Mar [cited 2024 Oct 22];242(5394):190–1. Available from: https://www.nature.com/articles/242190a0 Rahman M. Magnetic Resonance Imaging and Iron-oxide Nanoparticles in the era of Personalized Medicine. Nanotheranostics. 2023;7(4):424–49. Kwok WE. Basic Principles of and Practical Guide to Clinical MRI Radiofrequency Coils. Radiographics. 2022;42(3):898–918. Minhas AS, Oliver R. Magnetic Resonance Imaging Basics. Adv Exp Med Biol. 2022;1380:47–82. Grover VPB, Tognarelli JM, Crossey MME, Cox IJ, Taylor-Robinson SD, McPhail MJW. Magnetic Resonance Imaging: Principles and Techniques: Lessons for Clinicians. J Clin Exp Hepatol. 2015 Sep;5(3):246–55. Yan GP, Robinson L, Hogg P. Magnetic resonance imaging contrast agents: Overview and perspectives. Radiography [Internet]. 2007 Dec 1 [cited 2024 Oct 22];13:e5–19. Available from: https://www.radiographyonline.com/article/S1078-8174(06)00088-5/abstract Alzola-Aldamizetxebarria S, Fernández-Méndez L, Padro D, Ruíz-Cabello J, Ramos-Cabrer P. A Comprehensive Introduction to Magnetic Resonance Imaging Relaxometry and Contrast Agents. ACS Omega [Internet]. 2022 Oct 13 [cited 2024 Oct 22];7(42):36905. Available from: https://pmc.ncbi.nlm.nih.gov/articles/PMC9609087/ Xiao YD, Paudel R, Liu J, Ma C, Zhang ZS, Zhou SK. MRI contrast agents: Classification and application (Review). Int J Mol Med. 2016 Nov;38(5):1319–26. Ibrahim MA, Hazhirkarzar B, Dublin AB. Gadolinium Magnetic Resonance Imaging. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024 [cited 2024 Oct 22]. Available from: http://www.ncbi.nlm.nih.gov/books/NBK482487/ Liu Z, Cai J, Su H, Yang J, Sun W, Ma Y, et al. Feasibility of USPIOs for T1-weighted MR molecular imaging of tumor receptors. RSC Adv [Internet]. 2017 Jun 16 [cited 2022 Nov 8];7(50):31671–81. Available from: https://pubs.rsc.org/en/content/articlelanding/2017/ra/c7ra04903j Burtea C, Ballet S, Laurent S, Rousseaux O, Dencausse A, Gonzalez W, et al. Development of a magnetic resonance imaging protocol for the characterization of atherosclerotic plaque by using vascular cell adhesion molecule-1 and apoptosis-targeted ultrasmall superparamagnetic iron oxide derivatives. Arterioscler Thromb Vasc Biol. 2012 Jun;32(6):e36-48. Neema M, Stankiewicz J, Arora A, Dandamudi VSR, Batt CE, Guss ZD, et al. T1- and T2-based MRI measures of diffuse gray matter and white matter damage in patients with multiple sclerosis. J Neuroimaging. 2007 Apr;17 Suppl 1:16S-21S. Lv J, Roy S, Xie M, Yang X, Guo B. Contrast Agents of Magnetic Resonance Imaging and Future Perspective. Nanomaterials (Basel). 2023 Jul 4;13(13):2003. Kakaei N, Amirian R, Azadi M, Mohammadi G, Izadi Z. Perfluorocarbons: A perspective of theranostic applications and challenges. Front Bioeng Biotechnol. 2023;11:1115254. Platas-Iglesias C, Mato-Iglesias M, Djanashvili K, Muller RN, Elst LV, Peters JA, et al. Lanthanide chelates containing pyridine units with potential application as contrast agents in magnetic resonance imaging. Chemistry. 2004 Jul 19;10(14):3579–90. Weinmann HJ, Brasch RC, Press WR, Wesbey GE. Characteristics of gadolinium-DTPA complex: a potential NMR contrast agent. AJR Am J Roentgenol. 1984 Mar;142(3):619–24. Yang CT, Hattiholi A, Selvan ST, Yan SX, Fang WW, Chandrasekharan P, et al. Gadolinium-based bimodal probes to enhance T1-Weighted magnetic resonance/optical imaging. Acta Biomaterialia [Internet]. 2020 Jul 1 [cited 2024 Oct 22];110:15–36. Available from: https://www.sciencedirect.com/science/article/pii/S1742706120301884 Nelson NR, Port JD, Pandey MK. Use of Superparamagnetic Iron Oxide Nanoparticles (SPIONs) via Multiple Imaging Modalities and Modifications to Reduce Cytotoxicity: An Educational Review. Journal of Nanotheranostics [Internet]. 2020 Dec [cited 2024 Oct 22];1(1):105–35. Available from: https://www.mdpi.com/2624-845X/1/1/8 Bao Y, Sherwood JA, Sun Z. Magnetic iron oxide nanoparticles as T1 contrast agents for magnetic resonance imaging. J Mater Chem C [Internet]. 2018 Feb 8 [cited 2024 Oct 22];6(6):1280–90. Available from: https://pubs.rsc.org/en/content/articlelanding/2018/tc/c7tc05854c Jeon M, Halbert MV, Stephen ZR, Zhang M. Iron Oxide Nanoparticles as T1 Contrast Agents for Magnetic Resonance Imaging: Fundamentals, Challenges, Applications, and Prospectives. Adv Mater. 2021 Jun;33(23):e1906539. Ye F, Wu X, Jeong EK, Jia Z, Yang T, Parker D, et al. A peptide targeted contrast agent specific to fibrin-fibronectin complexes for cancer molecular imaging with MRI. Bioconjug Chem. 2008 Dec;19(12):2300–3. Zapata-Acevedo JF, Losada-Barragán M, Osma JF, Cruz JC, Reiber A, Petry KG, et al. Specific nanoprobe design for MRI: Targeting laminin in the blood-brain barrier to follow alteration due to neuroinflammation. PLoS One. 2024;19(4):e0302031. Burtea C, Laurent S, Lancelot E, Ballet S, Murariu O, Rousseaux O, et al. Peptidic Targeting of Phosphatidylserine for the MRI Detection of Apoptosis in Atherosclerotic Plaques. Mol Pharmaceutics [Internet]. 2009 Dec 7 [cited 2024 Oct 22];6(6):1903–19. Available from: https://doi.org/10.1021/mp900106m Zhang X, Zhang X, Wang F. Intracellular transduction and potential of Tat PTD and its analogs: from basic drug delivery mechanism to application. Expert Opin Drug Deliv. 2012 Apr;9(4):457–72. Choi S, Oh JH, Kim H, Nam SH, Shin J, Park JS. Protective Effect of Tat PTD-Hsp27 Fusion Protein on Tau Hyperphosphorylation Induced by Okadaic Acid in the Human Neuroblastoma Cell Line SH-SY5Y. Cell Mol Neurobiol. 2015 Oct;35(7):1049–59. Demeule M, Currie JC, Bertrand Y, Ché C, Nguyen T, Régina A, et al. Involvement of the low-density lipoprotein receptor-related protein in the transcytosis of the brain delivery vector angiopep-2. J Neurochem. 2008 Aug;106(4):1534–44. Xie R, Wu Z, Zeng F, Cai H, Wang D, Gu L, et al. Retro-enantio isomer of angiopep-2 assists nanoprobes across the blood-brain barrier for targeted magnetic resonance/fluorescence imaging of glioblastoma. Signal Transduct Target Ther [Internet]. 2021 Aug 19 [cited 2022 Nov 8];6:309. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8377144/ Thirumurugan S, Dash P, Liu X, Tseng YY, Huang WJ, Li Y, et al. Angiopep-2-decorated titanium-alloy core-shell magnetic nanoparticles for nanotheranostics and medical imaging. Nanoscale. 2022 Oct 13;14(39):14789–800. Choi M, Ryu J, Vu HD, Kim D, Youn YJ, Park MH, et al. Transferrin-Conjugated Melittin-Loaded L-Arginine-Coated Iron Oxide Nanoparticles for Mitigating Beta-Amyloid Pathology of the 5XFAD Mouse Brain. International Journal of Molecular Sciences [Internet]. 2023 Jan [cited 2024 Oct 22];24(19):14954. Available from: https://www.mdpi.com/1422-0067/24/19/14954 Moura RP, Carvalho ED, Martins C, des Rieux A, Pêgo AP, Sarmento B. Functionalized retinoic acid lipid nanocapsules promotes a two-front attack on inflammation and lack of demyelination on neurodegenerative disorders. J Control Release. 2023 Jun;358:43–58. Richard S, Boucher M, Lalatonne Y, Mériaux S, Motte L. Iron oxide nanoparticle surface decorated with cRGD peptides for magnetic resonance imaging of brain tumors. Biochimica et Biophysica Acta (BBA) - General Subjects [Internet]. 2017 Jun 1 [cited 2024 Oct 22];1861(6):1515–20. Available from: https://www.sciencedirect.com/science/article/pii/S0304416516305141 Chertok B, Moffat BA, David AE, Yu F, Bergemann C, Ross BD, et al. Iron oxide nanoparticles as a drug delivery vehicle for MRI monitored magnetic targeting of brain tumors. Biomaterials [Internet]. 2008 Feb 1 [cited 2024 Oct 22];29(4):487–96. Available from: https://www.sciencedirect.com/science/article/pii/S0142961207007910 Lu X, Zhang Y, Wang L, Li G, Gao J, Wang Y. Development of L-carnosine functionalized iron oxide nanoparticles loaded with dexamethasone for simultaneous therapeutic potential of blood brain barrier crossing and ischemic stroke treatment. Drug Deliv. 2021 Dec;28(1):380–9. Tang T, Valenzuela A, Petit F, Chow S, Leung K, Gorin F, et al. In Vivo MRI of Functionalized Iron Oxide Nanoparticles for Brain Inflammation. Contrast Media Mol Imaging. 2018;2018:3476476. Jin AY, Tuor UI, Rushforth D, Filfil R, Kaur J, Ni F, et al. Magnetic resonance molecular imaging of post-stroke neuroinflammation with a P-selectin targeted iron oxide nanoparticle. Contrast Media Mol Imaging. 2009;4(6):305–11. Barber PA. Magnetic resonance imaging of ischemia viability thresholds and the neurovascular unit. Sensors (Basel). 2013 May 27;13(6):6981–7003. Cuellar M, Cifuentes J, Perez J, Suarez-Arnedo A, Serna JA, Groot H, et al. Novel BUF2-magnetite nanobioconjugates with cell-penetrating abilities. Int J Nanomedicine [Internet]. 2018 Nov 28 [cited 2021 Nov 15];13:8087–94. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6276613/ Andrade ÂL, Fabris JD, Ardisson JD, Valente MA, Ferreira JMF. Effect of Tetramethylammonium Hydroxide on Nucleation, Surface Modification and Growth of Magnetic Nanoparticles. Journal of Nanomaterials [Internet]. 2012 [cited 2024 Oct 22];2012(1):454759. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1155/2012/454759 Shen L, Li B, Qiao Y. Fe₃O₄ Nanoparticles in Targeted Drug/Gene Delivery Systems. Materials (Basel). 2018 Feb 23;11(2):324. Liu Y, Li Y, Li XM, He T. Kinetics of (3-Aminopropyl)triethoxylsilane (APTES) Silanization of Superparamagnetic Iron Oxide Nanoparticles. Langmuir [Internet]. 2013 Dec 10 [cited 2021 Nov 15];29(49):15275–82. Available from: https://doi.org/10.1021/la403269u Burtea C, Laurent S, Sanli T, Fanfone D, Devalckeneer A, Sauvage S, et al. Screening for peptides targeted to IL-7Rα for molecular imaging of rheumatoid arthritis synovium. Arthritis Res Ther. 2016 Oct 12;18(1):230. PT1572246 NOVEL COMPOSITIONS OF MAGNETIC PARTICLES COVERED WITH GEM-BISPHOSPHONATE DERIVATIVES [Internet]. [cited 2024 Oct 22]. Available from: https://patentscope.wipo.int/search/en/detail.jsf?docId=PT108228813&docAn=03799680 Maldonado-Camargo L, Unni M, Rinaldi C. Magnetic Characterization of Iron Oxide Nanoparticles for Biomedical Applications. Methods Mol Biol. 2017;1570:47–71. Boiziau C, Vekris A, Petry K. Hybridization process for enriching specific sequence from nucleic acid directory to test directory comprises e.g. adding restriction endonuclease to hybridized DNA of directory and incubating mixture to transform host cells in the mixture [Internet]. FR2952071A1, 2011 [cited 2024 Oct 23]. Available from: https://patents.google.com/patent/FR2952071A1/en McCarthy SA, Davies GL, Gun’ko YK. Preparation of multifunctional nanoparticles and their assemblies. Nat Protoc [Internet]. 2012 Sep [cited 2021 Nov 15];7(9):1677–93. Available from: https://www.nature.com/articles/nprot.2012.082 Stanicki D, Boutry S, Laurent S, Wacheul L, Nicolas E, Crombez D, et al. Carboxy-silane coated iron oxide nanoparticles: a convenient platform for cellular and small animal imaging. J Mater Chem B. 2014 Jan 28;2(4):387–97. Weksler BB, Subileau EA, Perrière N, Charneau P, Holloway K, Leveque M, et al. Blood-brain barrier-specific properties of a human adult brain endothelial cell line. FASEB J. 2005 Nov;19(13):1872–4. Baez-Jurado E, Vega GG, Aliev G, Tarasov VV, Esquinas P, Echeverria V, et al. Blockade of Neuroglobin Reduces Protection of Conditioned Medium from Human Mesenchymal Stem Cells in Human Astrocyte Model (T98G) Under a Scratch Assay. Mol Neurobiol. 2018 Mar;55(3):2285–300. Fujiwara H, Kikkawa Y, Sanzen N, Sekiguchi K. Purification and characterization of human laminin-8. Laminin-8 stimulates cell adhesion and migration through alpha3beta1 and alpha6beta1 integrins. J Biol Chem. 2001 May 18;276(20):17550–8. Kawataki T, Yamane T, Naganuma H, Rousselle P, Andurén I, Tryggvason K, et al. Laminin isoforms and their integrin receptors in glioma cell migration and invasiveness: Evidence for a role of alpha5-laminin(s) and alpha3beta1 integrin. Exp Cell Res. 2007/09/25 ed. 2007 Nov 1;313(18):3819–31. Bolte S, Cordelières FP. A guided tour into subcellular colocalization analysis in light microscopy. J Microsc. 2006 Dec;224(Pt 3):213–32. Simberg D, Park JH, Karmali PP, Zhang WM, Merkulov S, McCrae K, et al. Differential proteomics analysis of the surface heterogeneity of dextran iron oxide nanoparticles and the implications for their in vivo clearance. Biomaterials [Internet]. 2009 Aug [cited 2024 Jan 16];30(23–24):3926–33. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2792080/ Simberg D, Zhang WM, Merkulov S, McCrae K, Park JH, Sailor MJ, et al. Contact activation of kallikrein-kinin system by superparamagnetic iron oxide nanoparticles in vitro and in vivo. Journal of controlled release : official journal of the Controlled Release Society [Internet]. 2009 Dec 12 [cited 2024 Jan 16];140(3):301. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2787880/ Semmler A, Hermann S, Mormann F, Weberpals M, Paxian SA, Okulla T, et al. Sepsis causes neuroinflammation and concomitant decrease of cerebral metabolism. J Neuroinflammation. 2008 Sep 15;5:38. Semmler A, Okulla T, Sastre M, Dumitrescu-Ozimek L, Heneka MT. Systemic inflammation induces apoptosis with variable vulnerability of different brain regions. J Chem Neuroanat. 2005 Oct;30(2–3):144–57. Hanesch M. Raman spectroscopy of iron oxides and (oxy)hydroxides at low laser power and possible applications in environmental magnetic studies. Geophysical Journal International [Internet]. 2009 Jun 1 [cited 2022 Nov 8];177(3):941–8. Available from: https://doi.org/10.1111/j.1365-246X.2009.04122.x Schwaminger SP, Bauer D, Fraga-García P, Wagner FE, Berensmeier S. Oxidation of magnetite nanoparticles: impact on surface and crystal properties. CrystEngComm [Internet]. 2017 Jan 4 [cited 2022 Nov 8];19(2):246–55. Available from: https://pubs.rsc.org/en/content/articlelanding/2017/ce/c6ce02421a Schwaminger SP, Syhr C, Berensmeier S. Controlled Synthesis of Magnetic Iron Oxide Nanoparticles: Magnetite or Maghemite? Crystals [Internet]. 2020 Mar [cited 2022 Nov 8];10(3):214. Available from: https://www.mdpi.com/2073-4352/10/3/214 Chourpa I, Douziech-Eyrolles L, Ngaboni-Okassa L, Fouquenet JF, Cohen-Jonathan S, Soucé M, et al. Molecular composition of iron oxide nanoparticles, precursors for magnetic drug targeting, as characterized by confocal Raman microspectroscopy. Analyst [Internet]. 2005 Sep 19 [cited 2022 Nov 8];130(10):1395–403. Available from: https://pubs.rsc.org/en/content/articlelanding/2005/an/b419004a Hervé K, Douziech-Eyrolles L, Munnier E, Cohen-Jonathan S, Soucé M, Marchais H, et al. The development of stable aqueous suspensions of PEGylated SPIONs for biomedical applications. Nanotechnology [Internet]. 2008 Oct [cited 2022 Nov 8];19(46):465608. Available from: https://dx.doi.org/10.1088/0957-4484/19/46/465608 Danaei M, Dehghankhold M, Ataei S, Hasanzadeh Davarani F, Javanmard R, Dokhani A, et al. Impact of Particle Size and Polydispersity Index on the Clinical Applications of Lipidic Nanocarrier Systems. Pharmaceutics [Internet]. 2018 Jun [cited 2023 Mar 19];10(2):57. Available from: https://www.mdpi.com/1999-4923/10/2/57 Yin J, Yin G, Pu X, Huang Z, Yao D. Preparation and characterization of peptide modified ultrasmall superparamagnetic iron oxides used as tumor targeting MRI contrast agent. RSC Adv [Internet]. 2019 Jun 19 [cited 2022 Nov 8];9(34):19397–407. Available from: https://pubs.rsc.org/en/content/articlelanding/2019/ra/c9ra02636c Khalil MI. Co-precipitation in aqueous solution synthesis of magnetite nanoparticles using iron(III) salts as precursors. Arabian Journal of Chemistry [Internet]. 2015 Mar 1 [cited 2022 Nov 8];8(2):279–84. Available from: https://www.sciencedirect.com/science/article/pii/S1878535215000428 Stoia M, Istratie R, Păcurariu C. Investigation of magnetite nanoparticles stability in air by thermal analysis and FTIR spectroscopy. J Therm Anal Calorim [Internet]. 2016 Sep 1 [cited 2022 Nov 8];125(3):1185–98. Available from: https://doi.org/10.1007/s10973-016-5393-y Singh M, Ulbrich P, Prokopec V, Svoboda P, Šantavá E, Štěpánek F. Vapour phase approach for iron oxide nanoparticle synthesis from solid precursors. Journal of Solid State Chemistry [Internet]. 2013 Apr 1 [cited 2022 Nov 8];200:150–6. Available from: https://www.sciencedirect.com/science/article/pii/S0022459613000534 Majoul N, Aouida S, Bessaïs B. Progress of porous silicon APTES-functionalization by FTIR investigations. Applied Surface Science [Internet]. 2015 Mar 15 [cited 2022 Nov 8];331:388–91. Available from: https://www.sciencedirect.com/science/article/pii/S0169433215001324 Zhang D, Hegab HE, Lvov Y, Dale Snow L, Palmer J. Immobilization of cellulase on a silica gel substrate modified using a 3-APTES self-assembled monolayer. Springerplus [Internet]. 2016 Jan 20 [cited 2022 Nov 8];5(1):48. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4718907/ Krishnan MA, Aneja KS, Shaikh A, Bohm S, Sarkar K, Bohm HLM, et al. Graphene-based anticorrosive coatings for copper. RSC Adv [Internet]. 2017 Dec 15 [cited 2022 Nov 8];8(1):499–507. Available from: https://pubs.rsc.org/en/content/articlelanding/2018/ra/c7ra10167h Alizadeh L, Alizadeh E, Zarebkohan A, Ahmadi E, Rahmati-Yamchi M, Salehi R. AS1411 aptamer-functionalized chitosan-silica nanoparticles for targeted delivery of epigallocatechin gallate to the SKOV-3 ovarian cancer cell lines. J Nanopart Res [Internet]. 2020 Jan 2 [cited 2022 Nov 8];22(1):5. Available from: https://doi.org/10.1007/s11051-019-4735-7 Netzahual-Lopantzi Á, Sánchez-Ramírez JF, Jiménez-Pérez JL, Cornejo-Monroy D, López-Gamboa G, Correa-Pacheco ZN. Study of the thermal diffusivity of nanofluids containing SiO2 decorated with Au nanoparticles by thermal lens spectroscopy. Appl Phys A [Internet]. 2019 Aug 5 [cited 2022 Nov 8];125(9):588. Available from: https://doi.org/10.1007/s00339-019-2891-3 Jain A, Ong SP, Hautier G, Chen W, Richards WD, Dacek S, et al. Commentary: The Materials Project: A materials genome approach to accelerating materials innovation. APL Materials [Internet]. 2013 Jul [cited 2023 Mar 19];1(1):011002. Available from: https://aip.scitation.org/doi/10.1063/1.4812323 Materials Project [Internet]. [cited 2023 Mar 19]. Materials Project - Home. Available from: https://next-gen.materialsproject.org/ Chamorro-Coral W, Caillard A, Brault P, Baranton S, Coutanceau C. Binary and ternary Pt-based clusters grown in a plasma multimagnetron-based gas aggregation source: electrocatalytic evaluation towards glycerol oxidation. Nanoscale Adv [Internet]. 2021 Mar 23 [cited 2023 Mar 19];3(6):1730–40. Available from: https://pubs.rsc.org/en/content/articlelanding/2021/na/d0na01009j Karim A, Fosse S, Persson KA. Surface structure and equilibrium particle shape of the LiMn${}_{2}$O${}_{4}$ spinel from first-principles calculations. Phys Rev B [Internet]. 2013 Feb 26 [cited 2023 Mar 19];87(7):075322. Available from: https://link.aps.org/doi/10.1103/PhysRevB.87.075322 Hallare J, Gerriets V. Half Life. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2023 [cited 2023 Sep 5]. Available from: http://www.ncbi.nlm.nih.gov/books/NBK554498/ Kraffert K, Kabelitz A, Siemensmeyer K, Schmack R, Bernsmeier D, Emmerling F, et al. Nanocasting of Superparamagnetic Iron Oxide Films with Ordered Mesoporosity. Advanced Materials Interfaces [Internet]. 2018 [cited 2023 Mar 5];5(3):1700960. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1002/admi.201700960 Armenia I, Grazú Bonavia MV, De Matteis L, Ivanchenko P, Martra G, Gornati R, et al. Enzyme activation by alternating magnetic field: Importance of the bioconjugation methodology. Journal of Colloid and Interface Science [Internet]. 2019 Mar 1 [cited 2023 Mar 12];537:615–28. Available from: https://www.sciencedirect.com/science/article/pii/S0021979718313717 Ma X, Wang S, Hu L, Feng S, Wu Z, Liu S, et al. Imaging Characteristics of USPIO Nanoparticles (<5 nm) as MR Contrast Agent In Vitro and in the Liver of Rats. Contrast Media & Molecular Imaging [Internet]. 2019 Jul 21 [cited 2022 Nov 20];2019:e3687537. Available from: https://www.hindawi.com/journals/cmmi/2019/3687537/ Wei H, Bruns OT, Kaul MG, Hansen EC, Barch M, Wiśniowska A, et al. Exceedingly small iron oxide nanoparticles as positive MRI contrast agents. Proc Natl Acad Sci U S A. 2017 Feb 28;114(9):2325–30. Wang YXJ, Hussain SM, Krestin GP. Superparamagnetic iron oxide contrast agents: physicochemical characteristics and applications in MR imaging. Eur Radiol [Internet]. 2001 Nov 1 [cited 2022 Nov 20];11(11):2319–31. Available from: https://doi.org/10.1007/s003300100908 Geppert M, Himly M. Iron Oxide Nanoparticles in Bioimaging – An Immune Perspective. Frontiers in Immunology [Internet]. 2021 [cited 2023 Feb 14];12. Available from: https://www.frontiersin.org/articles/10.3389/fimmu.2021.688927 Di Marco M, Guilbert I, Port M, Robic C, Couvreur P, Dubernet C. Colloidal stability of ultrasmall superparamagnetic iron oxide (USPIO) particles with different coatings. Int J Pharm. 2007 Mar 1;331(2):197–203. Yarjanli Z, Ghaedi K, Esmaeili A, Rahgozar S, Zarrabi A. Iron oxide nanoparticles may damage to the neural tissue through iron accumulation, oxidative stress, and protein aggregation. BMC Neuroscience [Internet]. 2017 Jun 26 [cited 2022 Dec 7];18(1):51. Available from: https://doi.org/10.1186/s12868-017-0369-9 Pinkernelle J, Calatayud P, Goya GF, Fansa H, Keilhoff G. Magnetic nanoparticles in primary neural cell cultures are mainly taken up by microglia. BMC Neurosci. 2012 Mar 22;13:32. Manzanares D, Ceña V. Endocytosis: The Nanoparticle and Submicron Nanocompounds Gateway into the Cell. Pharmaceutics. 2020 Apr 17;12(4):371. Mazuel F, Espinosa A, Luciani N, Reffay M, Le Borgne R, Motte L, et al. Massive Intracellular Biodegradation of Iron Oxide Nanoparticles Evidenced Magnetically at Single-Endosome and Tissue Levels. ACS Nano [Internet]. 2016 Aug 23 [cited 2022 Dec 7];10(8):7627–38. Available from: https://doi.org/10.1021/acsnano.6b02876 Volatron J, Carn F, Kolosnjaj-Tabi J, Javed Y, Vuong QL, Gossuin Y, et al. Ferritin Protein Regulates the Degradation of Iron Oxide Nanoparticles. Small. 2017 Jan;13(2). Laskar A, Ghosh M, Khattak SI, Li W, Yuan XM. Degradation of superparamagnetic iron oxide nanoparticle-induced ferritin by lysosomal cathepsins and related immune response. Nanomedicine (Lond). 2012 May;7(5):705–17. Imam SZ, Lantz-McPeak SM, Cuevas E, Rosas-Hernandez H, Liachenko S, Zhang Y, et al. Iron Oxide Nanoparticles Induce Dopaminergic Damage: In vitro Pathways and In Vivo Imaging Reveals Mechanism of Neuronal Damage. Mol Neurobiol. 2015 Oct;52(2):913–26. Aibani N, Rai R, Patel P, Cuddihy G, Wasan EK. Chitosan Nanoparticles at the Biological Interface: Implications for Drug Delivery. Pharmaceutics [Internet]. 2021 Oct 14 [cited 2024 Oct 23];13(10):1686. Available from: https://pmc.ncbi.nlm.nih.gov/articles/PMC8540112/ Casco M, Olsen T, Herbst A, Evans G, Rothermel T, Pruett L, et al. Iron Oxide Nanoparticles Stimulates Extra-Cellular Matrix Production in Cellular Spheroids. Bioengineering (Basel) [Internet]. 2017 Jan 21 [cited 2022 Dec 14];4(1):4. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5590449/ Könnecke H, Bechmann I. The role of microglia and matrix metalloproteinases involvement in neuroinflammation and gliomas. Clin Dev Immunol. 2013;2013:914104. Weksler B, Romero IA, Couraud PO. The hCMEC/D3 cell line as a model of the human blood brain barrier. Fluids Barriers CNS. 2013 Mar 26;10(1):16. Santa-Maria AR, Walter FR, Figueiredo R, Kincses A, Vigh JP, Heymans M, et al. Flow induces barrier and glycocalyx-related genes and negative surface charge in a lab-on-a-chip human blood-brain barrier model. J Cereb Blood Flow Metab. 2021 Sep;41(9):2201–15. Ader M, Tanaka EM. Modeling human development in 3D culture. Curr Opin Cell Biol. 2014 Dec;31:23–8. Bergmann S, Lawler SE, Qu Y, Fadzen CM, Wolfe JM, Regan MS, et al. Blood-brain-barrier organoids for investigating the permeability of CNS therapeutics. Nat Protoc [Internet]. 2018 Dec [cited 2022 Nov 10];13(12):2827–43. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6673652/ Arami H, Khandhar A, Liggitt D, Krishnan KM. In vivo delivery, pharmacokinetics, biodistribution and toxicity of iron oxide nanoparticles. Chem Soc Rev [Internet]. 2015 Dec 7 [cited 2023 Sep 5];44(23):8576–607. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4648695/ Kresse M, Wagner S, Pfefferer D, Lawaczeck R, Elste V, Semmler W. Targeting of ultrasmall superparamagnetic iron oxide (USPIO) particles to tumor cells in vivo by using transferrin receptor pathways. Magn Reson Med. 1998 Aug;40(2):236–42. Zhang W, Sigdel G, Mintz KJ, Seven ES, Zhou Y, Wang C, et al. Carbon Dots: A Future Blood-Brain Barrier Penetrating Nanomedicine and Drug Nanocarrier. Int J Nanomedicine. 2021;16:5003–16. Sixt M, Engelhardt B, Pausch F, Hallmann R, Wendler O, Sorokin LM. Endothelial cell laminin isoforms, laminins 8 and 10, play decisive roles in T cell recruitment across the blood-brain barrier in experimental autoimmune encephalomyelitis. J Cell Biol. 2001 May 28;153(5):933–46. Hawkes CA, Michalski D, Anders R, Nissel S, Grosche J, Bechmann I, et al. Stroke-induced opposite and age-dependent changes of vessel-associated markers in co-morbid transgenic mice with Alzheimer-like alterations. Experimental Neurology [Internet]. 2013;250:270–81. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84886254101&doi=10.1016%2fj.expneurol.2013.09.020&partnerID=40&md5=7a9464e41a871c61b7d2d0c07d7ce6e4 Ryu JK, McLarnon JG. Thalidomide inhibition of perturbed vasculature and glial-derived tumor necrosis factor-alpha in an animal model of inflamed Alzheimer’s disease brain. Neurobiol Dis. 2008 Feb;29(2):254–66. Chopra N, Menounos S, Choi JP, Hansbro PM, Diwan AD, Das A. Blood-Spinal Cord Barrier: Its Role in Spinal Disorders and Emerging Therapeutic Strategies. NeuroSci [Internet]. 2022 Mar [cited 2024 Oct 23];3(1):1–27. Available from: https://www.mdpi.com/2673-4087/3/1/1 Kroeger N, Pantuck AJ. Re: Grant D. Stewart, Fiach C. O’Mahony, Alexander Laird, et al. carbonic anhydrase 9 expression increases with vascular endothelial growth factor-targeted therapy and is predictive of outcome in metastatic clear cell renal cancer. Eur Urol. In press. http://dx.doi.org/10.1016/j.eururo.2014.04.007. Eur Urol. 2014 Oct;66(4):e69-70. Bartanusz V, Jezova D, Alajajian B, Digicaylioglu M. The blood-spinal cord barrier: morphology and clinical implications. Ann Neurol. 2011 Aug;70(2):194–206. Polasky C, Studt T, Steuer AK, Loyal K, Lüdtke-Buzug K, Bruchhage KL, et al. Impact of Superparamagnetic Iron Oxide Nanoparticles on THP-1 Monocytes and Monocyte-Derived Macrophages. Front Mol Biosci [Internet]. 2022 Feb 4 [cited 2024 Oct 23];9. Available from: https://www.frontiersin.org/journals/molecular-biosciences/articles/10.3389/fmolb.2022.811116/full Ersoy H, Jacobs P, Kent CK, Prince MR. Blood Pool MR Angiography of Aortic Stent-Graft Endoleak. American Journal of Roentgenology [Internet]. 2004 May [cited 2024 Mar 19];182(5):1181–6. Available from: https://www.ajronline.org/doi/10.2214/ajr.182.5.1821181 Vellinga MM, Oude Engberink RD, Seewann A, Pouwels PJW, Wattjes MP, van der Pol SMA, et al. Pluriformity of inflammation in multiple sclerosis shown by ultra-small iron oxide particle enhancement. Brain. 2008 Mar;131(Pt 3):800–7. Dadfar SM, Roemhild K, Drude NI, von Stillfried S, Knüchel R, Kiessling F, et al. Iron oxide nanoparticles: Diagnostic, therapeutic and theranostic applications. Adv Drug Deliv Rev. 2019 Jan 1;138:302–25. |
dc.source.instname.none.fl_str_mv |
instname:Universidad del Rosario |
dc.source.reponame.none.fl_str_mv |
reponame:Repositorio Institucional EdocUR |
bitstream.url.fl_str_mv |
https://repository.urosario.edu.co/bitstreams/8f8b5d85-cc42-4799-9304-b67dab9f360f/download https://repository.urosario.edu.co/bitstreams/86951c56-9d85-4116-8261-c30aa8b95b7b/download https://repository.urosario.edu.co/bitstreams/eeb45942-7468-4499-ac66-9cdadf4423ab/download https://repository.urosario.edu.co/bitstreams/3d0c7027-ba3a-43d0-ae40-6b2becdd6a06/download https://repository.urosario.edu.co/bitstreams/2d472919-269f-4915-8579-901d31eb70ca/download |
bitstream.checksum.fl_str_mv |
d70e68c4e5ac2ce00dbe31f1c48a2c4e b2825df9f458e9d5d96ee8b7cd74fde6 5643bfd9bcf29d560eeec56d584edaa9 e3f0f9067586e4415aeb55883213a797 5b1d497d6c98668b58414e7496c09160 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio institucional EdocUR |
repository.mail.fl_str_mv |
edocur@urosario.edu.co |
_version_ |
1828160622966079488 |
spelling |
González Reyes, Rodrigo Estebanafba3445-a398-49cf-bfda-b11a9e1f1409-1Vargas Sánchez, Jeinny Karina83efbd53-c3ba-43f2-ba6d-9898ef8f4d84-1Grupo de Neurociencias de la Universidad del Rosario (NEUROS)Zapata Acevedo, Juan FelipeDoctor en Ciencias Biomédicas y BiológicasDoctorado0c9293bb-218d-42b0-8b38-d03e0de01885-12025-02-25T15:14:04Z2025-02-25T15:14:04Z2024-12-04info:eu-repo/date/embargoEnd/2027-02-28La neuroinflamación crónica se caracteriza por un aumento de la permeabilidad de la barrera hematoencefálica (BHE), lo que provoca cambios moleculares en el sistema nervioso central (SNC) que pueden explorarse con biomarcadores de procesos neuroinflamatorios activos. En este contexto la resonancia magnética nuclear (RMN) ha sido una herramienta clave para detectar tanto las lesiones como la permeabilidad de la BHE. Además, el uso de nanopartículas superparamagnéticas ultrapequeñas de óxido de hierro (USPIO) como agentes de contraste ha permitido mejorar la resolución y precisión de estas observaciones por RMN. Por lo tanto, en esta tesis doctoral se evaluó la interacción del péptido-88 con laminina, mediante la vectorización del péptido 88 con USPIO (NPS-P88), para explorar las alteraciones moleculares de la BHE que ocurren durante la neuroinflamación como una herramienta potencial para su uso en RMN. Para verificar el marcaje específico de NPS-P88 se realizaron experimentos en células endoteliales (hCMEC/D3) y astrocitos (T98G) bajo inflamación inducida por IL-1β durante 3 y 24 horas. En células hCMEC/D3 tratadas con IL-1β durante 3 horas, se observó un aumentó de expresión y colocalización de la laminina con las NPS-P88, en comparación con los controles. Sin embargo, a las 24 horas no se observaron diferencias significativas entre los grupos control y células hCMEC/D3 con IL-1β. Por otro lado, en las células T98G, las NPS-P88 mostraron un etiquetado inespecífico similar al observado en los controles. Estos resultados sugieren que NPS-P88 tiene una mayor afinidad por las células endoteliales cerebrales que por los astrocitos en condiciones de inflamación. Aunque esta afinidad disminuye con el tiempo a medida que la expresión de la laminina se reduce. Los resultados in vivo indicaron que, 30 minutos después de la inyección de las nanosondas, hay una mayor presencia de NPS-P88 en la sangre y el cerebro, pero que disminuye progresivamente con el tiempo. Además, la síntesis de las USPIO por un segundo método permitió obtener nanopartículas con una mayor estabilidad, biocompatibilidad y biodistribución lo que prolongó su permanencia en sangre. En modelos de neuroinflamación animal inducida por LPS por 24 horas se observó un aumento de expresión de la laminina en cerebro durante procesos inflamatorios, lo que se correlaciona con una mayor presencia de NPS-P88. Asimismo, se confirmó una comarcación de la laminina/NPS-P88 en cerebro. En contraste, en médula se encontró una baja presencia de NPS-P88, sin cambios significativos en la expresión de laminina ni comarcación laminina/NPS-P88. Finalmente, en los animales EAE, la RMN reveló una acumulación significativa de NPS-P88 principalmente en la corteza, atribuida a la inflamación y la alteración de la BHE. En conjunto, estos resultados demuestran que NPS-P88 es un biomarcador para evaluar los cambios en la BHE inducidos por la neuroinflamación mediante RMN en modelos biológicos dirigidos a la laminina.Chronic neuroinflammation is characterized by an increase in the permeability of the blood-brain barrier (BBB), leading to molecular changes in the central nervous system (CNS) that can be explored with biomarkers of active neuroinflammatory processes. In this context, nuclear magnetic resonance (MRI) has been a key tool to detect both lesions and BBB permeability. Furthermore, the use of ultrasmall superparamagnetic iron oxide nanoparticles (USPIO) as contrast agents has allowed to improve the resolution and precision of these MRI observations. Therefore, in this PhD thesis, the interaction of peptide-88 with laminin was evaluated, by vectoring peptide-88 with USPIO (NPS-P88), to explore the molecular alterations of the BBB that occur during neuroinflammation as a potential tool for use in MRI. To verify the specific labeling of NPS-P88, experiments were performed in endothelial cells (hCMEC/D3) and astrocytes (T98G) under IL-1β-induced inflammation for 3 and 24 hours. In hCMEC/D3 cells treated with IL-1β for 3 hours, an increase in expression and co-localization of laminin with NPS-P88 was observed, compared to controls. However, at 24 hours, no significant differences were observed between the control groups and hCMEC/D3 cells with IL-1β. On the other hand, in T98G cells, NPS-P88 showed a non-specific labeling similar to that observed in controls. These results suggest that NPS-P88 has a higher affinity for brain endothelial cells than for astrocytes under inflammatory conditions. Although this affinity decreases over time as laminin expression is reduced. In vivo results indicated that 30 minutes after nanoprobes injection, there is a higher presence of NPS-P88 in the blood and brain, but that it progressively decreases over time. In addition, the synthesis of USPIOs by a second method allowed obtaining nanoparticles with greater stability, biocompatibility and biodistribution, which prolonged their permanence in blood. In animal models of neuroinflammation induced by LPS for 24 hours, an increase in laminin expression was observed in the brain during inflammatory processes, which correlates with a higher presence of NPS-P88. Likewise, a laminin/NPS-P88 co-marking was confirmed in the brain. In contrast, a low presence of NPS-P88 was found in the bone marrow, with no significant changes in laminin expression or laminin/NPS-P88 co-marking. Finally, in EAE animals, MRI revealed a significant accumulation of NPS-P88 mainly in the cortex, attributed to inflammation and BBB disruption. Taken together, these results demonstrate that NPS-P88 is a biomarker to assess neuroinflammation-induced BBB changes by MRI in laminin-targeted biological models.465 ppapplication/pdfhttps://repository.urosario.edu.co/handle/10336/45030spaUniversidad del RosarioEscuela de Medicina y Ciencias de la SaludDoctorado en Ciencias Biomédicas y BiológicasAttribution-NonCommercial-ShareAlike 4.0 InternationalRestringido (Temporalmente bloqueado)PARGRAFO: En caso de presentarse cualquier reclamación o acción por parte de un tercero en cuanto a los derechos de autor sobre la obra en cuestión, EL AUTOR, asumirá toda la responsabilidad, y saldrá en defensa de los derechos aquí autorizados; para todos los efectos la universidad actúa como un tercero de buena fe.http://creativecommons.org/licenses/by-nc-sa/4.0/http://purl.org/coar/access_right/c_f1cfDaneman R, Prat A. The blood-brain barrier. Cold Spring Harb Perspect Biol. 2015 Jan 5;7(1):a020412.Stephenson J, Nutma E, van der Valk P, Amor S. Inflammation in CNS neurodegenerative diseases. Immunology. 2018 Jun;154(2):204–19.Heye AK, Culling RD, Valdés Hernández MDC, Thrippleton MJ, Wardlaw JM. Assessment of blood-brain barrier disruption using dynamic contrast-enhanced MRI. A systematic review. Neuroimage Clin. 2014;6:262–74.Elschot EP, Backes WH, Postma AA, van Oostenbrugge RJ, Staals J, Rouhl RPW, et al. A Comprehensive View on MRI Techniques for Imaging Blood-Brain Barrier Integrity. Invest Radiol. 2021 Jan;56(1):10–9.Essig M, Dinkel J, Gutierrez JE. Use of contrast media in neuroimaging. Magn Reson Imaging Clin N Am. 2012 Nov;20(4):633–48.Iacobellis F, Di Serafino M, Russo C, Ronza R, Caruso M, Dell’Aversano Orabona G, et al. Safe and Informed Use of Gadolinium-Based Contrast Agent in Body Magnetic Resonance Imaging: Where We Were and Where We Are. Journal of Clinical Medicine [Internet]. 2024 Jan [cited 2024 Oct 9];13(8):2193. Available from: https://www.mdpi.com/2077-0383/13/8/2193Ramalho J, Semelka RC, Ramalho M, Nunes RH, AlObaidy M, Castillo M. Gadolinium-Based Contrast Agent Accumulation and Toxicity: An Update. AJNR Am J Neuroradiol [Internet]. 2016 Jul [cited 2022 Nov 8];37(7):1192–8. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7960350/Le Fur M, Caravan P. The biological fate of gadolinium-based MRI contrast agents: a call to action for bioinorganic chemists. Metallomics [Internet]. 2019 Feb 20 [cited 2022 Nov 8];11(2):240–54. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6486840/Neuwelt EA, Hamilton BE, Varallyay CG, Rooney WR, Edelman RD, Jacobs PM, et al. Ultrasmall superparamagnetic iron oxides (USPIOs): a future alternative magnetic resonance (MR) contrast agent for patients at risk for nephrogenic systemic fibrosis (NSF)? Kidney Int. 2009 Mar;75(5):465–74.Israel LL, Galstyan A, Holler E, Ljubimova JY. Magnetic iron oxide nanoparticles for imaging, targeting and treatment of primary and metastatic tumors of the brain. J Control Release [Internet]. 2020 Apr 10 [cited 2022 Nov 8];320:45–62. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7641100/Cortajarena AL, Ortega D, Ocampo SM, Gonzalez-García A, Couleaud P, Miranda R, et al. Engineering Iron Oxide Nanoparticles for Clinical Settings. Nanobiomedicine (Rij) [Internet]. 2014 Jan 1 [cited 2022 Nov 8];1:2. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6029241/Tourdias T, Roggerone S, Filippi M, Kanagaki M, Rovaris M, Miller DH, et al. Assessment of disease activity in multiple sclerosis phenotypes with combined gadolinium- and superparamagnetic iron oxide-enhanced MR imaging. Radiology. 2012 Jul;264(1):225–33.Dousset V, Brochet B, Deloire MSA, Lagoarde L, Barroso B, Caille JM, et al. MR Imaging of Relapsing Multiple Sclerosis Patients Using Ultra-Small-Particle Iron Oxide and Compared with Gadolinium. AJNR Am J Neuroradiol [Internet]. 2006 May [cited 2023 Mar 19];27(5):1000–5. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7975759/Petry KG, Boiziau C, Dousset V, Brochet B. Magnetic resonance imaging of human brain macrophage infiltration. Neurotherapeutics [Internet]. 2007 Jul [cited 2023 Mar 19];4(3):434–42. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7479730/Sadat U, Taviani V, Patterson AJ, Young VE, Graves MJ, Teng Z, et al. Ultrasmall superparamagnetic iron oxide-enhanced magnetic resonance imaging of abdominal aortic aneurysms--a feasibility study. Eur J Vasc Endovasc Surg. 2011 Feb;41(2):167–74.Stephen ZR, Kievit FM, Zhang M. Magnetite Nanoparticles for Medical MR Imaging. Mater Today (Kidlington) [Internet]. 2011 [cited 2022 Nov 8];14(7–8):330–8. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3290401/Farrell BT, Hamilton BE, Dósa E, Rimely E, Nasseri M, Gahramanov S, et al. Using iron oxide nanoparticles to diagnose CNS inflammatory diseases and PCNSL. Neurology [Internet]. 2013 Jul 16 [cited 2024 Oct 9];81(3):256–63. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3770167/Chen C, Ge J, Gao Y, Chen L, Cui J, Zeng J, et al. Ultrasmall superparamagnetic iron oxide nanoparticles: A next generation contrast agent for magnetic resonance imaging. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2022 Jan;14(1):e1740.van Rooy I, Cakir-Tascioglu S, Couraud PO, Romero IA, Weksler B, Storm G, et al. Identification of Peptide Ligands for Targeting to the Blood-Brain Barrier. Pharm Res [Internet]. 2010 [cited 2022 Nov 8];27(4):673–82. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2837178/van Rooy I, Cakir-Tascioglu S, Hennink WE, Storm G, Schiffelers RM, Mastrobattista E. In vivo methods to study uptake of nanoparticles into the brain. Pharm Res. 2011 Mar;28(3):456–71.Kelly KA, Allport JR, Tsourkas A, Shinde-Patil VR, Josephson L, Weissleder R. Detection of vascular adhesion molecule-1 expression using a novel multimodal nanoparticle. Circ Res. 2005 Feb 18;96(3):327–36.André S, Ansciaux E, Saidi E, Larbanoix L, Stanicki D, Nonclercq D, et al. Validation by Magnetic Resonance Imaging of the Diagnostic Potential of a Heptapeptide-Functionalized Imaging Probe Targeted to Amyloid-β and Able to Cross the Blood-Brain Barrier. Journal of Alzheimer’s Disease [Internet]. 2017 Jan 1 [cited 2022 Nov 8];60(4):1547–65. Available from: https://content.iospress.com/articles/journal-of-alzheimers-disease/jad170563Vargas-Sanchez K, Vekris A, Petry KG. DNA Subtraction of In Vivo Selected Phage Repertoires for Efficient Peptide Pathology Biomarker Identification in Neuroinflammation Multiple Sclerosis Model. Biomark Insights. 2016;11:19–29.Vargas-Sanchez K, Losada-Barragán M, Mogilevskaya M, Novoa-Herrán S, Medina Y, Buendía-Atencio C, et al. Screening for Interacting Proteins with Peptide Biomarker of Blood-Brain Barrier Alteration under Inflammatory Conditions. Int J Mol Sci. 2021 Apr 29;22(9):4725.Schéele S, Nyström A, Durbeej M, Talts JF, Ekblom M, Ekblom P. Laminin isoforms in development and disease. J Mol Med (Berl). 2007 Aug;85(8):825–36.Boroujerdi A, Welser-Alves JV, Milner R. Extensive vascular remodeling in the spinal cord of pre-symptomatic experimental autoimmune encephalomyelitis mice; increased vessel expression of fibronectin and the α5β1 integrin. Exp Neurol. 2013 Dec;250:43–51.Boroujerdi A, Welser-Alves JV, Milner R. Extensive vascular remodeling in the spinal cord of pre-symptomatic experimental autoimmune encephalomyelitis mice; increased vessel expression of fibronectin and the α5β1 integrin. Exp Neurol. 2013 Dec;250:43–51.Espitia Pinzón N, Brevé JJP, Bol JGJM, Drukarch B, Baron W, van Dam AM. Tissue transglutaminase in astrocytes is enhanced by inflammatory mediators and is involved in the formation of fibronectin fibril-like structures. J Neuroinflammation. 2017 Dec 28;14(1):260.Gautam J, Miner JH, Yao Y. Loss of Endothelial Laminin α5 Exacerbates Hemorrhagic Brain Injury. Transl Stroke Res. 2019 Dec;10(6):705–18.Kangwantas K, Pinteaux E, Penny J. The extracellular matrix protein laminin-10 promotes blood-brain barrier repair after hypoxia and inflammation in vitro. J Neuroinflammation. 2016 Feb 1;13:25.Zapata-Acevedo JF, García-Pérez V, Cabezas-Pérez R, Losada-Barragán M, Vargas-Sánchez K, González-Reyes RE. Laminin as a Biomarker of Blood-Brain Barrier Disruption under Neuroinflammation: A Systematic Review. Int J Mol Sci. 2022 Jun 17;23(12):6788.González-Reyes RE, Aliev G, Ávila-Rodrigues M, Barreto GE. Alterations in Glucose Metabolism on Cognition: A Possible Link Between Diabetes and Dementia. Curr Pharm Des. 2016;22(7):812–8.GBD 2015 Neurological Disorders Collaborator Group. Global, regional, and national burden of neurological disorders during 1990-2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet Neurol. 2017 Nov;16(11):877–97.Deuschl G, Beghi E, Fazekas F, Varga T, Christoforidi KA, Sipido E, et al. The burden of neurological diseases in Europe: an analysis for the Global Burden of Disease Study 2017. Lancet Public Health. 2020 Oct;5(10):e551–67.Hou Y, Dan X, Babbar M, Wei Y, Hasselbalch SG, Croteau DL, et al. Ageing as a risk factor for neurodegenerative disease. Nat Rev Neurol. 2019 Oct;15(10):565–81.Nishat. Tackling the growing burden of brain disorders in Europe [Internet]. Open Access Government. 2019 [cited 2024 Oct 9]. Available from: https://www.openaccessgovernment.org/brain-disorders-in-europe/72909/P P, Aa B, Ea T, Av A, Kb G. Advances in nanoprobes for molecular MRI of Alzheimer’s disease. Wiley interdisciplinary reviews Nanomedicine and nanobiotechnology [Internet]. 2024 Apr [cited 2024 Oct 9];16(2). Available from: https://pubmed.ncbi.nlm.nih.gov/38426638/Zhuang D, Zhang H, Hu G, Guo B. Recent development of contrast agents for magnetic resonance and multimodal imaging of glioblastoma. J Nanobiotechnology. 2022 Jun 16;20(1):284.Af AM. Gadolinium Retention after Contrast-Enhanced Magnetic Resonance Imaging: A Narratative Review. Saudi journal of medicine & medical sciences [Internet]. 2022 Apr [cited 2024 Oct 9];10(1). Available from: https://pubmed.ncbi.nlm.nih.gov/35283709/Koffie RM, Farrar CT, Saidi LJ, William CM, Hyman BT, Spires-Jones TL. Nanoparticles enhance brain delivery of blood-brain barrier-impermeable probes for in vivo optical and magnetic resonance imaging. Proc Natl Acad Sci U S A. 2011 Nov 15;108(46):18837–42.Lammers T, Koczera P, Fokong S, Gremse F, Ehling J, Vogt M, et al. Theranostic USPIO-Loaded Microbubbles for Mediating and Monitoring Blood-Brain Barrier Permeation. Adv Funct Mater. 2015 Jan 7;25(1):36–43.Engelhardt B, Ransohoff RM. Capture, crawl, cross: the T cell code to breach the blood-brain barriers. Trends Immunol. 2012 Dec;33(12):579–89.Sweeney MD, Sagare AP, Zlokovic BV. Blood-brain barrier breakdown in Alzheimer disease and other neurodegenerative disorders. Nat Rev Neurol. 2018 Mar;14(3):133–50.Leigh R, Hitomi E, Hutchison RM, Elkins J. Post-stroke blood-brain barrier disruption predicts poor outcome in patients enrolled in the ACTION study. J Neuroimaging. 2021 Jul;31(4):751–7.Liang S, Qin Q, Tang Y, Liao W, Yang Y, He J, et al. Impact of blood-brain barrier disruption on newly diagnosed neuromyelitis optica spectrum disorder symptoms and prognosis. Ann Palliat Med. 2020 Mar;9(2):324–30.Kim T, Koo J, Kim SH, Song IU, Chung SW, Lee KS. Blood-brain barrier permeability assessed by perfusion computed tomography predicts hemorrhagic transformation in acute reperfusion therapy. Neurol Sci. 2018 Sep;39(9):1579–84.Cramer SP, Modvig S, Simonsen HJ, Frederiksen JL, Larsson HBW. Permeability of the blood-brain barrier predicts conversion from optic neuritis to multiple sclerosis. Brain. 2015 Sep;138(Pt 9):2571–83.Cramer SP, Simonsen HJ, Varatharaj A, Galea I, Frederiksen JL, Larsson HBW. Permeability of the blood-brain barrier predicts no evidence of disease activity at 2 years after natalizumab or fingolimod treatment in relapsing-remitting multiple sclerosis. Ann Neurol. 2018 May;83(5):902–14.Hussain B, Fang C, Chang J. Blood-Brain Barrier Breakdown: An Emerging Biomarker of Cognitive Impairment in Normal Aging and Dementia. Front Neurosci. 2021;15:688090.Ransohoff RM. Animal models of multiple sclerosis: the good, the bad and the bottom line. Nat Neurosci. 2012 Jul 26;15(8):1074–7.C P, V DR, V P, L F, G M. Animal models of Multiple Sclerosis. European journal of pharmacology [Internet]. 2015 Jul 15 [cited 2024 Oct 9];759. Available from: https://pubmed.ncbi.nlm.nih.gov/25823807/Miner JH, Li C, Mudd JL, Go G, Sutherland AE. Compositional and structural requirements for laminin and basement membranes during mouse embryo implantation and gastrulation. Development. 2004 May;131(10):2247–56.Yao Y. Laminin: loss-of-function studies. Cell Mol Life Sci. 2017 Mar;74(6):1095–115.Tzu J, Marinkovich MP. Bridging structure with function: structural, regulatory, and developmental role of laminins. Int J Biochem Cell Biol. 2008;40(2):199–214.Nirwane A, Yao Y. Laminins and their receptors in the CNS. Biol Rev Camb Philos Soc. 2018/08/04 ed. 2018 Aug 2;Song J, Zhang X, Buscher K, Wang Y, Wang H, Di Russo J, et al. Endothelial Basement Membrane Laminin 511 Contributes to Endothelial Junctional Tightness and Thereby Inhibits Leukocyte Transmigration. Cell Rep. 2017 Jan 31;18(5):1256–69.Wu C, Ivars F, Anderson P, Hallmann R, Vestweber D, Nilsson P, et al. Endothelial basement membrane laminin alpha5 selectively inhibits T lymphocyte extravasation into the brain. Nat Med. 2009 May;15(5):519–27.Ljubimova JY, Lakhter AJ, Loksh A, Yong WH, Riedinger MS, Miner JH, et al. Overexpression of alpha4 chain-containing laminins in human glial tumors identified by gene microarray analysis. Cancer Res. 2001 Jul 15;61(14):5601–10.Ji K, Tsirka SE. Inflammation modulates expression of laminin in the central nervous system following ischemic injury. J Neuroinflammation. 2012/07/05 ed. 2012 Jul 3;9:159.Barkhof F, Calabresi PA, Miller DH, Reingold SC. Imaging outcomes for neuroprotection and repair in multiple sclerosis trials. Nat Rev Neurol. 2009 May;5(5):256–66.Stoll G, Bendszus M. Imaging of inflammation in the peripheral and central nervous system by magnetic resonance imaging. Neuroscience. 2009 Feb 6;158(3):1151–60.Filippi M, Preziosa P, Rocca MA. Magnetic resonance outcome measures in multiple sclerosis trials: time to rethink? Curr Opin Neurol. 2014 Jun;27(3):290–9.Broholm H, Andersen B, Wanscher B, Frederiksen JL, Rubin I, Pakkenberg B, et al. Nitric oxide synthase expression and enzymatic activity in multiple sclerosis. Acta Neurol Scand. 2004 Apr;109(4):261–9.Trebst C, König F, Ransohoff R, Brück W, Stangel M. CCR5 expression on macrophages/microglia is associated with early remyelination in multiple sclerosis lesions. Mult Scler. 2008 Jul;14(6):728–33.Kadry H, Noorani B, Cucullo L. A blood–brain barrier overview on structure, function, impairment, and biomarkers of integrity. Fluids and Barriers of the CNS [Internet]. 2020 Nov 18 [cited 2024 Oct 9];17(1):69. Available from: https://doi.org/10.1186/s12987-020-00230-3Lewandowski M. Zur Lehre von der Cerebrospinalflüssigkeit. Z Klin Forsch. 1900;40:480–94.R A, Ac H. Edwin Ellen Goldmann (1862-1913). Journal of neurology [Internet]. 2023 May [cited 2024 Oct 9];270(5). Available from: https://pubmed.ncbi.nlm.nih.gov/36976327/Reese TS, Karnovsky MJ. Fine structural localization of a blood-brain barrier to exogenous peroxidase. J Cell Biol. 1967 Jul;34(1):207–17.Ad W, M Y, Af L, Jd R, De B, Pc S. The blood-brain barrier: an engineering perspective. Frontiers in neuroengineering [Internet]. 2013 Aug 30 [cited 2024 Oct 9];6. Available from: https://pubmed.ncbi.nlm.nih.gov/24009582/A VR, C E, Ca P, Mf S. The Evolving Concept of the Blood Brain Barrier (BBB): From a Single Static Barrier to a Heterogeneous and Dynamic Relay Center. Frontiers in cellular neuroscience [Internet]. 2019 Sep 20 [cited 2024 Oct 9];13. Available from: https://pubmed.ncbi.nlm.nih.gov/31616251/Abbott NJ, Patabendige AAK, Dolman DEM, Yusof SR, Begley DJ. Structure and function of the blood-brain barrier. Neurobiol Dis. 2010 Jan;37(1):13–25.Abbott NJ, Rönnbäck L, Hansson E. Astrocyte–endothelial interactions at the blood–brain barrier. Nat Rev Neurosci [Internet]. 2006 Jan [cited 2024 Oct 9];7(1):41–53. Available from: https://www.nature.com/articles/nrn1824Iadecola C. The Neurovascular Unit Coming of Age: A Journey through Neurovascular Coupling in Health and Disease. Neuron. 2017 Sep 27;96(1):17–42.Han H, Mann A, Ekstein D, Eyal S. Breaking Bad: the Structure and Function of the Blood-Brain Barrier in Epilepsy. AAPS J. 2017 Jul;19(4):973–88.Hawkins BT, Davis TP. The blood-brain barrier/neurovascular unit in health and disease. Pharmacol Rev. 2005 Jun;57(2):173–85.Liebner S, Dijkhuizen RM, Reiss Y, Plate KH, Agalliu D, Constantin G. Functional morphology of the blood–brain barrier in health and disease. Acta Neuropathol [Internet]. 2018 Mar 1 [cited 2024 Oct 9];135(3):311–36. Available from: https://doi.org/10.1007/s00401-018-1815-1Hayashi Y, Nomura M, Yamagishi S, Harada S, Yamashita J, Yamamoto H. Induction of various blood-brain barrier properties in non-neural endothelial cells by close apposition to co-cultured astrocytes. Glia. 1997 Jan;19(1):13–26.Pardridge WM. Drug and gene delivery to the brain: the vascular route. Neuron. 2002 Nov 14;36(4):555–8.Stamatovic SM, Johnson AM, Keep RF, Andjelkovic AV. Junctional proteins of the blood-brain barrier: New insights into function and dysfunction. Tissue Barriers. 2016;4(1):e1154641.Silva-Adaya D, Garza-Lombó C, Gonsebatt ME. Xenobiotic transport and metabolism in the human brain. Neurotoxicology. 2021 Sep;86:125–38.Michinaga S, Koyama Y. Dual Roles of Astrocyte-Derived Factors in Regulation of Blood-Brain Barrier Function after Brain Damage. Int J Mol Sci. 2019 Jan 29;20(3):571.Campos-Bedolla P, Walter FR, Veszelka S, Deli MA. Role of the Blood–Brain Barrier in the Nutrition of the Central Nervous System. Archives of Medical Research [Internet]. 2014 Nov 1 [cited 2024 Oct 9];45(8):610–38. Available from: https://www.sciencedirect.com/science/article/pii/S0188440914002677Wf G. Circumventricular organs: definition and role in the regulation of endocrine and autonomic function. Clinical and experimental pharmacology & physiology [Internet]. 2000 Jun [cited 2024 Oct 10];27(5–6). Available from: https://pubmed.ncbi.nlm.nih.gov/10831247/S M. New aspects in fenestrated capillary and tissue dynamics in the sensory circumventricular organs of adult brains. Frontiers in neuroscience [Internet]. 2015 Oct 27 [cited 2024 Oct 10];9. Available from: https://pubmed.ncbi.nlm.nih.gov/26578857/Kaur C, Ling EA. The circumventricular organs. Histol Histopathol. 2017 Sep;32(9):879–92.Zhou Y, Danbolt NC. Glutamate as a neurotransmitter in the healthy brain. J Neural Transm (Vienna). 2014 Aug;121(8):799–817.Zaragozá R. Transport of Amino Acids Across the Blood-Brain Barrier. Front Physiol. 2020;11:973.Dahl RH, Berg RMG, Taudorf S, Bailey DM, Lundby C, Larsen FS, et al. A reassessment of the blood–brain barrier transport of large neutral amino acids during acute systemic inflammation in humans. Clinical Physiology and Functional Imaging [Internet]. 2018 [cited 2024 Oct 10];38(4):656–62. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1111/cpf.12463Saili KS, Zurlinden TJ, Schwab AJ, Silvin A, Baker NC, Hunter ES, et al. Blood-brain barrier development: Systems modeling and predictive toxicology. Birth Defects Res. 2017 Dec 1;109(20):1680–710.Ballabh P, Braun A, Nedergaard M. The blood-brain barrier: an overview: structure, regulation, and clinical implications. Neurobiol Dis. 2004 Jun;16(1):1–13.Butt AM, Jones HC, Abbott NJ. Electrical resistance across the blood-brain barrier in anaesthetized rats: a developmental study. J Physiol. 1990 Oct;429:47–62.Obermeier B, Daneman R, Ransohoff RM. Development, maintenance and disruption of the blood-brain barrier. Nat Med. 2013 Dec;19(12):1584–96.S L, M C, T B, J B, A T, Cj C, et al. Wnt/beta-catenin signaling controls development of the blood-brain barrier. The Journal of cell biology [Internet]. 2008 Mar 11 [cited 2024 Oct 10];183(3). Available from: https://pubmed.ncbi.nlm.nih.gov/18955553/Stewart PA, Hayakawa K. Early ultrastructural changes in blood-brain barrier vessels of the rat embryo. Brain Res Dev Brain Res. 1994 Mar 18;78(1):25–34.D V, M E, D R, C C, F G, A V, et al. Immunolocalization of tight junction proteins in the adult and developing human brain. Histochemistry and cell biology [Internet]. 2004 Jul [cited 2024 Oct 10];122(1). Available from: https://pubmed.ncbi.nlm.nih.gov/15221411/C M, Cj E, Zs V. The myth of the immature barrier systems in the developing brain: role in perinatal brain injury. The Journal of physiology [Internet]. 2018 Dec [cited 2024 Oct 10];596(23). Available from: https://pubmed.ncbi.nlm.nih.gov/29528501/Grontoft O. Intracranial haemorrhage and blood-brain barrier problems in the new-born; a pathologico-anatomical and experimental investigation. Acta Pathol Microbiol Scand Suppl (1926). 1954;100:8–109.Langen UH, Ayloo S, Gu C. Development and Cell Biology of the Blood-Brain Barrier. Annu Rev Cell Dev Biol. 2019 Oct 6;35:591–613.Bosma EK, van Noorden CJF, Schlingemann RO, Klaassen I. The role of plasmalemma vesicle-associated protein in pathological breakdown of blood–brain and blood–retinal barriers: potential novel therapeutic target for cerebral edema and diabetic macular edema. Fluids and Barriers of the CNS [Internet]. 2018 Sep 20 [cited 2024 Oct 10];15(1):24. Available from: https://doi.org/10.1186/s12987-018-0109-2Blanchette M, Daneman R. Formation and maintenance of the BBB. Mech Dev. 2015 Nov;138 Pt 1:8–16.Daneman R, Zhou L, Kebede AA, Barres BA. Pericytes are required for blood–brain barrier integrity during embryogenesis. Nature [Internet]. 2010 Nov [cited 2024 Oct 10];468(7323):562–6. Available from: https://www.nature.com/articles/nature09513Bundgaard M, Abbott NJ. All vertebrates started out with a glial blood-brain barrier 4-500 million years ago. Glia. 2008 May;56(7):699–708.Reddy PH, Kshirsagar S, Bose C, Pradeepkiran JA, Hindle A, Singh SP, et al. Corrigendum to “Rlip overexpression reduces oxidative stress and mitochondrial dysfunction in Alzheimer’s disease: Mechanistic insights” [Biochim. Biophys. Acta Mol. Basis Dis. 2023 Oct;1869(7):166759. doi: 10.1016/j.bbadis.2023.166759. Epub 2023 May 22. PMID: 37225106]. Biochim Biophys Acta Mol Basis Dis. 2024 Jun;1870(5):167108.Maiuolo J, Gliozzi M, Musolino V, Scicchitano M, Carresi C, Scarano F, et al. The “Frail” Brain Blood Barrier in Neurodegenerative Diseases: Role of Early Disruption of Endothelial Cell-to-Cell Connections. Int J Mol Sci [Internet]. 2018 Sep 10 [cited 2021 May 16];19(9). Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6164949/Nitta T, Hata M, Gotoh S, Seo Y, Sasaki H, Hashimoto N, et al. Size-selective loosening of the blood-brain barrier in claudin-5-deficient mice. J Cell Biol. 2003 May 12;161(3):653–60.Navone SE, Marfia G, Nava S, Invernici G, Cristini S, Balbi S, et al. Human and mouse brain-derived endothelial cells require high levels of growth factors medium for their isolation, in vitro maintenance and survival. Vasc Cell. 2013 May 14;5(1):10.Cordon J, Duggan MR, Gomez GT, Pucha KA, Peng Z, Dark HE, et al. Identification of Clinically Relevant Brain Endothelial Cell Biomarkers in Plasma. Stroke. 2023 Nov;54(11):2853–63.Matsuoka RL, Buck LD, Vajrala KP, Quick RE, Card OA. Historical and current perspectives on blood endothelial cell heterogeneity in the brain. Cell Mol Life Sci. 2022 Jun 20;79(7):372.Carvalho C, Moreira PI. Oxidative Stress: A Major Player in Cerebrovascular Alterations Associated to Neurodegenerative Events. Front Physiol. 2018;9:806.Wang Y, Wu J, Wang J, He L, Lai H, Zhang T, et al. Mitochondrial oxidative stress in brain microvascular endothelial cells: Triggering blood-brain barrier disruption. Mitochondrion. 2023 Mar;69:71–82.Rizzo MT, Leaver HA. Brain endothelial cell death: modes, signaling pathways, and relevance to neural development, homeostasis, and disease. Mol Neurobiol. 2010 Aug;42(1):52–63.Caporarello N, D’Angeli F, Cambria MT, Candido S, Giallongo C, Salmeri M, et al. Pericytes in Microvessels: From “Mural” Function to Brain and Retina Regeneration. International Journal of Molecular Sciences [Internet]. 2019 Jan [cited 2024 Oct 10];20(24):6351. Available from: https://www.mdpi.com/1422-0067/20/24/6351J F, H L, P Y, Z W, P Z. Brain pericyte biology: from physiopathological mechanisms to potential therapeutic applications in ischemic stroke. Frontiers in cellular neuroscience [Internet]. 2023 Sep 14 [cited 2024 Oct 10];17. Available from: https://pubmed.ncbi.nlm.nih.gov/37780206/Winkler EA, Bell RD, Zlokovic BV. Central nervous system pericytes in health and disease. Nat Neurosci. 2011 Oct 26;14(11):1398–405Bergers G, Song S. The role of pericytes in blood-vessel formation and maintenance. Neuro Oncol. 2005 Oct;7(4):452–64.ElAli A, Thériault P, Rivest S. The role of pericytes in neurovascular unit remodeling in brain disorders. Int J Mol Sci. 2014 Apr 16;15(4):6453–74.M F. Pericyte signaling in the neurovascular unit. Stroke [Internet]. 2009 Mar [cited 2024 Oct 10];40(3 Suppl). Available from: https://pubmed.ncbi.nlm.nih.gov/19064799/Yamamoto S, Muramatsu M, Azuma E, Ikutani M, Nagai Y, Sagara H, et al. A subset of cerebrovascular pericytes originates from mature macrophages in the very early phase of vascular development in CNS. Sci Rep [Internet]. 2017 Jun 20 [cited 2024 Oct 10];7(1):3855. Available from: https://www.nature.com/articles/s41598-017-03994-1A T, S L, F S, D B, Ka M, B B, et al. Brain and Retinal Pericytes: Origin, Function and Role. Frontiers in cellular neuroscience [Internet]. 2016 Apr 2 [cited 2024 Oct 10];10. Available from: https://pubmed.ncbi.nlm.nih.gov/26869887/P DD. Pericytes: pluripotent cells of the blood brain barrier. Current pharmaceutical design [Internet]. 2008 [cited 2024 Oct 10];14(16). Available from: https://pubmed.ncbi.nlm.nih.gov/18673199/Sweeney MD, Ayyadurai S, Zlokovic BV. Pericytes of the neurovascular unit: Key functions and signaling pathways. Nat Neurosci [Internet]. 2016 May 26 [cited 2024 Oct 10];19(6):771–83. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5745011/Armulik A, Genové G, Mäe M, Nisancioglu MH, Wallgard E, Niaudet C, et al. Pericytes regulate the blood–brain barrier. Nature [Internet]. 2010 Nov [cited 2024 Oct 10];468(7323):557–61. Available from: https://www.nature.com/articles/nature09522Lindahl P, Johansson BR, Levéen P, Betsholtz C. Pericyte loss and microaneurysm formation in PDGF-B-deficient mice. Science. 1997 Jul 11;277(5323):242–5.Md S, Z Z, A M, Ar N, Bv Z. Blood-Brain Barrier: From Physiology to Disease and Back. Physiological reviews [Internet]. 2019 Jan 1 [cited 2023 Sep 29];99(1). Available from: https://pubmed.ncbi.nlm.nih.gov/30280653/Hall CN, Reynell C, Gesslein B, Hamilton NB, Mishra A, Sutherland BA, et al. Capillary pericytes regulate cerebral blood flow in health and disease. Nature. 2014 Apr 3;508(7494):55–60Pieper C, Marek JJ, Unterberg M, Schwerdtle T, Galla HJ. Brain capillary pericytes contribute to the immune defense in response to cytokines or LPS in vitro. Brain Res. 2014 Mar 6;1550:1–8.Smyth LCD, Rustenhoven J, Scotter EL, Schweder P, Faull RLM, Park TIH, et al. Markers for human brain pericytes and smooth muscle cells. J Chem Neuroanat. 2018 Oct;92:48–60.Ls B, Cg F, Jm C, Ne K, Dw H, Ba S. Pericytes and Neurovascular Function in the Healthy and Diseased Brain. Frontiers in cellular neuroscience [Internet]. 2019 Jun 28 [cited 2024 Oct 10];13. Available from: https://pubmed.ncbi.nlm.nih.gov/31316352/Bhattacharya A, Kaushik DK, Lozinski BM, Yong VW. Beyond barrier functions: Roles of pericytes in homeostasis and regulation of neuroinflammation. J Neurosci Res. 2020 Dec;98(12):2390–405.Kettenmann H, Verkhratsky A. Neuroglia: the 150 years after. Trends Neurosci. 2008 Dec;31(12):653–9Markey KM, Saunders JC, Smuts J, von Reyn CR, Garcia ADR. Astrocyte development-More questions than answers. Front Cell Dev Biol. 2023;11:1063843.Khakh BS, Deneen B. The Emerging Nature of Astrocyte Diversity. Annu Rev Neurosci. 2019 Jul 8;42:187–207P H, Ivl R, Js S, Rd K, Sa L. Neuroinflammatory astrocyte subtypes in the mouse brain. Nature neuroscience [Internet]. 2021 Oct [cited 2024 Oct 10];24(10). Available from: https://pubmed.ncbi.nlm.nih.gov/34413515/Araque A, Parpura V, Sanzgiri RP, Haydon PG. Tripartite synapses: glia, the unacknowledged partner. Trends Neurosci. 1999 May;22(5):208–15.Dutta DJ, Woo DH, Lee PR, Pajevic S, Bukalo O, Huffman WC, et al. Regulation of myelin structure and conduction velocity by perinodal astrocytes. Proc Natl Acad Sci U S A. 2018 Nov 13;115(46):11832–7.Stokum JA, Gerzanich V, Simard JM. Molecular pathophysiology of cerebral edema. J Cereb Blood Flow Metab. 2016 Mar;36(3):513–38.L G, T V. Astrocytes in the central nervous system and their functions in health and disease: A review. World journal of clinical cases [Internet]. 2023 May 26 [cited 2024 Oct 10];11(15). Available from: https://pubmed.ncbi.nlm.nih.gov/37383914/Endo F, Kasai A, Soto JS, Yu X, Qu Z, Hashimoto H, et al. Molecular basis of astrocyte diversity and morphology across the CNS in health and disease. Science. 2022 Nov 4;378(6619):eadc9020.Verkhratsky A, Nedergaard M. Physiology of Astroglia. Physiol Rev. 2018 Jan 1;98(1):239–389.Attwell D, Buchan AM, Charpak S, Lauritzen M, Macvicar BA, Newman EA. Glial and neuronal control of brain blood flow. Nature. 2010 Nov 11;468(7321):232–43.A A, G C, Pg H, Sh O, R R, A V. Gliotransmitters travel in time and space. Neuron [Internet]. 2014 Feb 19 [cited 2024 Oct 10];81(4). Available from: https://pubmed.ncbi.nlm.nih.gov/24559669/Ramírez-Guerrero S, Guardo-Maya S, Medina-Rincón GJ, Orrego-González EE, Cabezas-Pérez R, González-Reyes RE. Taurine and Astrocytes: A Homeostatic and Neuroprotective Relationship. Front Mol Neurosci. 2022;15:937789.M B, I A, Pj M. Brain energy metabolism: focus on astrocyte-neuron metabolic cooperation. Cell metabolism [Internet]. 2011 Jul 12 [cited 2024 Oct 10];14(6). Available from: https://pubmed.ncbi.nlm.nih.gov/22152301/Schousboe A, Scafidi S, Bak LK, Waagepetersen HS, McKenna MC. Glutamate metabolism in the brain focusing on astrocytes. Adv Neurobiol. 2014;11:13–30.Wolburg H, Wolburg-Buchholz K, Fallier-Becker P, Noell S, Mack AF. Structure and functions of aquaporin-4-based orthogonal arrays of particles. Int Rev Cell Mol Biol. 2011;287:1–41.Mv S, Hv V. Astrocytes: biology and pathology. Acta neuropathologica [Internet]. 2010 Jan [cited 2024 Oct 10];119(1). Available from: https://pubmed.ncbi.nlm.nih.gov/20012068/Lee HG, Lee JH, Flausino LE, Quintana FJ. Neuroinflammation: An astrocyte perspective. Sci Transl Med. 2023 Nov 8;15(721):eadi7828.V R, Fj Q. Control of autoimmune CNS inflammation by astrocytes. Seminars in immunopathology [Internet]. 2015 Nov [cited 2024 Oct 10];37(6). Available from: https://pubmed.ncbi.nlm.nih.gov/26223505/Eng LF, Ghirnikar RS, Lee YL. Glial fibrillary acidic protein: GFAP-thirty-one years (1969-2000). Neurochem Res. 2000 Oct;25(9–10):1439–51.Zhang Z, Ma Z, Zou W, Guo H, Liu M, Ma Y, et al. The Appropriate Marker for Astrocytes: Comparing the Distribution and Expression of Three Astrocytic Markers in Different Mouse Cerebral Regions. Biomed Res Int. 2019;2019:9605265.Am J, M P, J K, Kz K. Beyond the GFAP-Astrocyte Protein Markers in the Brain. Biomolecules [Internet]. 2021 Sep 14 [cited 2024 Oct 10];11(9). Available from: https://pubmed.ncbi.nlm.nih.gov/34572572/Hablitz LM, Nedergaard M. The Glymphatic System: A Novel Component of Fundamental Neurobiology. J Neurosci. 2021 Sep 15;41(37):7698–711.Wolburg H, Noell S, Wolburg-Buchholz K, Mack A, Fallier-Becker P. Agrin, aquaporin-4, and astrocyte polarity as an important feature of the blood-brain barrier. Neuroscientist. 2009 Apr;15(2):180–93.Wolburg H, Wolburg-Buchholz K, Fallier-Becker P, Noell S, Mack AF. Chapter one - Structure and Functions of Aquaporin-4-Based Orthogonal Arrays of Particles. In: Jeon KW, editor. International Review of Cell and Molecular Biology [Internet]. Academic Press; 2011 [cited 2024 Oct 10]. p. 1–41. Available from: https://www.sciencedirect.com/science/article/pii/B9780123860439000013Guérit S, Fidan E, Macas J, Czupalla CJ, Figueiredo R, Vijikumar A, et al. Astrocyte-derived Wnt growth factors are required for endothelial blood-brain barrier maintenance. Prog Neurobiol. 2021 Apr;199:101937.Lochhead JJ, Yang J, Ronaldson PT, Davis TP. Structure, Function, and Regulation of the Blood-Brain Barrier Tight Junction in Central Nervous System Disorders. Front Physiol [Internet]. 2020 Aug 6 [cited 2024 Oct 10];11. Available from: https://www.frontiersin.org/journals/physiology/articles/10.3389/fphys.2020.00914/fullBaeten KM, Akassoglou K. Extracellular Matrix and Matrix Receptors in Blood-Brain Barrier Formation and Stroke. Dev Neurobiol [Internet]. 2011 Nov [cited 2021 May 16];71(11):1018–39. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3482610/Tikiyani V, Babu K. Claudins in the brain: Unconventional functions in neurons. Traffic [Internet]. 2019 [cited 2024 Oct 10];20(11):807–14. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1111/tra.12685Castro Dias M, Mapunda JA, Vladymyrov M, Engelhardt B. Structure and Junctional Complexes of Endothelial, Epithelial and Glial Brain Barriers. Int J Mol Sci. 2019 Oct 29;20(21):5372.Greene C, Hanley N, Campbell M. Claudin-5: gatekeeper of neurological function. Fluids Barriers CNS. 2019 Jan 29;16(1):3.Daneman R, Zhou L, Agalliu D, Cahoy JD, Kaushal A, Barres BA. The mouse blood-brain barrier transcriptome: a new resource for understanding the development and function of brain endothelial cells. PLoS One. 2010 Oct 29;5(10):e13741.Furuse M, Hirase T, Itoh M, Nagafuchi A, Yonemura S, Tsukita S, et al. Occludin: a novel integral membrane protein localizing at tight junctions. J Cell Biol. 1993 Dec;123(6 Pt 2):1777–88.Sugiyama S, Sasaki T, Tanaka H, Yan H, Ikegami T, Kanki H, et al. The tight junction protein occludin modulates blood-brain barrier integrity and neurological function after ischemic stroke in mice. Sci Rep. 2023 Feb 18;13(1):2892.Yuan S, Liu KJ, Qi Z. Occludin regulation of blood-brain barrier and potential therapeutic target in ischemic stroke. Brain Circ. 2020;6(3):152–62.Pm C. Occludin: one protein, many forms. Molecular and cellular biology [Internet]. 2012 Jan [cited 2024 Oct 10];32(2). Available from: https://pubmed.ncbi.nlm.nih.gov/22083955/DeMaio L, Rouhanizadeh M, Reddy S, Sevanian A, Hwang J, Hsiai TK. Oxidized phospholipids mediate occludin expression and phosphorylation in vascular endothelial cells. Am J Physiol Heart Circ Physiol. 2006 Feb;290(2):H674-683.Ys C, Kh C, Cc L, Ct L, Ch Y, Kc C, et al. Propofol-induced vascular permeability change is related to the nitric oxide signaling pathway and occludin phosphorylation. Journal of biomedical science [Internet]. 2007 Sep [cited 2024 Oct 10];14(5). Available from: https://pubmed.ncbi.nlm.nih.gov/17394100/Wittchen ES, Haskins J, Stevenson BR. Protein interactions at the tight junction. Actin has multiple binding partners, and ZO-1 forms independent complexes with ZO-2 and ZO-3. J Biol Chem. 1999 Dec 3;274(49):35179–85.Inoko A, Itoh M, Tamura A, Matsuda M, Furuse M, Tsukita S. Expression and distribution of ZO-3, a tight junction MAGUK protein, in mouse tissues. Genes Cells. 2003 Nov;8(11):837–45.Ka K, D K, Jh K, Yj S, Es K, M A, et al. Autophagy-mediated occludin degradation contributes to blood-brain barrier disruption during ischemia in bEnd.3 brain endothelial cells and rat ischemic stroke models. Fluids and barriers of the CNS [Internet]. 2020 Mar 14 [cited 2024 Oct 10];17(1). Available from: https://pubmed.ncbi.nlm.nih.gov/32169114/T H, Jm S, M S, Y AA, M I, M F, et al. Occludin as a possible determinant of tight junction permeability in endothelial cells. Journal of cell science [Internet]. 1997 Jul [cited 2024 Oct 10];110 ( Pt 14). Available from: https://pubmed.ncbi.nlm.nih.gov/9247194/Luissint AC, Artus C, Glacial F, Ganeshamoorthy K, Couraud PO. Tight junctions at the blood brain barrier: physiological architecture and disease-associated dysregulation. Fluids Barriers CNS. 2012 Nov 9;9(1):23.Pan L, Chen J, Yu J, Yu H, Zhang M. The structure of the PDZ3-SH3-GuK tandem of ZO-1 protein suggests a supramodular organization of the membrane-associated guanylate kinase (MAGUK) family scaffold protein core. J Biol Chem. 2011 Nov 18;286(46):40069–74.Hiroaki H, Satomura K, Goda N, Nakakura Y, Hiranuma M, Tenno T, et al. Spatial Overlap of Claudin- and Phosphatidylinositol Phosphate-Binding Sites on the First PDZ Domain of Zonula Occludens 1 Studied by NMR. Molecules [Internet]. 2018 Oct [cited 2024 Oct 10];23(10):2465. Available from: https://www.mdpi.com/1420-3049/23/10/2465Fanning AS, Jameson BJ, Jesaitis LA, Anderson JM. The tight junction protein ZO-1 establishes a link between the transmembrane protein occludin and the actin cytoskeleton. J Biol Chem. 1998 Nov 6;273(45):29745–53.Bazzoni G, Martinez-Estrada OM, Orsenigo F, Cordenonsi M, Citi S, Dejana E. Interaction of junctional adhesion molecule with the tight junction components ZO-1, cingulin, and occludin. J Biol Chem. 2000 Jul 7;275(27):20520–6.Haskins J, Gu L, Wittchen ES, Hibbard J, Stevenson BR. ZO-3, a novel member of the MAGUK protein family found at the tight junction, interacts with ZO-1 and occludin. J Cell Biol. 1998 Apr 6;141(1):199–208.B B, T HI, Ar H, J K, K X, Da F. A Weak Link with Actin Organizes Tight Junctions to Control Epithelial Permeability. Developmental cell [Internet]. 2020 Sep 28 [cited 2024 Oct 10];54(6). Available from: https://pubmed.ncbi.nlm.nih.gov/32841596/Liu WY, Wang ZB, Zhang LC, Wei X, Li L. Tight Junction in Blood-Brain Barrier: An Overview of Structure, Regulation, and Regulator Substances. CNS Neuroscience & Therapeutics [Internet]. 2012 [cited 2024 Oct 10];18(8):609–15. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1755-5949.2012.00340.xBauer H, Zweimueller-Mayer J, Steinbacher P, Lametschwandtner A, Bauer HC. The dual role of zonula occludens (ZO) proteins. J Biomed Biotechnol. 2010;2010:402593.Ld R, Ey K, Se D. MAGI-1 interacts with Slo1 channel proteins and suppresses Slo1 expression on the cell surface. American journal of physiology Cell physiology [Internet]. 2009 Jul [cited 2024 Oct 10];297(1). Available from: https://pubmed.ncbi.nlm.nih.gov/19403801/Hamazaki Y, Itoh M, Sasaki H, Furuse M, Tsukita S. Multi-PDZ Domain Protein 1 (MUPP1) Is Concentrated at Tight Junctions through Its Possible Interaction with Claudin-1 and Junctional Adhesion Molecule *. Journal of Biological Chemistry [Internet]. 2002 Jan 4 [cited 2024 Oct 10];277(1):455–61. Available from: https://www.jbc.org/article/S0021-9258(20)88032-6/abstractParis L, Tonutti L, Vannini C, Bazzoni G. Structural organization of the tight junctions. Biochimica et Biophysica Acta (BBA) - Biomembranes [Internet]. 2008 Mar 1 [cited 2024 Oct 10];1778(3):646–59. Available from: https://www.sciencedirect.com/science/article/pii/S0005273607002908Sladojevic N, Yu B, Liao JK. Regulator of G-Protein Signaling 5 Maintains Brain Endothelial Cell Function in Focal Cerebral Ischemia. J Am Heart Assoc. 2020 Sep 15;9(18):e017533.Denker BM, Saha C, Khawaja S, Nigam SK. Involvement of a heterotrimeric G protein alpha subunit in tight junction biogenesis. J Biol Chem. 1996 Oct 18;271(42):25750–3.Fábián G, Szabó CA, Bozó B, Greenwood J, Adamson P, Deli MA, et al. Expression of G-protein subtypes in cultured cerebral endothelial cells. Neurochem Int. 1998 Aug;33(2):179–85.Adamson P, Wilbourn B, Etienne-Manneville S, Calder V, Beraud E, Milligan G, et al. Lymphocyte trafficking through the blood-brain barrier is dependent on endothelial cell heterotrimeric G-protein signaling. FASEB J. 2002 Aug;16(10):1185–94.Martìn-Padura I, Lostaglio S, Schneemann M, Williams L, Romano M, Fruscella P, et al. Junctional adhesion molecule, a novel member of the immunoglobulin superfamily that distributes at intercellular junctions and modulates monocyte transmigration. J Cell Biol. 1998 Jul 13;142(1):117–27.M AL, C JL, C W, L DP, Ba I. Heterogeneity of endothelial junctions is reflected by differential expression and specific subcellular localization of the three JAM family members. Blood [Internet]. 2001 Dec 15 [cited 2024 Oct 10];98(13). Available from: https://pubmed.ncbi.nlm.nih.gov/11739175/Scott DW, Tolbert CE, Graham DM, Wittchen E, Bear JE, Burridge K. N-glycosylation controls the function of junctional adhesion molecule-A. Mol Biol Cell. 2015 Sep 15;26(18):3205–14.K E, Cu S, Mk MZB, Gg P, D V. Junctional adhesion molecule interacts with the PDZ domain-containing proteins AF-6 and ZO-1. The Journal of biological chemistry [Internet]. 2000 Aug 9 [cited 2024 Oct 10];275(36). Available from: https://pubmed.ncbi.nlm.nih.gov/10856295Ebnet K, Suzuki A, Horikoshi Y, Hirose T, Meyer Zu Brickwedde MK, Ohno S, et al. The cell polarity protein ASIP/PAR-3 directly associates with junctional adhesion molecule (JAM). EMBO J. 2001 Jul 16;20(14):3738–48.Marchetti L, Engelhardt B. Immune cell trafficking across the blood-brain barrier in the absence and presence of neuroinflammation. Vasc Biol. 2020;2(1):H1–18.Shapiro L, Weis WI. Structure and biochemistry of cadherins and catenins. Cold Spring Harb Perspect Biol. 2009 Sep;1(3):a003053.Tietz S, Engelhardt B. Brain barriers: Crosstalk between complex tight junctions and adherens junctions. J Cell Biol. 2015 May 25;209(4):493–506.Carmeliet P, Lampugnani MG, Moons L, Breviario F, Compernolle V, Bono F, et al. Targeted deficiency or cytosolic truncation of the VE-cadherin gene in mice impairs VEGF-mediated endothelial survival and angiogenesis. Cell. 1999 Jul 23;98(2):147–57.Crosby CV, Fleming PA, Argraves WS, Corada M, Zanetta L, Dejana E, et al. VE-cadherin is not required for the formation of nascent blood vessels but acts to prevent their disassembly. Blood [Internet]. 2005 Apr 1 [cited 2024 Oct 10];105(7):2771–6. Available from: https://doi.org/10.1182/blood-2004-06-2244Giampietro C, Taddei A, Corada M, Sarra-Ferraris GM, Alcalay M, Cavallaro U, et al. Overlapping and divergent signaling pathways of N-cadherin and VE-cadherin in endothelial cells. Blood [Internet]. 2012 Mar 1 [cited 2024 Oct 16];119(9):2159–70. Available from: https://doi.org/10.1182/blood-2011-09-381012I I, S H, R T, B K, S T. The adherens junction: a mosaic of cadherin and nectin clusters bundled by actin filaments. The Journal of investigative dermatology [Internet]. 2013 Nov [cited 2024 Oct 16];133(11). Available from: https://pubmed.ncbi.nlm.nih.gov/23639974/Privratsky JR, Newman PJ. PECAM-1: regulator of endothelial junctional integrity. Cell Tissue Res. 2014 Mar;355(3):607–19.Xu L, Nirwane A, Yao Y. Basement membrane and blood-brain barrier. Stroke Vasc Neurol. 2019 Jul;4(2):78–82.Sorokin L. The impact of the extracellular matrix on inflammation. Nat Rev Immunol. 2010 Oct;10(10):712–23.Engelhardt B. β1-integrin/matrix interactions support blood-brain barrier integrity. J Cereb Blood Flow Metab. 2011 Oct;31(10):1969–71.McKee KK, Harrison D, Capizzi S, Yurchenco PD. Role of laminin terminal globular domains in basement membrane assembly. J Biol Chem. 2007 Jul 20;282(29):21437–47.Yurchenco PD. Integrating Activities of Laminins that Drive Basement Membrane Assembly and Function. Curr Top Membr. 2015;76:1–30.Thomsen MS, Routhe LJ, Moos T. The vascular basement membrane in the healthy and pathological brain. J Cereb Blood Flow Metab. 2017 Oct;37(10):3300–17.Hallmann R, Horn N, Selg M, Wendler O, Pausch F, Sorokin LM. Expression and function of laminins in the embryonic and mature vasculature. Physiol Rev. 2005 Jul;85(3):979–1000.Hannocks MJ, Pizzo ME, Huppert J, Deshpande T, Abbott NJ, Thorne RG, et al. Molecular characterization of perivascular drainage pathways in the murine brain. J Cereb Blood Flow Metab [Internet]. 2018 Apr 1 [cited 2021 May 16];38(4):669–86. Available from: https://doi.org/10.1177/0271678X17749689Agrawal S, Anderson P, Durbeej M, van Rooijen N, Ivars F, Opdenakker G, et al. Dystroglycan is selectively cleaved at the parenchymal basement membrane at sites of leukocyte extravasation in experimental autoimmune encephalomyelitis. J Exp Med. 2006 Apr 17;203(4):1007–19.Takada Y, Ye X, Simon S. The integrins. Genome Biol. 2007;8(5):215.Davis MJ, Wu X, Nurkiewicz TR, Kawasaki J, Davis GE, Hill MA, et al. Integrins and mechanotransduction of the vascular myogenic response. Am J Physiol Heart Circ Physiol. 2001 Apr;280(4):H1427-1433.Wang N, Butler JP, Ingber DE. Mechanotransduction across the cell surface and through the cytoskeleton. Science. 1993 May 21;260(5111):1124–7.Hynes RO. Integrins: bidirectional, allosteric signaling machines. Cell. 2002 Sep 20;110(6):673–87.Sk H, A S, R M. The importance of laminin at the blood-brain barrier. Neural regeneration research [Internet]. 2023 Dec [cited 2024 Oct 16];18(12). Available from: https://pubmed.ncbi.nlm.nih.gov/37449589/Hynes RO. Integrins: versatility, modulation, and signaling in cell adhesion. Cell. 1992 Apr 3;69(1):11–25.C K, F Y, Mh G. Regulation of integrin activation. Annual review of cell and developmental biology [Internet]. 2011 [cited 2024 Oct 16];27. Available from: https://pubmed.ncbi.nlm.nih.gov/21663444/Eliceiri BP, Cheresh DA. Adhesion events in angiogenesis. Curr Opin Cell Biol. 2001 Oct;13(5):563–8.De Arcangelis A, Georges-Labouesse E. Integrin and ECM functions: roles in vertebrate development. Trends Genet. 2000 Sep;16(9):389–95.McCarty JH, Lacy-Hulbert A, Charest A, Bronson RT, Crowley D, Housman D, et al. Selective ablation of alphav integrins in the central nervous system leads to cerebral hemorrhage, seizures, axonal degeneration and premature death. Development. 2005 Jan;132(1):165–76.Su Y, Iacob RE, Li J, Engen JR, Springer TA. Dynamics of integrin α5β1, fibronectin, and their complex reveal sites of interaction and conformational change. Journal of Biological Chemistry [Internet]. 2022 Sep 1 [cited 2024 Oct 16];298(9). Available from: https://www.jbc.org/article/S0021-9258(22)00765-7/abstractSchaffner F, Ray AM, Dontenwill M. Integrin α5β1, the Fibronectin Receptor, as a Pertinent Therapeutic Target in Solid Tumors. Cancers (Basel). 2013 Jan 15;5(1):27–47.R M, Il C. Developmental regulation of beta1 integrins during angiogenesis in the central nervous system. Molecular and cellular neurosciences [Internet]. 2002 Aug [cited 2024 Oct 16];20(4). Available from: https://pubmed.ncbi.nlm.nih.gov/12213443/Milner R, Campbell IL. Increased expression of the beta4 and alpha5 integrin subunits in cerebral blood vessels of transgenic mice chronically producing the pro-inflammatory cytokines IL-6 or IFN-alpha in the central nervous system. Mol Cell Neurosci. 2006 Dec;33(4):429–40.Edwards DN, Bix GJ. Roles of blood-brain barrier integrins and extracellular matrix in stroke. Am J Physiol Cell Physiol. 2019 Feb 1;316(2):C252–63.Ar N, Cg B. The roles of dystroglycan in the nervous system: insights from animal models of muscular dystrophy. Disease models & mechanisms [Internet]. 2018 Dec 19 [cited 2024 Oct 16];11(12). Available from: https://pubmed.ncbi.nlm.nih.gov/30578246/Ibraghimov-Beskrovnaya O, Ervasti JM, Leveille CJ, Slaughter CA, Sernett SW, Campbell KP. Primary structure of dystrophin-associated glycoproteins linking dystrophin to the extracellular matrix. Nature. 1992 Feb 20;355(6362):696–702.Cohen MW, Jacobson C, Godfrey EW, Campbell KP, Carbonetto S. Distribution of alpha-dystroglycan during embryonic nerve-muscle synaptogenesis. J Cell Biol. 1995 May;129(4):1093–101.Durbeej M, Henry MD, Ferletta M, Campbell KP, Ekblom P. Distribution of dystroglycan in normal adult mouse tissues. J Histochem Cytochem. 1998 Apr;46(4):449–57.Jahncke JN, Wright KM. The many roles of dystroglycan in nervous system development and function. Developmental Dynamics [Internet]. 2023 [cited 2024 Oct 16];252(1):61–80. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1002/dvdy.516Anderson C, Winder SJ, Borycki AG. Dystroglycan protein distribution coincides with basement membranes and muscle differentiation during mouse embryogenesis. Dev Dyn. 2007 Sep;236(9):2627–35.Zaccaria ML, Di Tommaso F, Brancaccio A, Paggi P, Petrucci TC. Dystroglycan distribution in adult mouse brain: a light and electron microscopy study. Neuroscience. 2001;104(2):311–24.Lévi S, Grady RM, Henry MD, Campbell KP, Sanes JR, Craig AM. Dystroglycan is selectively associated with inhibitory GABAergic synapses but is dispensable for their differentiation. J Neurosci. 2002 Jun 1;22(11):4274–85.Menezes MJ, McClenahan FK, Leiton CV, Aranmolate A, Shan X, Colognato H. The extracellular matrix protein laminin α2 regulates the maturation and function of the blood-brain barrier. J Neurosci. 2014 Nov 12;34(46):15260–80.Tian M, Jacobson C, Gee SH, Campbell KP, Carbonetto S, Jucker M. Dystroglycan in the cerebellum is a laminin alpha 2-chain binding protein at the glial-vascular interface and is expressed in Purkinje cells. Eur J Neurosci. 1996 Dec;8(12):2739–47.Hohenester E. Laminin G-like domains: dystroglycan-specific lectins. Curr Opin Struct Biol. 2019 Jun;56:56–63.Aumailley M. The laminin family. Cell Adh Migr. 2013 Feb;7(1):48–55.Andrews RN, Metheny-Barlow LJ, Peiffer AM, Hanbury DB, Tooze JA, Bourland JD, et al. Cerebrovascular Remodeling and Neuroinflammation is a Late Effect of Radiation-Induced Brain Injury in Non-Human Primates. Radiat Res. 2017 May;187(5):599–611Labus J, Wöltje K, Stolte KN, Häckel S, Kim KS, Hildmann A, et al. IL-1β promotes transendothelial migration of PBMCs by upregulation of the FN/α5β1 signalling pathway in immortalised human brain microvascular endothelial cells. Exp Cell Res. 2018 Dec 15;373(1–2):99–111.Di Russo J, Luik AL, Yousif L, Budny S, Oberleithner H, Hofschröer V, et al. Endothelial basement membrane laminin 511 is essential for shear stress response. EMBO J. 2017 May 15;36(10):1464.Wu C, Ivars F, Anderson P, Hallmann R, Vestweber D, Nilsson P, et al. Endothelial basement membrane laminin α5 selectively inhibits T lymphocyte extravasation into the brain. Nat Med [Internet]. 2009 May [cited 2024 Oct 16];15(5):519–27. Available from: https://www.nature.com/articles/nm.1957Baneyx G, Baugh L, Vogel V. Coexisting conformations of fibronectin in cell culture imaged using fluorescence resonance energy transfer. Proc Natl Acad Sci U S A. 2001 Dec 4;98(25):14464–8.Parisi L, Toffoli A, Ghezzi B, Mozzoni B, Lumetti S, Macaluso GM. A glance on the role of fibronectin in controlling cell response at biomaterial interface. Jpn Dent Sci Rev. 2020 Dec;56(1):50–5.Pankov R, Yamada KM. Fibronectin at a glance. J Cell Sci. 2002 Oct 15;115(Pt 20):3861–3.Patel RS, Odermatt E, Schwarzbauer JE, Hynes RO. Organization of the fibronectin gene provides evidence for exon shuffling during evolution. EMBO J. 1987 Sep;6(9):2565–72.Wang J, Milner R. Fibronectin promotes brain capillary endothelial cell survival and proliferation through alpha5beta1 and alphavbeta3 integrins via MAP kinase signalling. J Neurochem. 2006 Jan;96(1):148–59.Plow EF, Haas TA, Zhang L, Loftus J, Smith JW. Ligand binding to integrins. J Biol Chem. 2000 Jul 21;275(29):21785–8.Hudson BG, Reeders ST, Tryggvason K. Type IV collagen: structure, gene organization, and role in human diseases. Molecular basis of Goodpasture and Alport syndromes and diffuse leiomyomatosis. J Biol Chem. 1993 Dec 15;268(35):26033–6.Du F, Shusta EV, Palecek SP. Extracellular matrix proteins in construction and function of in vitro blood-brain barrier models. Front Chem Eng [Internet]. 2023 Feb 20 [cited 2024 Oct 16];5. Available from: https://www.frontiersin.org/journals/chemical-engineering/articles/10.3389/fceng.2023.1130127/fullZhou S, Chen S, Pei YA, Pei M. Nidogen: A matrix protein with potential roles in musculoskeletal tissue regeneration. Genes Dis. 2022 May;9(3):598–609.Kang SH, Kramer JM. Nidogen Is Nonessential and Not Required for Normal Type IV Collagen Localization in Caenorhabditis elegans. Mol Biol Cell [Internet]. 2000 Nov [cited 2021 May 16];11(11):3911–23. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC15046/Fox JW, Mayer U, Nischt R, Aumailley M, Reinhardt D, Wiedemann H, et al. Recombinant nidogen consists of three globular domains and mediates binding of laminin to collagen type IV. EMBO J. 1991 Nov;10(11):3137–46.Hopf M, Göhring W, Kohfeldt E, Yamada Y, Timpl R. Recombinant domain IV of perlecan binds to nidogens, laminin-nidogen complex, fibronectin, fibulin-2 and heparin. Eur J Biochem. 1999 Feb;259(3):917–25.Sasaki T, Göhring W, Pan TC, Chu ML, Timpl R. Binding of mouse and human fibulin-2 to extracellular matrix ligands. J Mol Biol. 1995 Dec 15;254(5):892–9.Murshed M, Smyth N, Miosge N, Karolat J, Krieg T, Paulsson M, et al. The absence of nidogen 1 does not affect murine basement membrane formation. Mol Cell Biol. 2000 Sep;20(18):7007–12.Steiner E, Enzmann GU, Lyck R, Lin S, Rüegg MA, Kröger S, et al. The heparan sulfate proteoglycan agrin contributes to barrier properties of mouse brain endothelial cells by stabilizing adherens junctions. Cell Tissue Res [Internet]. 2014 Nov 1 [cited 2024 Oct 16];358(2):465–79. Available from: https://doi.org/10.1007/s00441-014-1969-7Gautam M, Noakes PG, Moscoso L, Rupp F, Scheller RH, Merlie JP, et al. Defective neuromuscular synaptogenesis in agrin-deficient mutant mice. Cell. 1996 May 17;85(4):525–35.Ksiazek I, Burkhardt C, Lin S, Seddik R, Maj M, Bezakova G, et al. Synapse loss in cortex of agrin-deficient mice after genetic rescue of perinatal death. J Neurosci. 2007 Jul 4;27(27):7183–95.Kröger S, Schröder JE. Agrin in the developing CNS: new roles for a synapse organizer. News Physiol Sci. 2002 Oct;17:207–12.Bradshaw AD, Sage EH. SPARC, a matricellular protein that functions in cellular differentiation and tissue response to injury. J Clin Invest. 2001 May;107(9):1049–54.Martinek N, Shahab J, Sodek J, Ringuette M. Is SPARC an evolutionarily conserved collagen chaperone? J Dent Res. 2007 Apr;86(4):296–305.Wong SLI, Sukkar MB. The SPARC protein: an overview of its role in lung cancer and pulmonary fibrosis and its potential role in chronic airways disease. British Journal of Pharmacology [Internet]. 2017 [cited 2024 Oct 16];174(1):3–14. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1111/bph.13653Brekken RA, Sage EH. SPARC, a matricellular protein: at the crossroads of cell-matrix. Matrix Biol. 2000 Dec;19(7):569–80.Aeschlimann D, Kaupp O, Paulsson M. Transglutaminase-catalyzed matrix cross-linking in differentiating cartilage: identification of osteonectin as a major glutaminyl substrate. J Cell Biol. 1995 May;129(3):881–92.Mendis DB, Malaval L, Brown IR. SPARC, an extracellular matrix glycoprotein containing the follistatin module, is expressed by astrocytes in synaptic enriched regions of the adult brain. Brain Res. 1995 Apr 3;676(1):69–79.Sarrazin S, Lamanna WC, Esko JD. Heparan sulfate proteoglycans. Cold Spring Harb Perspect Biol. 2011 Jul 1;3(7):a004952.Hayes AJ, Farrugia BL, Biose IJ, Bix GJ, Melrose J. Perlecan, A Multi-Functional, Cell-Instructive, Matrix-Stabilizing Proteoglycan With Roles in Tissue Development Has Relevance to Connective Tissue Repair and Regeneration. Front Cell Dev Biol. 2022;10:856261.Roberts J, Kahle MP, Bix GJ. Perlecan and the blood-brain barrier: beneficial proteolysis? Front Pharmacol. 2012;3:155.Göhring W, Sasaki T, Heldin CH, Timpl R. Mapping of the binding of platelet-derived growth factor to distinct domains of the basement membrane proteins BM-40 and perlecan and distinction from the BM-40 collagen-binding epitope. Eur J Biochem. 1998 Jul 1;255(1):60–6.Afratis N, Gialeli C, Nikitovic D, Tsegenidis T, Karousou E, Theocharis AD, et al. Glycosaminoglycans: key players in cancer cell biology and treatment. FEBS J. 2012 Apr;279(7):1177–97.Casale J, Crane JS. Biochemistry, Glycosaminoglycans. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024 [cited 2024 Oct 17]. Available from: http://www.ncbi.nlm.nih.gov/books/NBK544295/Raman R, Sasisekharan V, Sasisekharan R. Structural insights into biological roles of protein-glycosaminoglycan interactions. Chem Biol. 2005 Mar;12(3):267–77.Prydz K. Determinants of Glycosaminoglycan (GAG) Structure. Biomolecules. 2015 Aug 21;5(3):2003–22.Evans AD, Pournoori N, Saksala E, Oommen OP. Glycosaminoglycans’ for brain health: Harnessing glycosaminoglycan based biomaterials for treating central nervous system diseases and in-vitro modeling. Biomaterials. 2024 Sep;309:122629.Butler WT. The nature and significance of osteopontin. Connect Tissue Res. 1989;23(2–3):123–36.Lin EYH, Xi W, Aggarwal N, Shinohara ML. Osteopontin (OPN)/SPP1: from its biochemistry to biological functions in the innate immune system and the central nervous system (CNS). Int Immunol. 2023 Apr 4;35(4):171–80.Icer MA, Gezmen-Karadag M. The multiple functions and mechanisms of osteopontin. Clin Biochem. 2018 Sep;59:17–24.Lund SA, Giachelli CM, Scatena M. The role of osteopontin in inflammatory processes. J Cell Commun Signal. 2009 Dec;3(3–4):311–22.Patarca R, Freeman GJ, Singh RP, Wei FY, Durfee T, Blattner F, et al. Structural and functional studies of the early T lymphocyte activation 1 (Eta-1) gene. Definition of a novel T cell-dependent response associated with genetic resistance to bacterial infection. J Exp Med. 1989 Jul 1;170(1):145–61.Spitzer D, Guérit S, Puetz T, Khel MI, Armbrust M, Dunst M, et al. Profiling the neurovascular unit unveils detrimental effects of osteopontin on the blood-brain barrier in acute ischemic stroke. Acta Neuropathol. 2022 Aug;144(2):305–37.Keren-Shaul H, Spinrad A, Weiner A, Matcovitch-Natan O, Dvir-Szternfeld R, Ulland TK, et al. A Unique Microglia Type Associated with Restricting Development of Alzheimer’s Disease. Cell. 2017 Jun 15;169(7):1276-1290.e17.Deczkowska A, Keren-Shaul H, Weiner A, Colonna M, Schwartz M, Amit I. Disease-Associated Microglia: A Universal Immune Sensor of Neurodegeneration. Cell. 2018 May 17;173(5):1073–81.Paolinelli R, Corada M, Orsenigo F, Dejana E. The molecular basis of the blood brain barrier differentiation and maintenance. Is it still a mystery? Pharmacol Res. 2011 Mar;63(3):165–71.Iadecola C. Neurogenic control of the cerebral microcirculation: is dopamine minding the store? Nat Neurosci. 1998 Aug;1(4):263–5.Duchemin S, Boily M, Sadekova N, Girouard H. The complex contribution of NOS interneurons in the physiology of cerebrovascular regulation. Front Neural Circuits. 2012;6:51.Deegan BM, Devine ER, Geraghty MC, Jones E, Ólaighin G, Serrador JM. The relationship between cardiac output and dynamic cerebral autoregulation in humans. J Appl Physiol (1985). 2010 Nov;109(5):1424–31.Gordon GRJ, Mulligan SJ, MacVicar BA. Astrocyte control of the cerebrovasculature. Glia. 2007 Sep;55(12):1214–21.Peppiatt CM, Howarth C, Mobbs P, Attwell D. Bidirectional control of CNS capillary diameter by pericytes. Nature. 2006 Oct 12;443(7112):700–4.Lee TJF, Chang HH, Lee HC, Chen PY, Lee YC, Kuo JS, et al. Axo-axonal interaction in autonomic regulation of the cerebral circulation. Acta Physiol (Oxf). 2011 Sep;203(1):25–35.Iadecola C, Li J, Ebner TJ, Xu X. Nitric oxide contributes to functional hyperemia in cerebellar cortex. Am J Physiol. 1995 May;268(5 Pt 2):R1153-1162.Kim KJ, Filosa JA. Advanced in vitro approach to study neurovascular coupling mechanisms in the brain microcirculation. J Physiol. 2012 Apr 1;590(7):1757–70.Muoio V, Persson PB, Sendeski MM. The neurovascular unit – concept review. Acta Physiologica [Internet]. 2014 [cited 2024 Oct 17];210(4):790–8. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1111/apha.12250Abbott NJ, Friedman A. Overview and introduction: the blood-brain barrier in health and disease. Epilepsia. 2012 Nov;53 Suppl 6(0 6):1–6.McCarty JH. Integrin-mediated regulation of neurovascular development, physiology and disease. Cell Adh Migr. 2009;3(2):211–5Chen Y, Liu L. Modern methods for delivery of drugs across the blood-brain barrier. Adv Drug Deliv Rev. 2012 May 15;64(7):640–65.Puris E, Fricker G, Gynther M. Targeting Transporters for Drug Delivery to the Brain: Can We Do Better? Pharm Res [Internet]. 2022 Jul 1 [cited 2024 Oct 17];39(7):1415–55. Available from: https://doi.org/10.1007/s11095-022-03241-xde Boer AG, van der Sandt ICJ, Gaillard PJ. The role of drug transporters at the blood-brain barrier. Annu Rev Pharmacol Toxicol. 2003;43:629–56.Cecchelli R, Berezowski V, Lundquist S, Culot M, Renftel M, Dehouck MP, et al. Modelling of the blood-brain barrier in drug discovery and development. Nat Rev Drug Discov. 2007 Aug;6(8):650–61.Koepsell H. Glucose transporters in brain in health and disease. Pflugers Arch. 2020 Sep;472(9):1299–343.Rautio J, Gynther M, Laine K. LAT1-mediated prodrug uptake: a way to breach the blood-brain barrier? Ther Deliv. 2013 Mar;4(3):281–4.Temsamani J, Rousselle C, Rees AR, Scherrmann JM. Vector-mediated drug delivery to the brain. Expert Opin Biol Ther. 2001 Sep;1(5):773–82Pardridge WM. Drug transport across the blood-brain barrier. J Cereb Blood Flow Metab. 2012 Nov;32(11):1959–72.Vlieghe P, Khrestchatisky M. Medicinal chemistry based approaches and nanotechnology-based systems to improve CNS drug targeting and delivery. Med Res Rev. 2013 May;33(3):457–516.Clark DE. In silico prediction of blood-brain barrier permeation. Drug Discov Today. 2003 Oct 15;8(20):927–33.Fong CW. Permeability of the Blood-Brain Barrier: Molecular Mechanism of Transport of Drugs and Physiologically Important Compounds. J Membr Biol. 2015 Aug;248(4):651–69.Ronaldson PT, Davis TP. Transport Mechanisms at the Blood–Brain Barrier and in Cellular Compartments of the Neurovascular Unit: Focus on CNS Delivery of Small Molecule Drugs. Pharmaceutics [Internet]. 2022 Jul [cited 2024 Oct 18];14(7):1501. Available from: https://www.mdpi.com/1999-4923/14/7/1501Miller DW, Line S, Safa NA, Zhang Y. Blood–Brain Barrier Transporters and Central Nervous System Drug Response and Toxicity. In: Transporters and Drug-Metabolizing Enzymes in Drug Toxicity [Internet]. John Wiley & Sons, Ltd; 2021 [cited 2024 Oct 18]. p. 377–412. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1002/9781119171003.ch12Zha S, Liu H, Li H, Li H, Wong KL, All AH. Functionalized Nanomaterials Capable of Crossing the Blood–Brain Barrier. ACS Nano [Internet]. 2024 Jan 23 [cited 2024 Oct 18];18(3):1820–45. Available from: https://doi.org/10.1021/acsnano.3c10674Enerson BE, Drewes LR. The rat blood-brain barrier transcriptome. J Cereb Blood Flow Metab. 2006 Jul;26(7):959–73.Nies AT. The role of membrane transporters in drug delivery to brain tumors. Cancer Lett. 2007 Aug 28;254(1):11–29.Wu WZ, Bai YP. Endothelial GLUTs and vascular biology. Biomedicine & Pharmacotherapy [Internet]. 2023 Feb 1 [cited 2024 Oct 18];158:114151. Available from: https://www.sciencedirect.com/science/article/pii/S0753332222015402Ogoh S. Interaction between the respiratory system and cerebral blood flow regulation. J Appl Physiol (1985). 2019 Nov 1;127(5):1197–205.Hu C, Tao L, Cao X, Chen L. The solute carrier transporters and the brain: Physiological and pharmacological implications. Asian J Pharm Sci. 2020 Mar;15(2):131–44.Song W, Li D, Tao L, Luo Q, Chen L. Solute carrier transporters: the metabolic gatekeepers of immune cells. Acta Pharm Sin B. 2020 Jan;10(1):61–78.Liu X. SLC Family Transporters. Adv Exp Med Biol. 2019;1141:101–202.Gosselet F, Loiola RA, Roig A, Rosell A, Culot M. Central nervous system delivery of molecules across the blood-brain barrier. Neurochemistry International [Internet]. 2021 Mar 1 [cited 2024 Oct 18];144:104952. Available from: https://www.sciencedirect.com/science/article/pii/S0197018620303430Mahringer A, Fricker G. ABC transporters at the blood–brain barrier. Expert Opinion on Drug Metabolism & Toxicology [Internet]. 2016 May 3 [cited 2024 Oct 18];12(5):499–508. Available from: https://doi.org/10.1517/17425255.2016.1168804Rees DC, Johnson E, Lewinson O. ABC transporters: the power to change. Nat Rev Mol Cell Biol [Internet]. 2009 Mar [cited 2024 Oct 20];10(3):218–27. Available from: https://www.nature.com/articles/nrm2646Löscher W, Potschka H. Blood-brain barrier active efflux transporters: ATP-binding cassette gene family. NeuroRx. 2005 Jan;2(1):86–98.Shen S, Zhang W. ABC transporters and drug efflux at the blood-brain barrier. Rev Neurosci. 2010;21(1):29–53.Schäfer AM, Meyer Zu Schwabedissen HE, Grube M. Expression and Function of Organic Anion Transporting Polypeptides in the Human Brain: Physiological and Pharmacological Implications. Pharmaceutics. 2021 Jun 4;13(6):834.Bossaerts L, Cacace R, Van Broeckhoven C. The role of ATP-binding cassette subfamily A in the etiology of Alzheimer’s disease. Molecular Neurodegeneration [Internet]. 2022 Apr 27 [cited 2024 Oct 20];17(1):31. Available from: https://doi.org/10.1186/s13024-022-00536-wSanchez-Covarrubias L, Slosky LM, Thompson BJ, Davis TP, Ronaldson PT. Transporters at CNS barrier sites: obstacles or opportunities for drug delivery? Curr Pharm Des. 2014;20(10):1422–49.Morris ME, Rodriguez-Cruz V, Felmlee MA. SLC and ABC Transporters: Expression, Localization, and Species Differences at the Blood-Brain and the Blood-Cerebrospinal Fluid Barriers. AAPS J. 2017 Sep;19(5):1317–31.Azarmi M, Maleki H, Nikkam N, Malekinejad H. Transcellular brain drug delivery: A review on recent advancements. Int J Pharm. 2020 Aug 30;586:119582.Hervé F, Ghinea N, Scherrmann JM. CNS delivery via adsorptive transcytosis. AAPS J. 2008 Sep;10(3):455–72.Walter FR, Santa-Maria AR, Mészáros M, Veszelka S, Dér A, Deli MA. Surface charge, glycocalyx, and blood-brain barrier function. Tissue Barriers. 2021 Jul 3;9(3):1904773.Drin G, Rousselle C, Scherrmann JM, Rees AR, Temsamani J. Peptide delivery to the brain via adsorptive-mediated endocytosis: advances with SynB vectors. AAPS PharmSci. 2002;4(4):E26.Xiao G, Gan LS. Receptor-mediated endocytosis and brain delivery of therapeutic biologics. Int J Cell Biol. 2013;2013:703545.Claudio L, Kress Y, Norton WT, Brosnan CF. Increased vesicular transport and decreased mitochondrial content in blood-brain barrier endothelial cells during experimental autoimmune encephalomyelitis. Am J Pathol. 1989 Dec;135(6):1157–68.Pulgar VM. Transcytosis to Cross the Blood Brain Barrier, New Advancements and Challenges. Front Neurosci. 2018;12:1019.Pardridge WM, Chou T. Mathematical Models of Blood-Brain Barrier Transport of Monoclonal Antibodies Targeting the Transferrin Receptor and the Insulin Receptor. Pharmaceuticals (Basel). 2021 Jun 3;14(6):535.Zhang Y, Pardridge WM. Mediated efflux of IgG molecules from brain to blood across the blood–brain barrier. Journal of Neuroimmunology [Internet]. 2001 Mar 1 [cited 2024 Oct 20];114(1):168–72. Available from: https://www.jni-journal.com/article/S0165-5728(01)00242-9/abstractPardridge WM. Brain gene therapy with Trojan horse lipid nanoparticles. Trends Mol Med. 2023 May;29(5):343–53.Markowicz-Piasecka M, Markiewicz A, Darłak P, Sikora J, Adla SK, Bagina S, et al. Current Chemical, Biological, and Physiological Views in the Development of Successful Brain-Targeted Pharmaceutics. Neurotherapeutics [Internet]. 2022 Apr 1 [cited 2024 Oct 20];19(3):942–76. Available from: https://doi.org/10.1007/s13311-022-01228-5Tian X, Nyberg S, S Sharp P, Madsen J, Daneshpour N, Armes SP, et al. LRP-1-mediated intracellular antibody delivery to the Central Nervous System. Sci Rep. 2015 Jul 20;5:11990.Molino Y, David M, Varini K, Jabès F, Gaudin N, Fortoul A, et al. Use of LDL receptor—targeting peptide vectors for in vitro and in vivo cargo transport across the blood-brain barrier. The FASEB Journal [Internet]. 2017 [cited 2024 Oct 20];31(5):1807–27. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1096/fj.201600827RNguyen LN, Ma D, Shui G, Wong P, Cazenave-Gassiot A, Zhang X, et al. Mfsd2a is a transporter for the essential omega-3 fatty acid docosahexaenoic acid. Nature. 2014 May 22;509(7501):503–6.Traub LM. Sorting it out: AP-2 and alternate clathrin adaptors in endocytic cargo selection. J Cell Biol. 2003 Oct 27;163(2):203–8.Virgintino D, Robertson D, Errede M, Benagiano V, Tauer U, Roncali L, et al. Expression of caveolin-1 in human brain microvessels. Neuroscience. 2002;115(1):145–52.Jodoin J, Demeule M, Fenart L, Cecchelli R, Farmer S, Linton KJ, et al. P-glycoprotein in blood-brain barrier endothelial cells: interaction and oligomerization with caveolins. J Neurochem. 2003 Nov;87(4):1010–23.Okamoto T, Schlegel A, Scherer PE, Lisanti MP. Caveolins, a family of scaffolding proteins for organizing “preassembled signaling complexes” at the plasma membrane. J Biol Chem. 1998 Mar 6;273(10):5419–22.Zenaro E, Piacentino G, Constantin G. The blood-brain barrier in Alzheimer’s disease. Neurobiol Dis. 2017 Nov;107:41–56.Minagar A, Alexander JS. Blood-brain barrier disruption in multiple sclerosis. Mult Scler. 2003 Dec;9(6):540–9.Nishihara H, Perriot S, Gastfriend BD, Steinfort M, Cibien C, Soldati S, et al. Intrinsic blood-brain barrier dysfunction contributes to multiple sclerosis pathogenesis. Brain. 2022 Jan 27;awac019.Bencurova E, Mlynarcik P, Bhide M. An insight into the ligand–receptor interactions involved in the translocation of pathogens across blood–brain barrier. FEMS Immunology & Medical Microbiology [Internet]. 2011 Dec 1 [cited 2024 Oct 20];63(3):297–318. Available from: https://doi.org/10.1111/j.1574-695X.2011.00867.xSaraiva C, Praça C, Ferreira R, Santos T, Ferreira L, Bernardino L. Nanoparticle-mediated brain drug delivery: Overcoming blood-brain barrier to treat neurodegenerative diseases. J Control Release. 2016 Aug 10;235:34–47.Zhao Y, Gan L, Ren L, Lin Y, Ma C, Lin X. Factors influencing the blood-brain barrier permeability. Brain Research [Internet]. 2022 Aug 1 [cited 2024 Oct 21];1788:147937. Available from: https://www.sciencedirect.com/science/article/pii/S0006899322001615Peng X, Luo Z, He S, Zhang L, Li Y. Blood-Brain Barrier Disruption by Lipopolysaccharide and Sepsis-Associated Encephalopathy. Front Cell Infect Microbiol. 2021;11:768108.Kelleher RJ, Soiza RL. Evidence of endothelial dysfunction in the development of Alzheimer’s disease: Is Alzheimer’s a vascular disorder? American Journal of Cardiovascular Disease [Internet]. 2013 Nov 1 [cited 2024 Oct 21];3(4):197. Available from: https://pmc.ncbi.nlm.nih.gov/articles/PMC3819581/Saunders NR, Dziegielewska KM, Møllgård K, Habgood MD. Markers for blood-brain barrier integrity: how appropriate is Evans blue in the twenty-first century and what are the alternatives? Front Neurosci. 2015;9:385.Saria A, Lundberg JM. Evans blue fluorescence: quantitative and morphological evaluation of vascular permeability in animal tissues. J Neurosci Methods. 1983 May;8(1):41–9.Chen KB, Kuo EY, Poon KS, Cheng KS, Chang CS, Liu YC, et al. Increase in Evans blue dye extravasation into the brain in the late developmental stage. Neuroreport. 2012 Aug 22;23(12):699–701Emmett M, Cerniglia CE, Crowle AJ. Differential serum protein binding of benzidine- and benzidine-congener based dyes and their derivatives. Arch Toxicol. 1985 Jun;57(2):130–5.Moos T, Møllgård K. Cerebrovascular permeability to azo dyes and plasma proteins in rodents of different ages. Neuropathol Appl Neurobiol. 1993 Apr;19(2):120–7.Taheri S, Gasparovic C, Shah NJ, Rosenberg GA. Quantitative measurement of blood-brain barrier permeability in human using dynamic contrast-enhanced MRI with fast T1 mapping. Magn Reson Med. 2011 Apr;65(4):1036–42.Srinivasan B, Kolli AR, Esch MB, Abaci HE, Shuler ML, Hickman JJ. TEER measurement techniques for in vitro barrier model systems. J Lab Autom. 2015 Apr;20(2):107–26.Hajal C, Le Roi B, Kamm RD, Maoz BM. Biology and Models of the Blood–Brain Barrier. Annual Review of Biomedical Engineering [Internet]. 2021 [cited 2022 Nov 10];23(1):359–84. Available from: https://doi.org/10.1146/annurev-bioeng-082120-042814Bernas MJ, Cardoso FL, Daley SK, Weinand ME, Campos AR, Ferreira AJG, et al. Establishment of primary cultures of human brain microvascular endothelial cells to provide an in vitro cellular model of the blood-brain barrier. Nat Protoc. 2010 Jul;5(7):1265–72.Chaulagain B, Gothwal A, Lamptey RNL, Trivedi R, Mahanta AK, Layek B, et al. Experimental Models of In Vitro Blood-Brain Barrier for CNS Drug Delivery: An Evolutionary Perspective. Int J Mol Sci. 2023 Jan 31;24(3):2710.Rahman NA, Rasil ANHM, Meyding-Lamade U, Craemer EM, Diah S, Tuah AA, et al. Immortalized endothelial cell lines for in vitro blood-brain barrier models: A systematic review. Brain Res. 2016 Jul 1;1642:532–45.Rauh J, Meyer J, Beuckmann C, Galla HJ. Development of an in vitro cell culture system to mimic the blood-brain barrier. Prog Brain Res. 1992;91:117–21.Stone NL, England TJ, O’Sullivan SE. A Novel Transwell Blood Brain Barrier Model Using Primary Human Cells. Front Cell Neurosci. 2019;13:230.Bischel LL, Coneski PN, Lundin JG, Wu PK, Giller CB, Wynne J, et al. Electrospun gelatin biopapers as substrate for in vitro bilayer models of blood-brain barrier tissue. J Biomed Mater Res A. 2016 Apr;104(4):901–9.Ahn SI, Sei YJ, Park HJ, Kim J, Ryu Y, Choi JJ, et al. Microengineered human blood-brain barrier platform for understanding nanoparticle transport mechanisms. Nat Commun. 2020 Jan 10;11(1):175.Xu H, Li Z, Yu Y, Sizdahkhani S, Ho WS, Yin F, et al. A dynamic in vivo-like organotypic blood-brain barrier model to probe metastatic brain tumors. Sci Rep [Internet]. 2016 Nov 10 [cited 2022 Nov 10];6:36670. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5103210/Katt ME, Linville RM, Mayo LN, Xu ZS, Searson PC. Functional brain-specific microvessels from iPSC-derived human brain microvascular endothelial cells: the role of matrix composition on monolayer formation. Fluids and Barriers of the CNS [Internet]. 2018 Feb 20 [cited 2022 Nov 10];15(1):7. Available from: https://doi.org/10.1186/s12987-018-0092-7Sun XY, Ju XC, Li Y, Zeng PM, Wu J, Zhou YY, et al. Generation of vascularized brain organoids to study neurovascular interactions. Elife. 2022 May 4;11:e76707.Wang YI, Abaci HE, Shuler ML. Microfluidic blood-brain barrier model provides in vivo-like barrier properties for drug permeability screening. Biotechnol Bioeng. 2017 Jan;114(1):184–94.Yeon JH, Na D, Choi K, Ryu SW, Choi C, Park JK. Reliable permeability assay system in a microfluidic device mimicking cerebral vasculatures. Biomed Microdevices. 2012 Dec;14(6):1141–8.Shin Y, Choi SH, Kim E, Bylykbashi E, Kim JA, Chung S, et al. Blood–Brain Barrier Dysfunction in a 3D In Vitro Model of Alzheimer’s Disease. Advanced Science [Internet]. 2019 [cited 2024 Oct 21];6(20):1900962. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1002/advs.201900962Bajaj P, Schweller RM, Khademhosseini A, West JL, Bashir R. 3D biofabrication strategies for tissue engineering and regenerative medicine. Annu Rev Biomed Eng. 2014 Jul 11;16:247–76.Yue K, Trujillo-de Santiago G, Alvarez MM, Tamayol A, Annabi N, Khademhosseini A. Synthesis, properties, and biomedical applications of gelatin methacryloyl (GelMA) hydrogels. Biomaterials. 2015 Dec;73:254–71.Zhang Z, Jin Y, Yin J, Xu C, Xiong R, Christensen K, et al. Evaluation of bioink printability for bioprinting applications. Applied Physics Reviews [Internet]. 2018 Dec 10 [cited 2024 Oct 21];5(4):041304. Available from: https://doi.org/10.1063/1.5053979Yi HG, Jeong YH, Kim Y, Choi YJ, Moon HE, Park SH, et al. A bioprinted human-glioblastoma-on-a-chip for the identification of patient-specific responses to chemoradiotherapy. Nat Biomed Eng. 2019 Jul;3(7):509–19.Pardridge WM. The blood-brain barrier: bottleneck in brain drug development. NeuroRx. 2005 Jan;2(1):3–14.Begley DJ. Delivery of therapeutic agents to the central nervous system: the problems and the possibilities. Pharmacol Ther. 2004 Oct;104(1):29–45.Deli MA, Abrahám CS, Kataoka Y, Niwa M. Permeability studies on in vitro blood-brain barrier models: physiology, pathology, and pharmacology. Cell Mol Neurobiol. 2005 Feb;25(1):59–127.Wilhelm I, Krizbai IA. In vitro models of the blood-brain barrier for the study of drug delivery to the brain. Mol Pharm. 2014 Jul 7;11(7):1949–63.Moyaert P, Padrela BE, Morgan CA, Petr J, Versijpt J, Barkhof F, et al. Imaging blood-brain barrier dysfunction: A state-of-the-art review from a clinical perspective. Frontiers in Aging Neuroscience [Internet]. 2023 Apr 17 [cited 2024 Oct 21];15:1132077. Available from: https://pmc.ncbi.nlm.nih.gov/articles/PMC10150073/Pinheiro RGR, Coutinho AJ, Pinheiro M, Neves AR. Nanoparticles for Targeted Brain Drug Delivery: What Do We Know? Int J Mol Sci. 2021 Oct 28;22(21):11654.Teleanu DM, Chircov C, Grumezescu AM, Volceanov A, Teleanu RI. Blood-Brain Delivery Methods Using Nanotechnology. Pharmaceutics. 2018 Dec 11;10(4):269.Herndon JM, Tome ME, Davis TP. Chapter 9 - Development and Maintenance of the Blood–Brain Barrier. In: Caplan LR, Biller J, Leary MC, Lo EH, Thomas AJ, Yenari M, et al., editors. Primer on Cerebrovascular Diseases (Second Edition) [Internet]. San Diego: Academic Press; 2017 [cited 2024 Oct 21]. p. 51–6. Available from: https://www.sciencedirect.com/science/article/pii/B9780128030585000096Batrakova EV, Kim MS. Using exosomes, naturally-equipped nanocarriers, for drug delivery. J Control Release. 2015 Dec 10;219:396–405.Kovacs ZI, Kim S, Jikaria N, Qureshi F, Milo B, Lewis BK, et al. Disrupting the blood-brain barrier by focused ultrasound induces sterile inflammation. Proc Natl Acad Sci U S A. 2017 Jan 3;114(1):E75–84.Patel T, Zhou J, Piepmeier JM, Saltzman WM. Polymeric nanoparticles for drug delivery to the central nervous system. Adv Drug Deliv Rev. 2012 May 15;64(7):701–5.Biomarkers Definitions Working Group. Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin Pharmacol Ther. 2001 Mar;69(3):89–95.Califf RM. Biomarker definitions and their applications. Exp Biol Med (Maywood). 2018 Feb;243(3):213–21.Lesko LJ, Atkinson AJ. Use of biomarkers and surrogate endpoints in drug development and regulatory decision making: criteria, validation, strategies. Annu Rev Pharmacol Toxicol. 2001;41:347–66.Zapata-Acevedo JF, Mantilla-Galindo A, Vargas-Sánchez K, González-Reyes RE. Chapter One - Blood-brain barrier biomarkers. In: Makowski GS, editor. Advances in Clinical Chemistry [Internet]. Elsevier; 2024 [cited 2024 Oct 21]. p. 1–88. (Advances in Clinical Chemistry; vol. 121). Available from: https://www.sciencedirect.com/science/article/pii/S0065242324000659Bodaghi A, Fattahi N, Ramazani A. Biomarkers: Promising and valuable tools towards diagnosis, prognosis and treatment of Covid-19 and other diseases. Heliyon. 2023 Feb;9(2):e13323.Sandoval KE, Witt KA. Blood-brain barrier tight junction permeability and ischemic stroke. Neurobiol Dis. 2008 Nov;32(2):200–19.Enzmann G, Mysiorek C, Gorina R, Cheng YJ, Ghavampour S, Hannocks MJ, et al. The neurovascular unit as a selective barrier to polymorphonuclear granulocyte (PMN) infiltration into the brain after ischemic injury. Acta Neuropathol. 2013 Mar;125(3):395–412.Kirk J, Plumb J, Mirakhur M, McQuaid S. Tight junctional abnormality in multiple sclerosis white matter affects all calibres of vessel and is associated with blood–brain barrier leakage and active demyelination. The Journal of Pathology [Internet]. 2003 [cited 2024 Oct 21];201(2):319–27. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1002/path.1434Libro R, Bramanti P, Mazzon E. The role of the Wnt canonical signaling in neurodegenerative diseases. Life Sci. 2016 Aug 1;158:78–88.Majno G, Palade GE, Schoefl GI. Studies on inflammation. II. The site of action of histamine and serotonin along the vascular tree: a topographic study. J Biophys Biochem Cytol. 1961 Dec;11(3):607–26.Kaya M, Ahishali B. Assessment of permeability in barrier type of endothelium in brain using tracers: Evans blue, sodium fluorescein, and horseradish peroxidase. Methods Mol Biol. 2011;763:369–82.Miah MK, Chowdhury EA, Bickel U, Mehvar R. Evaluation of [14C] and [13C]Sucrose as Blood–Brain Barrier Permeability Markers. JPharmSci [Internet]. 2017 Jun 1 [cited 2024 Oct 21];106(6):1659–69. Available from: https://jpharmsci.org/article/S0022-3549(17)30083-7/fulltextKoh SXT, Lee JKW. S100B as a marker for brain damage and blood-brain barrier disruption following exercise. Sports Med. 2014 Mar;44(3):369–85.Montagne A, Barnes SR, Sweeney MD, Halliday MR, Sagare AP, Zhao Z, et al. Blood-brain barrier breakdown in the aging human hippocampus. Neuron. 2015 Jan 21;85(2):296–302.Janelidze S, Lindqvist D, Francardo V, Hall S, Zetterberg H, Blennow K, et al. Increased CSF biomarkers of angiogenesis in Parkinson disease. Neurology. 2015 Nov 24;85(21):1834–42.Ivens S, Kaufer D, Flores LP, Bechmann I, Zumsteg D, Tomkins O, et al. TGF-β receptor-mediated albumin uptake into astrocytes is involved in neocortical epileptogenesis. Brain [Internet]. 2007 Feb 1 [cited 2024 Oct 21];130(2):535–47. Available from: https://doi.org/10.1093/brain/awl317Braganza O, Bedner P, Hüttmann K, von Staden E, Friedman A, Seifert G, et al. Albumin is taken up by hippocampal NG2 cells and astrocytes and decreases gap junction coupling. Epilepsia. 2012 Nov;53(11):1898–906.Hanzel CE, Iulita MF, Eyjolfsdottir H, Hjorth E, Schultzberg M, Eriksdotter M, et al. Analysis of matrix metallo-proteases and the plasminogen system in mild cognitive impairment and Alzheimer’s disease cerebrospinal fluid. J Alzheimers Dis. 2014;40(3):667–78.Craig-Schapiro R, Kuhn M, Xiong C, Pickering EH, Liu J, Misko TP, et al. Multiplexed immunoassay panel identifies novel CSF biomarkers for Alzheimer’s disease diagnosis and prognosis. PLoS One. 2011 Apr 19;6(4):e18850.Bernardo-Castro S, Sousa JA, Brás A, Cecília C, Rodrigues B, Almendra L, et al. Pathophysiology of Blood–Brain Barrier Permeability Throughout the Different Stages of Ischemic Stroke and Its Implication on Hemorrhagic Transformation and Recovery. Front Neurol [Internet]. 2020 Dec 9 [cited 2024 Oct 21];11. Available from: https://www.frontiersin.org/journals/neurology/articles/10.3389/fneur.2020.594672/fullErickson MA, Banks WA. Age-Associated Changes in the Immune System and Blood–Brain Barrier Functions. International Journal of Molecular Sciences [Internet]. 2019 Jan [cited 2024 Oct 21];20(7):1632. Available from: https://www.mdpi.com/1422-0067/20/7/1632Varatharaj A, Liljeroth M, Darekar A, Larsson HBW, Galea I, Cramer SP. Blood–brain barrier permeability measured using dynamic contrast-enhanced magnetic resonance imaging: a validation study. The Journal of Physiology [Internet]. 2019 [cited 2024 Oct 21];597(3):699–709. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1113/JP276887Montagne A, Nation DA, Pa J, Sweeney MD, Toga AW, Zlokovic BV. Brain imaging of neurovascular dysfunction in Alzheimer’s disease. Acta Neuropathol [Internet]. 2016 May 1 [cited 2024 Oct 21];131(5):687–707. Available from: https://doi.org/10.1007/s00401-016-1570-0Lee RL, Funk KE. Imaging blood–brain barrier disruption in neuroinflammation and Alzheimer’s disease. Front Aging Neurosci [Internet]. 2023 Mar 17 [cited 2024 Oct 21];15. Available from: https://www.frontiersin.org/journals/aging-neuroscience/articles/10.3389/fnagi.2023.1144036/fullDonato R, Cannon BR, Sorci G, Riuzzi F, Hsu K, Weber DJ, et al. Functions of S100 proteins. Curr Mol Med. 2013 Jan;13(1):24–57.Donato R, Sorci G, Riuzzi F, Arcuri C, Bianchi R, Brozzi F, et al. S100B’s double life: intracellular regulator and extracellular signal. Biochim Biophys Acta. 2009 Jun;1793(6):1008–22.Michetti F, Corvino V, Geloso MC, Lattanzi W, Bernardini C, Serpero L, et al. The S100B protein in biological fluids: more than a lifelong biomarker of brain distress. J Neurochem. 2012 Mar;120(5):644–59.Kleindienst A, Hesse F, Bullock MR, Buchfelder M. The neurotrophic protein S100B: value as a marker of brain damage and possible therapeutic implications. Prog Brain Res. 2007;161:317–25.OʼConnell B, Kelly ÁM, Mockler D, Orešič M, Denvir K, Farrell G, et al. Use of Blood Biomarkers in the Assessment of Sports-Related Concussion-A Systematic Review in the Context of Their Biological Significance. Clin J Sport Med. 2018 Nov;28(6):561–71.Michetti F, Clementi ME, Di Liddo R, Valeriani F, Ria F, Rende M, et al. The S100B Protein: A Multifaceted Pathogenic Factor More Than a Biomarker. Int J Mol Sci. 2023 May 31;24(11):9605.Janigro D, Kawata K, Silverman E, Marchi N, Diaz-Arrastia R. Is Salivary S100B a Biomarker of Traumatic Brain Injury? A Pilot Study. Front Neurol. 2020;11:528.Roche M, Rondeau P, Singh NR, Tarnus E, Bourdon E. The antioxidant properties of serum albumin. FEBS Lett. 2008 Jun 11;582(13):1783–7.Gounden V, Vashisht R, Jialal I. Hypoalbuminemia. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2023 [cited 2023 Sep 30]. Available from: http://www.ncbi.nlm.nih.gov/books/NBK526080/Cui N, Hu M, Khalil RA. Chapter One - Biochemical and Biological Attributes of Matrix Metalloproteinases. In: Khalil RA, editor. Progress in Molecular Biology and Translational Science [Internet]. Academic Press; 2017 [cited 2024 Oct 21]. p. 1–73. (Matrix Metalloproteinases and Tissue Remodeling in Health and Disease: Cardiovascular Remodeling; vol. 147). Available from: https://www.sciencedirect.com/science/article/pii/S1877117317300327Yang Y, Rosenberg GA. Matrix metalloproteinases as therapeutic targets for stroke. Brain Res. 2015 Oct 14;1623:30–8.McColl BW, Rothwell NJ, Allan SM. Systemic inflammation alters the kinetics of cerebrovascular tight junction disruption after experimental stroke in mice. Journal of Neuroscience [Internet]. 2008;28(38):9451–62. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-58149357031&doi=10.1523%2fJNEUROSCI.2674-08.2008&partnerID=40&md5=f7b0b322e0ebebcd13dd523533fdb3a9Lee JY, Lee HE, Kang SR, Choi HY, Ryu JH, Yune TY. Fluoxetine inhibits transient global ischemia-induced hippocampal neuronal death and memory impairment by preventing blood-brain barrier disruption. Neuropharmacology [Internet]. 2014;79:161–71. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84890368028&doi=10.1016%2fj.neuropharm.2013.11.011&partnerID=40&md5=95182e261e038b1ad97112f5374b7fbeAmtul Z, Yang J, Nikolova S, Lee TY, Bartha R, Cechetto DF. The Dynamics of Impaired Blood-Brain Barrier Restoration in a Rat Model of Co-morbid Injury. Molecular Neurobiology [Internet]. 2018;55(10):8071–83. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85044528264&doi=10.1007%2fs12035-018-0904-4&partnerID=40&md5=a400f06d62c4b522402e9e3f37c1dba7Nygårdas PT, Hinkkanen AE. Up-regulation of MMP-8 and MMP-9 activity in the BALB/c mouse spinal cord correlates with the severity of experimental autoimmune encephalomyelitis. Clin Exp Immunol. 2002 May;128(2):245–54.Lee HS, Namkoong K, Kim DH, Kim KJ, Cheong YH, Kim SS, et al. Hydrogen peroxide-induced alterations of tight junction proteins in bovine brain microvascular endothelial cells. Microvasc Res. 2004 Nov;68(3):231–8.Lenglet S, Montecucco F, Mach F. Role of matrix metalloproteinases in animal models of ischemic stroke. Curr Vasc Pharmacol. 2015;13(2):161–6.Wang J, Zhang D, Fu X, Yu L, Lu Z, Gao Y, et al. Carbon monoxide-releasing molecule-3 protects against ischemic stroke by suppressing neuroinflammation and alleviating blood-brain barrier disruption. J Neuroinflammation. 2018/06/23 ed. 2018 Jun 21;15(1):188.Welser JV, Halder SK, Kant R, Boroujerdi A, Milner R. Endothelial α6β4 integrin protects during experimental autoimmune encephalomyelitis-induced neuroinflammation by maintaining vascular integrity and tight junction protein expression. J Neuroinflammation. 2017/11/11 ed. 2017 Nov 9;14(1):217.Girolamo F, Errede M, Longo G, Annese T, Alias C, Ferrara G, et al. Defining the role of NG2-expressing cells in experimental models of multiple sclerosis. A biofunctional analysis of the neurovascular unit in wild type and NG2 null mice. PLoS ONE [Internet]. 2019;14(3). Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85062958806&doi=10.1371%2fjournal.pone.0213508&partnerID=40&md5=88907e5853c3eebe5d7226b4f3a19456Campbell SJ, Carare-Nnadi RO, Losey PH, Anthony DC. Loss of the atypical inflammatory response in juvenile and aged rats. Neuropathology and Applied Neurobiology [Internet]. 2007;33(1):108–20. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-33846154280&doi=10.1111%2fj.1365-2990.2006.00773.x&partnerID=40&md5=dc579b02d9de6f8d8a12d6dc8f82331dJiao H, Wang Z, Liu Y, Wang P, Xue Y. Specific role of tight junction proteins claudin-5, occludin, and ZO-1 of the blood-brain barrier in a focal cerebral ischemic insult. J Mol Neurosci. 2011 Jun;44(2):130–9.Hamann GF, Liebetrau M, Martens H, Burggraf D, Kloss CUA, Bültemeier G, et al. Microvascular basal lamina injury after experimental focal cerebral ischemia and reperfusion in the rat. J Cereb Blood Flow Metab. 2002 May;22(5):526–33.Härtig W, Mages B, Aleithe S, Nitzsche B, Altmann S, Barthel H, et al. Damaged Neocortical Perineuronal Nets Due to Experimental Focal Cerebral Ischemia in Mice, Rats and Sheep. Front Integr Neurosci. 2017;11:15.Brooks GA. The Science and Translation of Lactate Shuttle Theory. Cell Metab. 2018 Apr 3;27(4):757–85.Magistretti PJ, Allaman I. Lactate in the brain: from metabolic end-product to signalling molecule. Nat Rev Neurosci. 2018 Apr;19(4):235–49.Lee HW, Xu Y, Zhu X, Jang C, Choi W, Bae H, et al. Endothelium-derived lactate is required for pericyte function and blood-brain barrier maintenance. EMBO J. 2022 May 2;41(9):e109890.Vazana U, Veksler R, Pell GS, Prager O, Fassler M, Chassidim Y, et al. Glutamate-Mediated Blood-Brain Barrier Opening: Implications for Neuroprotection and Drug Delivery. J Neurosci. 2016 Jul 20;36(29):7727–39.Deracinois B, Lenfant AM, Dehouck MP, Flahaut C. Tissue Non-specific Alkaline Phosphatase (TNAP) in Vessels of the Brain. Subcell Biochem. 2015;76:125–51.Brennan PN, Dillon JF, Tapper EB. Gamma-Glutamyl Transferase (γ-GT) - an old dog with new tricks? Liver Int. 2022 Jan;42(1):9–15.Fujii J, Osaki T, Soma Y, Matsuda Y. Critical Roles of the Cysteine-Glutathione Axis in the Production of γ-Glutamyl Peptides in the Nervous System. Int J Mol Sci. 2023 Apr 28;24(9):8044.Arbaizar-Rovirosa M, Gallizioli M, Lozano JJ, Sidorova J, Pedragosa J, Figuerola S, et al. Transcriptomics and translatomics identify a robust inflammatory gene signature in brain endothelial cells after ischemic stroke. J Neuroinflammation. 2023 Sep 11;20(1):207.Munji RN, Soung AL, Weiner GA, Sohet F, Semple BD, Trivedi A, et al. Profiling the mouse brain endothelial transcriptome in health and disease models reveals a core blood-brain barrier dysfunction module. Nat Neurosci. 2019 Nov;22(11):1892–902.Huang SH, Wang L, Chi F, Wu CH, Cao H, Zhang A, et al. Circulating brain microvascular endothelial cells (cBMECs) as potential biomarkers of the blood-brain barrier disorders caused by microbial and non-microbial factors. PLoS One. 2013;8(4):e62164.Couch Y, Akbar N, Roodselaar J, Evans MC, Gardiner C, Sargent I, et al. Circulating endothelial cell-derived extracellular vesicles mediate the acute phase response and sickness behaviour associated with CNS inflammation. Sci Rep. 2017 Aug 29;7(1):9574.Ramos-Zaldívar HM, Polakovicova I, Salas-Huenuleo E, Corvalán AH, Kogan MJ, Yefi CP, et al. Extracellular vesicles through the blood-brain barrier: a review. Fluids Barriers CNS. 2022 Jul 25;19(1):60.Morel N, Morel O, Petit L, Hugel B, Cochard JF, Freyssinet JM, et al. Generation of procoagulant microparticles in cerebrospinal fluid and peripheral blood after traumatic brain injury. J Trauma. 2008 Mar;64(3):698–704.Nekludov M, Bellander BM, Gryth D, Wallen H, Mobarrez F. Brain-Derived Microparticles in Patients with Severe Isolated TBI. Brain Inj. 2017;31(13–14):1856–62.Beard DJ, Brown LS, Sutherland BA. The rise of pericytes in neurovascular research. J Cereb Blood Flow Metab. 2020 Dec;40(12):2366–73.Bondjers C, He L, Takemoto M, Norlin J, Asker N, Hellström M, et al. Microarray analysis of blood microvessels from PDGF-B and PDGF-Rbeta mutant mice identifies novel markers for brain pericytes. FASEB J. 2006 Aug;20(10):1703–5.Bell RD, Winkler EA, Sagare AP, Singh I, LaRue B, Deane R, et al. Pericytes Control Key Neurovascular Functions and Neuronal Phenotype in the Adult Brain and during Brain Aging. Neuron [Internet]. 2010;68(3):409–27. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-78049279739&doi=10.1016%2fj.neuron.2010.09.043&partnerID=40&md5=5870b31f5295c8b322793f7a64016b34Potokar M, Morita M, Wiche G, Jorgačevski J. The Diversity of Intermediate Filaments in Astrocytes. Cells. 2020 Jul 2;9(7):1604.Messing A, Brenner M. GFAP at 50. ASN Neuro. 2020;12:1759091420949680.Lundgaard I, Osório MJ, Kress BT, Sanggaard S, Nedergaard M. White matter astrocytes in health and disease. Neuroscience. 2014 Sep 12;276:161–73.Janigro D, Mondello S, Posti JP, Unden J. GFAP and S100B: What You Always Wanted to Know and Never Dared to Ask. Front Neurol. 2022;13:835597.Moreels M, Vandenabeele F, Dumont D, Robben J, Lambrichts I. Alpha-smooth muscle actin (alpha-SMA) and nestin expression in reactive astrocytes in multiple sclerosis lesions: potential regulatory role of transforming growth factor-beta 1 (TGF-beta1). Neuropathol Appl Neurobiol. 2008 Oct;34(5):532–46.Abbott NJ. Inflammatory mediators and modulation of blood-brain barrier permeability. Cell Mol Neurobiol. 2000 Apr;20(2):131–47.Walsh J, Tozer DJ, Sari H, Hong YT, Drazyk A, Williams G, et al. Microglial activation and blood-brain barrier permeability in cerebral small vessel disease. Brain. 2021 Jun 22;144(5):1361–71.da Fonseca ACC, Matias D, Garcia C, Amaral R, Geraldo LH, Freitas C, et al. The impact of microglial activation on blood-brain barrier in brain diseases. Front Cell Neurosci. 2014;8:362Xue F, Du H. TREM2 Mediates Microglial Anti-Inflammatory Activations in Alzheimer’s Disease: Lessons Learned from Transcriptomics. Cells. 2021 Feb 4;10(2):321.Ulland TK, Colonna M. TREM2 - a key player in microglial biology and Alzheimer disease. Nat Rev Neurol. 2018 Nov;14(11):667–75.Wang D, Chen F, Han Z, Yin Z, Ge X, Lei P. Relationship Between Amyloid-β Deposition and Blood-Brain Barrier Dysfunction in Alzheimer’s Disease. Front Cell Neurosci. 2021;15:695479.Jurga AM, Paleczna M, Kuter KZ. Overview of General and Discriminating Markers of Differential Microglia Phenotypes. Front Cell Neurosci. 2020;14:198.Rodriguez-Mogeda C, Rodríguez-Lorenzo S, Attia J, van Horssen J, Witte ME, de Vries HE. Breaching Brain Barriers: B Cell Migration in Multiple Sclerosis. Biomolecules. 2022 Jun 7;12(6):800.Chou ML, Babamale AO, Walker TL, Cognasse F, Blum D, Burnouf T. Blood-brain crosstalk: the roles of neutrophils, platelets, and neutrophil extracellular traps in neuropathologies. Trends Neurosci. 2023 Sep;46(9):764–79.Shu Y, Peng F, Zhao B, Liu C, Li Q, Li H, et al. Transfer of patient’s peripheral blood mononuclear cells (PBMCs) disrupts blood-brain barrier and induces anti-NMDAR encephalitis: a study of novel humanized PBMC mouse model. J Neuroinflammation. 2023 Jul 13;20(1):164.Cheng F, Yuan Q, Yang J, Wang W, Liu H. The prognostic value of serum neuron-specific enolase in traumatic brain injury: systematic review and meta-analysis. PLoS One. 2014;9(9):e106680.Ye W, Tang Y, Dong X, Chen G, Yan Y, Zhou L, et al. Predictive Value and Correlation of Neuron-Specific Enolase for Prognosis in Patients with Coma: A Systematic Review and Meta-Analysis. Eur Neurol. 2020;83(6):555–65.Correale J, Rabinowicz AL, Heck CN, Smith TD, Loskota WJ, DeGiorgio CM. Status epilepticus increases CSF levels of neuron-specific enolase and alters the blood-brain barrier. Neurology. 1998 May;50(5):1388–91.Kawata K, Liu CY, Merkel SF, Ramirez SH, Tierney RT, Langford D. Blood biomarkers for brain injury: What are we measuring? Neurosci Biobehav Rev. 2016 Sep;68:460–73.van der Plas E, Long JD, Koscik TR, Magnotta V, Monckton DG, Cumming SA, et al. Blood-Based Markers of Neuronal Injury in Adult-Onset Myotonic Dystrophy Type 1. Front Neurol. 2021;12:791065.Siman R, Cui H, Wewerka SS, Hamel L, Smith DH, Zwank MD. Serum SNTF, a Surrogate Marker of Axonal Injury, Is Prognostic for Lasting Brain Dysfunction in Mild TBI Treated in the Emergency Department. Front Neurol. 2020;11:249.Papa L, Rosenthal K, Silvestri F, Axley JC, Kelly JM, Lewis SB. Evaluation of alpha-II-spectrin breakdown products as potential biomarkers for early recognition and severity of aneurysmal subarachnoid hemorrhage. Sci Rep. 2018 Sep 6;8(1):13308.Plog BA, Dashnaw ML, Hitomi E, Peng W, Liao Y, Lou N, et al. Biomarkers of traumatic injury are transported from brain to blood via the glymphatic system. J Neurosci. 2015 Jan 14;35(2):518–26.Lindland ES, Solheim AM, Andreassen S, Bugge R, Eikeland R, Reiso H, et al. Dynamic contrast-enhanced MRI shows altered blood-brain barrier function of deep gray matter structures in neuroborreliosis: a case-control study. Eur Radiol Exp. 2023 Sep 15;7(1):52.Gupta N, Simpkins AN, Hitomi E, Dias C, Leigh R, NIH Natural History of Stroke Investigators. White Matter Hyperintensity-Associated Blood-Brain Barrier Disruption and Vascular Risk Factors. J Stroke Cerebrovasc Dis. 2018 Feb;27(2):466–71.Thrippleton MJ, Backes WH, Sourbron S, Ingrisch M, van Osch MJP, Dichgans M, et al. Quantifying blood-brain barrier leakage in small vessel disease: Review and consensus recommendations. Alzheimers Dement. 2019 Jun;15(6):840–58.Sourbron SP, Buckley DL. Classic models for dynamic contrast-enhanced MRI. NMR Biomed. 2013 Aug;26(8):1004–27.Cho AH, Cho YP, Lee DH, Kwon TW, Kwon SU, Suh DC, et al. Reperfusion injury on magnetic resonance imaging after carotid revascularization. Stroke. 2014 Feb;45(2):602–4.Pintaske J, Martirosian P, Graf H, Erb G, Lodemann KP, Claussen CD, et al. Relaxivity of Gadopentetate Dimeglumine (Magnevist), Gadobutrol (Gadovist), and Gadobenate Dimeglumine (MultiHance) in human blood plasma at 0.2, 1.5, and 3 Tesla. Invest Radiol. 2006 Mar;41(3):213–21.Notohamiprodjo M, Pedersen M, Glaser C, Helck AD, Lodemann KP, Jespersen B, et al. Comparison of Gd-DTPA and Gd-BOPTA for studying renal perfusion and filtration. J Magn Reson Imaging. 2011 Sep;34(3):595–607.Thomsen HS, Morcos SK, Almén T, Bellin MF, Bertolotto M, Bongartz G, et al. Nephrogenic systemic fibrosis and gadolinium-based contrast media: updated ESUR Contrast Medium Safety Committee guidelines. Eur Radiol. 2013 Feb;23(2):307–18.Wong HL, Wu XY, Bendayan R. Nanotechnological advances for the delivery of CNS therapeutics. Adv Drug Deliv Rev. 2012 May 15;64(7):686–700.Nissen JC. Microglial Function across the Spectrum of Age and Gender. Int J Mol Sci. 2017 Mar 4;18(3):561.DiSabato DJ, Quan N, Godbout JP. Neuroinflammation: the devil is in the details. J Neurochem. 2016 Oct;139 Suppl 2(Suppl 2):136–53.Cui J, Chen Y, Wang HY, Wang RF. Mechanisms and pathways of innate immune activation and regulation in health and cancer. Hum Vaccin Immunother. 2014;10(11):3270–85.Heneka MT, Kummer MP, Latz E. Innate immune activation in neurodegenerative disease. Nat Rev Immunol. 2014 Jul;14(7):463–77.Akira S, Uematsu S, Takeuchi O. Pathogen recognition and innate immunity. Cell. 2006 Feb 24;124(4):783–801.Iwasaki A, Medzhitov R. Toll-like receptor control of the adaptive immune responses. Nat Immunol. 2004 Oct;5(10):987–95.Kircheis R, Planz O. The Role of Toll-like Receptors (TLRs) and Their Related Signaling Pathways in Viral Infection and Inflammation. Int J Mol Sci. 2023 Apr 4;24(7):6701.Wang L, Lin F, Ren M, Liu X, Xie W, Zhang A, et al. The PICK1/TLR4 complex on microglia is involved in the regulation of LPS-induced sepsis-associated encephalopathy. Int Immunopharmacol. 2021 Nov;100:108116.Hoving JC, Wilson GJ, Brown GD. Signalling C-type lectin receptors, microbial recognition and immunity. Cell Microbiol. 2014 Feb;16(2):185–94.Drummond RA, Brown GD. Signalling C-type lectins in antimicrobial immunity. PLoS Pathog. 2013;9(7):e1003417.Sundaram B, Tweedell RE, Kumar SP, Kanneganti TD. The NLR family of innate immune and cell death sensors. Immunity [Internet]. 2024 Apr 9 [cited 2024 Oct 21];57(4):674–99. Available from: https://www.cell.com/immunity/abstract/S1074-7613(24)00133-XElinav E, Strowig T, Henao-Mejia J, Flavell RA. Regulation of the antimicrobial response by NLR proteins. Immunity. 2011 May 27;34(5):665–79.Waisman A, Liblau RS, Becher B. Innate and adaptive immune responses in the CNS. Lancet Neurol. 2015 Sep;14(9):945–55.Engelhardt B. T cell migration into the central nervous system during health and disease: Different molecular keys allow access to different central nervous system compartments. Clinical and Experimental Neuroimmunology [Internet]. 2010 [cited 2024 Oct 21];1(2):79–93. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1759-1961.2010.009.xAydin S, Pareja J, Schallenberg VM, Klopstein A, Gruber T, Page N, et al. Antigen recognition detains CD8+ T cells at the blood-brain barrier and contributes to its breakdown. Nat Commun [Internet]. 2023 May 30 [cited 2024 Oct 21];14(1):3106. Available from: https://www.nature.com/articles/s41467-023-38703-2Ellwardt E, Walsh JT, Kipnis J, Zipp F. Understanding the Role of T Cells in CNS Homeostasis. Trends Immunol. 2016 Feb;37(2):154–65.Hickey WF, Hsu BL, Kimura H. T-lymphocyte entry into the central nervous system. J Neurosci Res. 1991 Feb;28(2):254–60.Engelhardt B, Ransohoff RM. The ins and outs of T-lymphocyte trafficking to the CNS: anatomical sites and molecular mechanisms. Trends Immunol. 2005 Sep;26(9):485–95.Gadani SP, Cronk JC, Norris GT, Kipnis J. IL-4 in the brain: a cytokine to remember. J Immunol. 2012 Nov 1;189(9):4213–9.Davoust N, Vuaillat C, Androdias G, Nataf S. From bone marrow to microglia: barriers and avenues. Trends Immunol. 2008 May;29(5):227–34.Glezer I, Simard AR, Rivest S. Neuroprotective role of the innate immune system by microglia. Neuroscience. 2007 Jul 29;147(4):867–83.Menassa DA, Gomez-Nicola D. Microglial Dynamics During Human Brain Development. Front Immunol. 2018;9:1014.Mapunda JA, Tibar H, Regragui W, Engelhardt B. How Does the Immune System Enter the Brain? Frontiers in Immunology [Internet]. 2022 [cited 2023 Sep 30];13. Available from: https://www.frontiersin.org/articles/10.3389/fimmu.2022.805657Abbaoui A, Fatoba O, Yamashita T. Meningeal T cells function in the central nervous system homeostasis and neurodegenerative diseases. Front Cell Neurosci. 2023;17:1181071.Kawakami N, Flügel A. Knocking at the brain’s door: intravital two-photon imaging of autoreactive T cell interactions with CNS structures. Semin Immunopathol [Internet]. 2010 Sep 1 [cited 2024 Oct 21];32(3):275–87. Available from: https://doi.org/10.1007/s00281-010-0216-xGiunti D, Borsellino G, Benelli R, Marchese M, Capello E, Valle MT, et al. Phenotypic and functional analysis of T cells homing into the CSF of subjects with inflammatory diseases of the CNS. J Leukoc Biol. 2003 May;73(5):584–90.Engelhardt B, Wolburg H. Mini-review: Transendothelial migration of leukocytes: through the front door or around the side of the house? Eur J Immunol. 2004 Nov;34(11):2955–63.Deczkowska A, Amit I, Schwartz M. Microglial immune checkpoint mechanisms. Nat Neurosci. 2018 Jun;21(6):779–86.Wong D, Dorovini-Zis K. Expression of vascular cell adhesion molecule-1 (VCAM-1) by human brain microvessel endothelial cells in primary culture. Microvasc Res. 1995 May;49(3):325–39.Carman CV, Martinelli R. T Lymphocyte–Endothelial Interactions: Emerging Understanding of Trafficking and Antigen-Specific Immunity. Front Immunol [Internet]. 2015 Nov 24 [cited 2024 Oct 21];6. Available from: https://www.frontiersin.org/journals/immunology/articles/10.3389/fimmu.2015.00603/fullCayrol R, Wosik K, Berard JL, Dodelet-Devillers A, Ifergan I, Kebir H, et al. Activated leukocyte cell adhesion molecule promotes leukocyte trafficking into the central nervous system. Nat Immunol. 2008 Feb;9(2):137–45.Marchetti L, Francisco D, Soldati S, Haghayegh Jahromi N, Barcos S, Gruber I, et al. ACKR1 favors transcellular over paracellular T-cell diapedesis across the blood-brain barrier in neuroinflammation in vitro. Eur J Immunol. 2022 Jan;52(1):161–77.Minten C, Alt C, Gentner M, Frei E, Deutsch U, Lyck R, et al. DARC shuttles inflammatory chemokines across the blood–brain barrier during autoimmune central nervous system inflammation. Brain [Internet]. 2014 May 1 [cited 2024 Oct 21];137(5):1454–69. Available from: https://doi.org/10.1093/brain/awu045Nourshargh S, Alon R. Leukocyte migration into inflamed tissues. Immunity. 2014 Nov 20;41(5):694–707.Sathiyanadan K, Coisne C, Enzmann G, Deutsch U, Engelhardt B. PSGL-1 and E/P-selectins are essential for T-cell rolling in inflamed CNS microvessels but dispensable for initiation of EAE. Eur J Immunol. 2014 Aug;44(8):2287–94.Horng S, Therattil A, Moyon S, Gordon A, Kim K, Argaw AT, et al. Astrocytic tight junctions control inflammatory CNS lesion pathogenesis. J Clin Invest. 2017 Aug 1;127(8):3136–51.Owens T, Bechmann I, Engelhardt B. Perivascular spaces and the two steps to neuroinflammation. J Neuropathol Exp Neurol. 2008 Dec;67(12):1113–21.Larochelle C, Cayrol R, Kebir H, Alvarez JI, Lécuyer MA, Ifergan I, et al. Melanoma cell adhesion molecule identifies encephalitogenic T lymphocytes and promotes their recruitment to the central nervous system. Brain. 2012 Oct;135(Pt 10):2906–24.Chen WW, Zhang X, Huang WJ. Role of neuroinflammation in neurodegenerative diseases (Review). Mol Med Rep [Internet]. 2016/02/29 ed. 2016 Apr;13(4):3391–6. Available from: https://www.ncbi.nlm.nih.gov/pubmed/26935478Norden DM, Trojanowski PJ, Villanueva E, Navarro E, Godbout JP. Sequential activation of microglia and astrocyte cytokine expression precedes increased Iba-1 or GFAP immunoreactivity following systemic immune challenge. Glia. 2016 Feb;64(2):300–16.Hirsch EC, Vyas S, Hunot S. Neuroinflammation in Parkinson’s disease. Parkinsonism Relat Disord [Internet]. 2012 Jan;18 Suppl 1:S210-2. Available from: https://www.ncbi.nlm.nih.gov/pubmed/22166438Heneka MT, Carson MJ, El Khoury J, Landreth GE, Brosseron F, Feinstein DL, et al. Neuroinflammation in Alzheimer’s disease. Lancet Neurol [Internet]. 2015 Apr;14(4):388–405. Available from: https://www.ncbi.nlm.nih.gov/pubmed/25792098Naegele M, Martin R. The good and the bad of neuroinflammation in multiple sclerosis. Handb Clin Neurol [Internet]. 2014;122:59–87. Available from: https://www.ncbi.nlm.nih.gov/pubmed/24507513Louveau A, Harris TH, Kipnis J. Revisiting the Mechanisms of CNS Immune Privilege. Trends Immunol. 2015 Oct;36(10):569–77.Erickson MA, Banks WA. Neuroimmune Axes of the Blood-Brain Barriers and Blood-Brain Interfaces: Bases for Physiological Regulation, Disease States, and Pharmacological Interventions. Pharmacol Rev. 2018 Apr;70(2):278–314.Louveau A, Plog BA, Antila S, Alitalo K, Nedergaard M, Kipnis J. Understanding the functions and relationships of the glymphatic system and meningeal lymphatics. J Clin Invest. 2017 Sep 1;127(9):3210–9.Glass CK, Saijo K, Winner B, Marchetto MC, Gage FH. Mechanisms underlying inflammation in neurodegeneration. Cell. 2010 Mar 19;140(6):918–34.Imeri L, Opp MR. How (and why) the immune system makes us sleep. Nat Rev Neurosci. 2009 Mar;10(3):199–210.Sroga JM, Jones TB, Kigerl KA, McGaughy VM, Popovich PG. Rats and mice exhibit distinct inflammatory reactions after spinal cord injury. J Comp Neurol. 2003 Jul 21;462(2):223–40.Streit WJ, Mrak RE, Griffin WS. Microglia and neuroinflammation: a pathological perspective. J Neuroinflammation [Internet]. 2004/07/30 ed. 2004 Jul;1(1):14. Available from: https://www.ncbi.nlm.nih.gov/pubmed/15285801Pieper C, Pieloch P, Galla HJ. Pericytes support neutrophil transmigration via interleukin-8 across a porcine co-culture model of the blood-brain barrier. Brain Res. 2013 Aug 2;1524:1–11.Kim DY, Zhang H, Park S, Kim Y, Bae CR, Kim YM, et al. CU06-1004 (endothelial dysfunction blocker) ameliorates astrocyte end-feet swelling by stabilizing endothelial cell junctions in cerebral ischemia/reperfusion injury. Journal of Molecular Medicine [Internet]. 2020;98(6):875–86. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85084653191&doi=10.1007%2fs00109-020-01920-z&partnerID=40&md5=8b1314b7d9e71b8ee774745ff11ab8bdGautam J, Xu L, Nirwane A, Nguyen B, Yao Y. Loss of mural cell-derived laminin aggravates hemorrhagic brain injury. J Neuroinflammation. 2020/04/08 ed. 2020 Apr 6;17(1):103.Zeng J, Zhào H, Liu Z, Zhang W, Huang Y. Lipopolysaccharide Induces Subacute Cerebral Microhemorrhages with Involvement of Nitric Oxide Synthase in Rats. Journal of Stroke and Cerebrovascular Diseases [Internet]. 2018;27(7):1905–13. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85044266841&doi=10.1016%2fj.jstrokecerebrovasdis.2018.02.044&partnerID=40&md5=26cea409ce4e07922816a716c1afcbd5Wolf SA, Boddeke HWGM, Kettenmann H. Microglia in Physiology and Disease. Annu Rev Physiol. 2017 Feb 10;79:619–43.Borst K, Dumas AA, Prinz M. Microglia: Immune and non-immune functions. Immunity. 2021 Oct 12;54(10):2194–208.Prinz M, Jung S, Priller J. Microglia Biology: One Century of Evolving Concepts. Cell. 2019 Oct 3;179(2):292–311.Schafer DP, Stevens B. Phagocytic glial cells: sculpting synaptic circuits in the developing nervous system. Curr Opin Neurobiol. 2013 Dec;23(6):1034–40.Orihuela R, McPherson CA, Harry GJ. Microglial M1/M2 polarization and metabolic states. Br J Pharmacol. 2016 Feb;173(4):649–65.Qin J, Ma Z, Chen X, Shu S. Microglia activation in central nervous system disorders: A review of recent mechanistic investigations and development efforts. Front Neurol. 2023;14:1103416.Shao F, Wang X, Wu H, Wu Q, Zhang J. Microglia and Neuroinflammation: Crucial Pathological Mechanisms in Traumatic Brain Injury-Induced Neurodegeneration. Front Aging Neurosci. 2022;14:825086.Zhou H, Lapointe BM, Clark SR, Zbytnuik L, Kubes P. A requirement for microglial TLR4 in leukocyte recruitment into brain in response to lipopolysaccharide. J Immunol. 2006 Dec 1;177(11):8103–10.Russo MV, McGavern DB. Immune Surveillance of the CNS following Infection and Injury. Trends Immunol. 2015 Oct;36(10):637–50.Davalos D, Grutzendler J, Yang G, Kim JV, Zuo Y, Jung S, et al. ATP mediates rapid microglial response to local brain injury in vivo. Nat Neurosci. 2005 Jun;8(6):752–8.Norden DM, Godbout JP. Review: microglia of the aged brain: primed to be activated and resistant to regulation. Neuropathol Appl Neurobiol. 2013 Feb;39(1):19–34.Colangelo AM, Alberghina L, Papa M. Astrogliosis as a therapeutic target for neurodegenerative diseases. Neurosci Lett. 2014 Apr 17;565:59–64.Robel S. Astroglial Scarring and Seizures: A Cell Biological Perspective on Epilepsy. Neuroscientist. 2017 Apr;23(2):152–68.Correale J, Farez MF. The Role of Astrocytes in Multiple Sclerosis Progression. Front Neurol. 2015;6:180.Brosnan CF, Raine CS. The astrocyte in multiple sclerosis revisited. Glia. 2013 Apr;61(4):453–65.Argaw AT, Gurfein BT, Zhang Y, Zameer A, John GR. VEGF-mediated disruption of endothelial CLN-5 promotes blood-brain barrier breakdown. Proc Natl Acad Sci U S A. 2009 Feb 10;106(6):1977–82.Avison MJ, Nath A, Greene-Avison R, Schmitt FA, Greenberg RN, Berger JR. Neuroimaging correlates of HIV-associated BBB compromise. J Neuroimmunol. 2004 Dec;157(1–2):140–6.Erickson MA, Banks WA. Blood-brain barrier dysfunction as a cause and consequence of Alzheimer’s disease. J Cereb Blood Flow Metab. 2013 Oct;33(10):1500–13.Takata F, Nakagawa S, Matsumoto J, Dohgu S. Blood-Brain Barrier Dysfunction Amplifies the Development of Neuroinflammation: Understanding of Cellular Events in Brain Microvascular Endothelial Cells for Prevention and Treatment of BBB Dysfunction. Frontiers in Cellular Neuroscience [Internet]. 2021 [cited 2023 Mar 12];15. Available from: https://www.frontiersin.org/articles/10.3389/fncel.2021.661838Chan Y, Chen W, Wan W, Chen Y, Li Y, Zhang C. Aβ1–42 oligomer induces alteration of tight junction scaffold proteins via RAGE-mediated autophagy in bEnd.3 cells. Experimental Cell Research [Internet]. 2018 Aug 15 [cited 2024 Oct 21];369(2):266–74. Available from: https://www.sciencedirect.com/science/article/pii/S0014482718302969Cuevas E, Rosas-Hernandez H, Burks SM, Ramirez-Lee MA, Guzman A, Imam SZ, et al. Amyloid Beta 25–35 induces blood-brain barrier disruption in vitro. Metab Brain Dis [Internet]. 2019 Oct 1 [cited 2023 Sep 30];34(5):1365–74. Available from: https://doi.org/10.1007/s11011-019-00447-8Chitnis T, Weiner HL. CNS inflammation and neurodegeneration. J Clin Invest. 2017 Oct 2;127(10):3577–87Liddelow SA, Guttenplan KA, Clarke LE, Bennett FC, Bohlen CJ, Schirmer L, et al. Neurotoxic reactive astrocytes are induced by activated microglia. Nature. 2017 Jan 26;541(7638):481–7.Saini V, Guada L, Yavagal DR. Global Epidemiology of Stroke and Access to Acute Ischemic Stroke Interventions. Neurology. 2021 Nov 16;97(20 Suppl 2):S6–16.Heo JH, Han SW, Lee SK. Free radicals as triggers of brain edema formation after stroke. Free Radic Biol Med. 2005 Jul 1;39(1):51–70.Yang C, Hawkins KE, Doré S, Candelario-Jalil E. Neuroinflammatory mechanisms of blood-brain barrier damage in ischemic stroke. Am J Physiol Cell Physiol. 2019 Feb 1;316(2):C135–53.Nian K, Harding IC, Herman IM, Ebong EE. Blood-Brain Barrier Damage in Ischemic Stroke and Its Regulation by Endothelial Mechanotransduction. Front Physiol. 2020;11:605398.Sladojevic N, Stamatovic SM, Johnson AM, Choi J, Hu A, Dithmer S, et al. Claudin-1-Dependent Destabilization of the Blood–Brain Barrier in Chronic Stroke. J Neurosci [Internet]. 2019 Jan 23 [cited 2024 Oct 21];39(4):743–57. Available from: https://www.jneurosci.org/content/39/4/743Scheltens P, De Strooper B, Kivipelto M, Holstege H, Chételat G, Teunissen CE, et al. Alzheimer’s disease. Lancet. 2021 Apr 24;397(10284):1577–90.Erkkinen MG, Kim MO, Geschwind MD. Clinical Neurology and Epidemiology of the Major Neurodegenerative Diseases. Cold Spring Harb Perspect Biol. 2018 Apr 2;10(4):a033118.Trejo-Lopez JA, Yachnis AT, Prokop S. Neuropathology of Alzheimer’s Disease. Neurotherapeutics. 2022 Jan;19(1):173–85.Guerreiro R, Hardy J. Genetics of Alzheimer’s disease. Neurotherapeutics. 2014 Oct;11(4):732–7.Sun YY, Wang Z, Huang HC. Roles of ApoE4 on the Pathogenesis in Alzheimer’s Disease and the Potential Therapeutic Approaches. Cell Mol Neurobiol. 2023 Oct;43(7):3115–36.Lee ST, Chu K, Jung KH, Park HK, Kim DH, Bahn JJ, et al. Reduced circulating angiogenic cells in Alzheimer disease. Neurology. 2009 May 26;72(21):1858–63.Solé M, Miñano-Molina AJ, Unzeta M. Cross-talk between Aβ and endothelial SSAO/VAP-1 accelerates vascular damage and Aβ aggregation related to CAA-AD. Neurobiol Aging. 2015 Feb;36(2):762–75.Sun E, Motolani A, Campos L, Lu T. The Pivotal Role of NF-kB in the Pathogenesis and Therapeutics of Alzheimer’s Disease. Int J Mol Sci. 2022 Aug 11;23(16):8972.Simon DK, Tanner CM, Brundin P. Parkinson Disease Epidemiology, Pathology, Genetics, and Pathophysiology. Clin Geriatr Med. 2020 Feb;36(1):1–12.Cerri S, Mus L, Blandini F. Parkinson’s Disease in Women and Men: What’s the Difference? Journal of Parkinson’s Disease [Internet]. 2019 Jan 1 [cited 2024 Oct 21];9(3):501–15. Available from: https://content.iospress.com/articles/journal-of-parkinsons-disease/jpd191683Bloem BR, Okun MS, Klein C. Parkinson’s disease. Lancet. 2021 Jun 12;397(10291):2284–303.Ascherio A, Schwarzschild MA. The epidemiology of Parkinson’s disease: risk factors and prevention. Lancet Neurol. 2016 Nov;15(12):1257–72.Jankovic J, Tan EK. Parkinson’s disease: etiopathogenesis and treatment. J Neurol Neurosurg Psychiatry [Internet]. 2020 Aug 1 [cited 2024 Oct 21];91(8):795–808. Available from: https://jnnp.bmj.com/content/91/8/795Cacabelos R. Parkinson’s Disease: From Pathogenesis to Pharmacogenomics. International Journal of Molecular Sciences [Internet]. 2017 Mar [cited 2024 Oct 21];18(3):551. Available from: https://www.mdpi.com/1422-0067/18/3/551Spillantini MG, Schmidt ML, Lee VMY, Trojanowski JQ, Jakes R, Goedert M. α-Synuclein in Lewy bodies. Nature [Internet]. 1997 Aug [cited 2024 Oct 21];388(6645):839–40. Available from: https://www.nature.com/articles/42166Deas E, Cremades N, Angelova PR, Ludtmann MHR, Yao Z, Chen S, et al. Alpha-Synuclein Oligomers Interact with Metal Ions to Induce Oxidative Stress and Neuronal Death in Parkinson’s Disease. Antioxid Redox Signal. 2016 Mar 1;24(7):376–91.Bendor JT, Logan TP, Edwards RH. The function of α-synuclein. Neuron. 2013 Sep 18;79(6):1044–66.Rocha EM, De Miranda B, Sanders LH. Alpha-synuclein: Pathology, mitochondrial dysfunction and neuroinflammation in Parkinson’s disease. Neurobiology of Disease [Internet]. 2018 Jan 1 [cited 2024 Oct 21];109:249–57. Available from: https://www.sciencedirect.com/science/article/pii/S0969996117300803Zheng H, Wang T, Shi C, Fan L, Su Y, Fan Y, et al. Increased PRR14 and VCAM-1 level in serum of patients with Parkinson’s disease. Front Neurol. 2022;13:993940.Perner C, Perner F, Gaur N, Zimmermann S, Witte OW, Heidel FH, et al. Plasma VCAM1 levels correlate with disease severity in Parkinson’s disease. Journal of Neuroinflammation [Internet]. 2019 May 8 [cited 2024 Oct 21];16(1):94. Available from: https://doi.org/10.1186/s12974-019-1482-8Kim H, Shin JY, Lee YS, Yun SP, Maeng HJ, Lee Y. Brain Endothelial P-Glycoprotein Level Is Reduced in Parkinson’s Disease via a Vitamin D Receptor-Dependent Pathway. International Journal of Molecular Sciences [Internet]. 2020 Jan [cited 2024 Oct 21];21(22):8538. Available from: https://www.mdpi.com/1422-0067/21/22/8538Herrera AJ, Tomás-Camardiel M, Venero JL, Cano J, Machado A. Inflammatory process as a determinant factor for the degeneration of substantia nigra dopaminergic neurons. J Neural Transm (Vienna). 2005 Jan;112(1):111–9.García-Domínguez I, Veselá K, García-Revilla J, Carrillo-Jiménez A, Roca-Ceballos MA, Santiago M, et al. Peripheral Inflammation Enhances Microglia Response and Nigral Dopaminergic Cell Death in an in vivo MPTP Model of Parkinson’s Disease. Front Cell Neurosci [Internet]. 2018 Nov 6 [cited 2024 Oct 21];12. Available from: https://www.frontiersin.org/journals/cellular-neuroscience/articles/10.3389/fncel.2018.00398/fullLi W, Chen S, Luo Y, Xia Y, Ma Q, Yao Q, et al. Interaction between ICAM1 in endothelial cells and LFA1 in T cells during the pathogenesis of experimental Parkinson’s disease. Exp Ther Med. 2020 Aug;20(2):1021–9.Miklossy J, Doudet DD, Schwab C, Yu S, McGeer EG, McGeer PL. Role of ICAM-1 in persisting inflammation in Parkinson disease and MPTP monkeys. Exp Neurol. 2006 Feb;197(2):275–83.Marogianni C, Sokratous M, Dardiotis E, Hadjigeorgiou GM, Bogdanos D, Xiromerisiou G. Neurodegeneration and Inflammation—An Interesting Interplay in Parkinson’s Disease. International Journal of Molecular Sciences [Internet]. 2020 Jan [cited 2024 Oct 21];21(22):8421. Available from: https://www.mdpi.com/1422-0067/21/22/8421Imamura K, Hishikawa N, Ono K, Suzuki H, Sawada M, Nagatsu T, et al. Cytokine production of activated microglia and decrease in neurotrophic factors of neurons in the hippocampus of Lewy body disease brains. Acta Neuropathol. 2005 Feb;109(2):141–50.Calvani R, Picca A, Landi G, Marini F, Biancolillo A, Coelho-Junior HJ, et al. A novel multi-marker discovery approach identifies new serum biomarkers for Parkinson’s disease in older people: an EXosomes in PArkiNson Disease (EXPAND) ancillary study. GeroScience [Internet]. 2020 Oct 1 [cited 2024 Oct 21];42(5):1323–34. Available from: https://doi.org/10.1007/s11357-020-00192-2Dogra N, Mani RJ, Katare DP. The Gut-Brain Axis: Two Ways Signaling in Parkinson’s Disease. Cell Mol Neurobiol [Internet]. 2022 Mar 1 [cited 2024 Oct 21];42(2):315–32. Available from: https://doi.org/10.1007/s10571-021-01066-7Tan AH, Lim SY, Lang AE. The microbiome–gut–brain axis in Parkinson disease — from basic research to the clinic. Nat Rev Neurol [Internet]. 2022 Aug [cited 2024 Oct 21];18(8):476–95. Available from: https://www.nature.com/articles/s41582-022-00681-2Mou Y, Du Y, Zhou L, Yue J, Hu X, Liu Y, et al. Gut Microbiota Interact With the Brain Through Systemic Chronic Inflammation: Implications on Neuroinflammation, Neurodegeneration, and Aging. Front Immunol. 2022;13:796288.Claudino Dos Santos JC, Lima MPP, Brito GA de C, Viana GS de B. Role of enteric glia and microbiota-gut-brain axis in parkinson disease pathogenesis. Ageing Res Rev. 2023 Feb;84:101812.Sá MJ. Physiopathology of symptoms and signs in multiple sclerosis. Arq Neuropsiquiatr. 2012 Sep;70(9):733–40.Dobson R, Giovannoni G. Multiple sclerosis - a review. Eur J Neurol. 2019 Jan;26(1):27–40.Jakimovski D, Bittner S, Zivadinov R, Morrow SA, Benedict RH, Zipp F, et al. Multiple sclerosis. Lancet. 2024 Jan 13;403(10422):183–202.Pierson E, Simmons SB, Castelli L, Goverman JM. Mechanisms regulating regional localization of inflammation during CNS autoimmunity. Immunol Rev. 2012 Jul;248(1):205–15.Solomon AJ, Arrambide G, Brownlee WJ, Flanagan EP, Amato MP, Amezcua L, et al. Differential diagnosis of suspected multiple sclerosis: an updated consensus approach. Lancet Neurol. 2023 Aug;22(8):750–68.Achiron A, Dreyer-Alster S, Gurevich M, Menascu S, Magalashvili D, Dolev M, et al. Definitions of primary-progressive multiple sclerosis trajectories by rate of clinical disability progression. Multiple Sclerosis and Related Disorders [Internet]. 2021 May 1 [cited 2024 Oct 22];50. Available from: https://www.msard-journal.com/article/S2211-0348(21)00080-8/abstractKlineova S, Lublin FD. Clinical Course of Multiple Sclerosis. Cold Spring Harb Perspect Med. 2018 Sep 4;8(9):a028928.Oh J, Vidal-Jordana A, Montalban X. Multiple sclerosis: clinical aspects. Curr Opin Neurol. 2018 Dec;31(6):752–9.Papiri G, D’Andreamatteo G, Cacchiò G, Alia S, Silvestrini M, Paci C, et al. Multiple Sclerosis: Inflammatory and Neuroglial Aspects. Curr Issues Mol Biol. 2023 Feb 8;45(2):1443–70.Balasa R, Barcutean L, Mosora O, Manu D. Reviewing the Significance of Blood-Brain Barrier Disruption in Multiple Sclerosis Pathology and Treatment. Int J Mol Sci. 2021 Aug 4;22(16):8370.Bennett J, Basivireddy J, Kollar A, Biron KE, Reickmann P, Jefferies WA, et al. Blood–brain barrier disruption and enhanced vascular permeability in the multiple sclerosis model EAE. Journal of Neuroimmunology [Internet]. 2010 Dec 15 [cited 2021 Nov 15];229(1):180–91. Available from: https://www.sciencedirect.com/science/article/pii/S0165572810003759Fabis MJ, Scott GS, Kean RB, Koprowski H, Hooper DC. Loss of blood–brain barrier integrity in the spinal cord is common to experimental allergic encephalomyelitis in knockout mouse models. PNAS [Internet]. 2007 Mar 27 [cited 2021 Nov 15];104(13):5656–61. Available from: https://www.pnas.org/content/104/13/5656Alvarez JI, Saint-Laurent O, Godschalk A, Terouz S, Briels C, Larouche S, et al. Focal disturbances in the blood–brain barrier are associated with formation of neuroinflammatory lesions. Neurobiology of Disease [Internet]. 2015 Feb 1 [cited 2021 Nov 15];74:14–24. Available from: https://www.sciencedirect.com/science/article/pii/S0969996114002885Deane R, LaRue B, Sagare AP, Castellino FJ, Zhong Z, Zlokovic BV. Endothelial Protein C Receptor-Assisted Transport of Activated Protein C across the Mouse Blood—Brain Barrier. J Cereb Blood Flow Metab [Internet]. 2009 Jan 1 [cited 2024 Oct 22];29(1):25–33. Available from: https://doi.org/10.1038/jcbfm.2008.117Nagtegaal MA, Hermann I, Weingärtner S, Martinez-Heras E, Solana E, Llufriu S, et al. White matter changes measured by multi-component MR Fingerprinting in multiple sclerosis. NeuroImage: Clinical [Internet]. 2023 Jan 1 [cited 2024 Oct 22];40:103528. Available from: https://www.sciencedirect.com/science/article/pii/S221315822300219XFloris S, Goes A van der, Killestein J, Knol DL, Barkhof F, Polman CH, et al. Monocyte activation and disease activity in multiple sclerosis. A longitudinal analysis of serum MRP8/14 levels. Journal of Neuroimmunology [Internet]. 2004 Mar 1 [cited 2021 Nov 15];148(1):172–7. Available from: https://www.jni-journal.com/article/S0165-5728(03)00495-8/fulltextEl-behi M, Rostami A, Ciric B. Current views on the roles of Th1 and Th17 cells in experimental autoimmune encephalomyelitis. J Neuroimmune Pharmacol. 2010 Jun;5(2):189–97.Brucklacher-Waldert V, Stuerner K, Kolster M, Wolthausen J, Tolosa E. Phenotypical and functional characterization of T helper 17 cells in multiple sclerosis. Brain. 2009 Dec;132(Pt 12):3329–41.Jadidi-Niaragh F, Mirshafiey A. Th17 cell, the new player of neuroinflammatory process in multiple sclerosis. Scand J Immunol. 2011 Jul;74(1):1–13.Segal BM. Stage-specific immune dysregulation in multiple sclerosis. J Interferon Cytokine Res. 2014 Aug;34(8):633–40.Wang K, Song F, Fernandez-Escobar A, Luo G, Wang JH, Sun Y. The Properties of Cytokines in Multiple Sclerosis: Pros and Cons. Am J Med Sci. 2018 Dec;356(6):552–60.Constantinescu CS, Farooqi N, O’Brien K, Gran B. Experimental autoimmune encephalomyelitis (EAE) as a model for multiple sclerosis (MS). Br J Pharmacol [Internet]. 2011 Oct [cited 2021 Nov 15];164(4):1079–106. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3229753/Filippi M, Dousset V, McFarland HF, Miller DH, Grossman RI. Role of magnetic resonance imaging in the diagnosis and monitoring of multiple sclerosis: consensus report of the White Matter Study Group. J Magn Reson Imaging. 2002 May;15(5):499–504.Ford H. Clinical presentation and diagnosis of multiple sclerosis. Clin Med (Lond). 2020 Jul;20(4):380–3.Wattjes MP, Ciccarelli O, Reich DS, Banwell B, Stefano N de, Enzinger C, et al. 2021 MAGNIMS–CMSC–NAIMS consensus recommendations on the use of MRI in patients with multiple sclerosis. The Lancet Neurology [Internet]. 2021 Aug 1 [cited 2024 Oct 22];20(8):653–70. Available from: https://www.thelancet.com/journals/laneur/article/PIIS1474-4422(21)00095-8/abstractWaubant E. Biomarkers indicative of blood-brain barrier disruption in multiple sclerosis. Dis Markers. 2006;22(4):235–44.Claudio L, Raine CS, Brosnan CF. Evidence of persistent blood-brain barrier abnormalities in chronic-progressive multiple sclerosis. Acta Neuropathol. 1995;90(3):228–38.Olsson A, Gustavsen S, Langkilde AR, Hansen TH, Sellebjerg F, Bach Søndergaard H, et al. Circulating levels of tight junction proteins in multiple sclerosis: Association with inflammation and disease activity before and after disease modifying therapy. Mult Scler Relat Disord. 2021 Sep;54:103136.Camara-Lemarroy CR, Silva C, Greenfield J, Liu WQ, Metz LM, Yong VW. Biomarkers of intestinal barrier function in multiple sclerosis are associated with disease activity. Mult Scler. 2020 Oct;26(11):1340–50.Alruwaili M, Al-Kuraishy HM, Alexiou A, Papadakis M, ALRashdi BM, Elhussieny O, et al. Pathogenic Role of Fibrinogen in the Neuropathology of Multiple Sclerosis: A Tale of Sorrows and Fears. Neurochem Res. 2023 Nov;48(11):3255–69.Lutz SE, Smith JR, Kim DH, Olson CVL, Ellefsen K, Bates JM, et al. Caveolin1 Is Required for Th1 Cell Infiltration, but Not Tight Junction Remodeling, at the Blood-Brain Barrier in Autoimmune Neuroinflammation. Cell Rep. 2017 Nov 21;21(8):2104–17.Paul D, Cowan AE, Ge S, Pachter JS. Novel 3D analysis of Claudin-5 reveals significant endothelial heterogeneity among CNS microvessels. Microvasc Res. 2013 Mar;86:1–10.Waubant E, Goodkin DE, Gee L, Bacchetti P, Sloan R, Stewart T, et al. Serum MMP-9 and TIMP-1 levels are related to MRI activity in relapsing multiple sclerosis. Neurology. 1999 Oct 22;53(7):1397–401.Avolio C, Ruggieri M, Giuliani F, Liuzzi GM, Leante R, Riccio P, et al. Serum MMP-2 and MMP-9 are elevated in different multiple sclerosis subtypes. J Neuroimmunol. 2003 Mar;136(1–2):46–53.Koleganova N, Piecha G, Ritz E, Bekeredjian R, Schirmacher P, Schmitt CP, et al. Interstitial fibrosis and microvascular disease of the heart in uremia: amelioration by a calcimimetic. Laboratory Investigation [Internet]. 2009 May 1 [cited 2023 Sep 30];89(5):520–30. Available from: https://www.laboratoryinvestigation.org/article/S0023-6837(22)02217-6/fulltextZhao Q, Zhang J, Li H, Li H, Xie F. Models of traumatic brain injury-highlights and drawbacks. Front Neurol. 2023;14:1151660.Buras JA, Holzmann B, Sitkovsky M. Animal models of sepsis: setting the stage. Nat Rev Drug Discov. 2005 Oct;4(10):854–65.Hoogland ICM, Houbolt C, van Westerloo DJ, van Gool WA, van de Beek D. Systemic inflammation and microglial activation: systematic review of animal experiments. J Neuroinflammation. 2015 Jun 6;12:114.Drummond E, Wisniewski T. Alzheimer’s disease: experimental models and reality. Acta Neuropathol. 2017 Feb;133(2):155–75.Heuer E, Rosen RF, Cintron A, Walker LC. Nonhuman primate models of Alzheimer-like cerebral proteopathy. Curr Pharm Des. 2012;18(8):1159–69.Torre-Fuentes L, Moreno-Jiménez L, Pytel V, Matías-Guiu JA, Gómez-Pinedo U, Matías-Guiu J. Experimental models of demyelination and remyelination. Neurologia (Engl Ed). 2020;35(1):32–9.Zhao J, Bi W, Xiao S, Lan X, Cheng X, Zhang J, et al. Neuroinflammation induced by lipopolysaccharide causes cognitive impairment in mice. Sci Rep [Internet]. 2019 Apr 8 [cited 2024 Oct 22];9(1):5790. Available from: https://www.nature.com/articles/s41598-019-42286-8Beutler B. Tlr4: central component of the sole mammalian LPS sensor. Curr Opin Immunol. 2000 Feb;12(1):20–6.Lehnardt S, Lachance C, Patrizi S, Lefebvre S, Follett PL, Jensen FE, et al. The Toll-Like Receptor TLR4 Is Necessary for Lipopolysaccharide-Induced Oligodendrocyte Injury in the CNS. J Neurosci [Internet]. 2002 Apr 1 [cited 2024 Oct 22];22(7):2478–86. Available from: https://www.jneurosci.org/content/22/7/2478Shen Y, Qin H, Chen J, Mou L, He Y, Yan Y, et al. Postnatal activation of TLR4 in astrocytes promotes excitatory synaptogenesis in hippocampal neurons. J Cell Biol. 2016 Dec 5;215(5):719–34.Mrak RE, Griffin WST. Glia and their cytokines in progression of neurodegeneration. Neurobiol Aging. 2005 Mar;26(3):349–54.Layé S, Parnet P, Goujon E, Dantzer R. Peripheral administration of lipopolysaccharide induces the expression of cytokine transcripts in the brain and pituitary of mice. Brain Res Mol Brain Res. 1994 Nov;27(1):157–62.Sheng JG, Bora SH, Xu G, Borchelt DR, Price DL, Koliatsos VE. Lipopolysaccharide-induced-neuroinflammation increases intracellular accumulation of amyloid precursor protein and amyloid beta peptide in APPswe transgenic mice. Neurobiol Dis. 2003 Oct;14(1):133–45.Qin L, Wu X, Block ML, Liu Y, Breese GR, Hong JS, et al. Systemic LPS causes chronic neuroinflammation and progressive neurodegeneration. Glia. 2007 Apr 1;55(5):453–62.Kitazawa M, Oddo S, Yamasaki TR, Green KN, LaFerla FM. Lipopolysaccharide-induced inflammation exacerbates tau pathology by a cyclin-dependent kinase 5-mediated pathway in a transgenic model of Alzheimer’s disease. J Neurosci. 2005 Sep 28;25(39):8843–53.Yang L, Zhou R, Tong Y, Chen P, Shen Y, Miao S, et al. Neuroprotection by dihydrotestosterone in LPS-induced neuroinflammation. Neurobiol Dis. 2020 Jul;140:104814.Knirel YA, Anisimov AP, Kislichkina AA, Kondakova AN, Bystrova OV, Vagaiskaya AS, et al. Lipopolysaccharide of the Yersinia pseudotuberculosis Complex. Biomolecules. 2021 Sep 26;11(10):1410.Mazgaeen L, Gurung P. Recent Advances in Lipopolysaccharide Recognition Systems. Int J Mol Sci. 2020 Jan 7;21(2):379.Gern OL, Mulenge F, Pavlou A, Ghita L, Steffen I, Stangel M, et al. Toll-like Receptors in Viral Encephalitis. Viruses. 2021 Oct 14;13(10):2065.Garcia-Vello P, Di Lorenzo F, Zucchetta D, Zamyatina A, De Castro C, Molinaro A. Lipopolysaccharide lipid A: A promising molecule for new immunity-based therapies and antibiotics. Pharmacol Ther. 2022 Feb;230:107970.Leitner GR, Wenzel TJ, Marshall N, Gates EJ, Klegeris A. Targeting toll-like receptor 4 to modulate neuroinflammation in central nervous system disorders. Expert Opin Ther Targets. 2019 Oct;23(10):865–82.Mitra A, Ahuja A, Rahmawati L, Kim HG, Woo BY, Hong YD, et al. Caragana rosea Turcz Methanol Extract Inhibits Lipopolysaccharide-Induced Inflammatory Responses by Suppressing the TLR4/NF-κB/IRF3 Signaling Pathways. Molecules. 2021 Nov 3;26(21):6660.Skrzypczak-Wiercioch A, Sałat K. Lipopolysaccharide-Induced Model of Neuroinflammation: Mechanisms of Action, Research Application and Future Directions for Its Use. Molecules [Internet]. 2022 Aug 26 [cited 2024 Oct 22];27(17):5481. Available from: https://pmc.ncbi.nlm.nih.gov/articles/PMC9457753/Zeng ML, Cheng JJ, Kong S, Yang XL, Jia XL, Cheng XL, et al. Inhibition of Transient Receptor Potential Vanilloid 4 (TRPV4) Mitigates Seizures. Neurotherapeutics. 2022 Mar;19(2):660–81.Smith AP, Creagh EM. Caspase-4 and -5 Biology in the Pathogenesis of Inflammatory Bowel Disease. Front Pharmacol [Internet]. 2022 May 31 [cited 2024 Oct 22];13. Available from: https://www.frontiersin.org/journals/pharmacology/articles/10.3389/fphar.2022.919567/fullLykhmus O, Mishra N, Koval L, Kalashnyk O, Gergalova G, Uspenska K, et al. Molecular Mechanisms Regulating LPS-Induced Inflammation in the Brain. Front Mol Neurosci. 2016;9:19.Noh H, Jeon J, Seo H. Systemic injection of LPS induces region-specific neuroinflammation and mitochondrial dysfunction in normal mouse brain. Neurochem Int. 2014 Apr;69:35–40.Craft JM, Watterson DM, Van Eldik LJ. Human amyloid beta-induced neuroinflammation is an early event in neurodegeneration. Glia. 2006 Apr 1;53(5):484–90.Nazem A, Sankowski R, Bacher M, Al-Abed Y. Rodent models of neuroinflammation for Alzheimer’s disease. J Neuroinflammation. 2015 Apr 17;12:74.Meseguer V, Alpizar YA, Luis E, Tajada S, Denlinger B, Fajardo O, et al. TRPA1 channels mediate acute neurogenic inflammation and pain produced by bacterial endotoxins. Nat Commun. 2014;5:3125.Batista CRA, Gomes GF, Candelario-Jalil E, Fiebich BL, de Oliveira ACP. Lipopolysaccharide-Induced Neuroinflammation as a Bridge to Understand Neurodegeneration. Int J Mol Sci. 2019 May 9;20(9):2293.Batista CRA, Gomes GF, Candelario-Jalil E, Fiebich BL, de Oliveira ACP. Lipopolysaccharide-Induced Neuroinflammation as a Bridge to Understand Neurodegeneration. Int J Mol Sci. 2019 May 9;20(9):2293.Deng I, Bobrovskaya L. Lipopolysaccharide mouse models for Parkinson’s disease research: a critical appraisal. Neural Regen Res. 2022 Nov;17(11):2413–7.Rojas OL, Pröbstel AK, Porfilio EA, Wang AA, Charabati M, Sun T, et al. Recirculating Intestinal IgA-Producing Cells Regulate Neuroinflammation via IL-10. Cell. 2019 Jan 24;176(3):610-624.e18.Inglis HR, Greer JM, McCombe PA. Gene Expression in the Spinal Cord in Female Lewis Rats with Experimental Autoimmune Encephalomyelitis Induced with Myelin Basic Protein. PLOS ONE [Internet]. 2012 Nov 6 [cited 2024 Oct 22];7(11):e48555. Available from: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0048555Sriram S, Steiner I. Experimental allergic encephalomyelitis: A misleading model of multiple sclerosis. Annals of Neurology [Internet]. 2005 [cited 2024 Oct 22];58(6):939–45. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1002/ana.20743Kurkowska-Jastrzębska I, Swiątkiewicz M, Zaremba M, Cudna A, Piechal A, Pyrzanowska J, et al. Neurodegeneration and inflammation in hippocampus in experimental autoimmune encephalomyelitis induced in rats by one--time administration of encephalitogenic T cells. Neuroscience. 2013 Sep 17;248:690–8.Stepaniak JA, Gould KE, Sun D, Swanborg RH. A comparative study of experimental autoimmune encephalomyelitis in Lewis and DA rats. J Immunol. 1995 Sep 1;155(5):2762–9.Stosic-Grujicic S, Ramic Z, Bumbasirevic V, Harhaji L, Mostarica-Stojkovic M. Induction of experimental autoimmune encephalomyelitis in Dark Agouti rats without adjuvant. Clinical & Experimental Immunology [Internet]. 2004 [cited 2024 Oct 22];136(1):49–55. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-2249.2004.02418.xPitarokoili K, Ambrosius B, Gold R. Lewis Rat Model of Experimental Autoimmune Encephalomyelitis. Curr Protoc Neurosci. 2017 Oct 23;81:9.61.1-9.61.20.Silva RV, Morr AS, Herthum H, Koch SP, Mueller S, Batzdorf CS, et al. Cortical matrix remodeling as a hallmark of relapsing–remitting neuroinflammation in MR elastography and quantitative MRI. Acta Neuropathologica [Internet]. 2024 Jan 4 [cited 2024 Oct 22];147(1):8. Available from: https://pmc.ncbi.nlm.nih.gov/articles/PMC10766667/Huntemann N, Vogelsang A, Groeneweg L, Willison A, Herrmann AM, Meuth SG, et al. An optimized and validated protocol for inducing chronic experimental autoimmune encephalomyelitis in C57BL/6J mice. J Neurosci Methods. 2022 Feb 1;367:109443.Hughes RA, Stedronska J. The susceptibility of rat strains to experimental allergic encephalomyelitis. Immunology. 1973 May;24(5):879–84.Engelhardt B, Coisne C. Fluids and barriers of the CNS establish immune privilege by confining immune surveillance to a two-walled castle moat surrounding the CNS castle. Fluids Barriers CNS. 2011 Jan 18;8(1):4.Stromnes IM, Goverman JM. Active induction of experimental allergic encephalomyelitis. Nat Protoc. 2006;1(4):1810–9.Alvord EC, Driscoll BF, Kies MW. Large subpial plaques of demyelination in a new form of chronic experimental allergic encephalomyelitis in the guinea pig. Neurochem Pathol. 1985;3(3):195–214.Raine CS, Wiśniewski HM, Iqbal K, Grundkeiqbal I, Norton WT. Studies on the encephalitogenic effects of purified preparations of human and bovine oligodendrocytes. Brain Res. 1977 Jan 21;120(2):269–86.Stromnes IM, Goverman JM. Passive induction of experimental allergic encephalomyelitis. Nat Protoc. 2006;1(4):1952–60.Day MJ. Histopathology of EAE. In: Lavi E, Constantinescu CS, editors. Experimental Models of Multiple Sclerosis [Internet]. Boston, MA: Springer US; 2005 [cited 2024 Oct 22]. p. 25–43. Available from: https://doi.org/10.1007/0-387-25518-4_3Bannerman PG, Hahn A, Ramirez S, Morley M, Bönnemann C, Yu S, et al. Motor neuron pathology in experimental autoimmune encephalomyelitis: studies in THY1-YFP transgenic mice. Brain. 2005 Aug;128(Pt 8):1877–86.McRae BL, Vanderlugt CL, Dal Canto MC, Miller SD. Functional evidence for epitope spreading in the relapsing pathology of experimental autoimmune encephalomyelitis. J Exp Med. 1995 Jul 1;182(1):75–85.Tanuma N, Shin T, Matsumoto Y. Characterization of acute versus chronic relapsing autoimmune encephalomyelitis in DA rats. J Neuroimmunol. 2000 Aug 1;108(1–2):171–80.Tognarelli JM, Dawood M, Shariff MIF, Grover VPB, Crossey MME, Cox IJ, et al. Magnetic Resonance Spectroscopy: Principles and Techniques: Lessons for Clinicians. J Clin Exp Hepatol. 2015 Dec;5(4):320–8.Wood R, Bassett K, Foerster null, Spry C, Tong L. 1.5 tesla magnetic resonance imaging scanners compared with 3.0 tesla magnetic resonance imaging scanners: systematic review of clinical effectiveness. CADTH Technol Overv. 2012;2(2):e2201.Versace A, Hitchens TK, Wallace CT, Watkins SC, D’Aiuto L. 11.7T Diffusion Magnetic Resonance Imaging and Tractography to Probe Human Brain Organoid Microstructure. Biol Psychiatry Glob Open Sci. 2024 Sep;4(5):100344.Riedl KA, Kampf T, Herold V, Behr VC, Bauer WR. Wall shear stress analysis using 17.6 Tesla MRI: A longitudinal study in ApoE-/- mice with histological analysis. PLoS One. 2020;15(8):e0238112.Mukhatov A, Le TA, Pham TT, Do TD. A comprehensive review on magnetic imaging techniques for biomedical applications. Nano Select [Internet]. 2023 [cited 2024 Oct 22];4(3):213–30. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1002/nano.202200219Keeler J, Morris FRS GA. Ray Freeman. 6 January 1932—1 May 2022. Biographical Memoirs of Fellows of the Royal Society [Internet]. 2024 Jan 10 [cited 2024 Oct 22];76:201–20. Available from: https://royalsocietypublishing.org/doi/10.1098/rsbm.2023.0026Lauterbur PC. Image Formation by Induced Local Interactions: Examples Employing Nuclear Magnetic Resonance. Nature [Internet]. 1973 Mar [cited 2024 Oct 22];242(5394):190–1. Available from: https://www.nature.com/articles/242190a0Rahman M. Magnetic Resonance Imaging and Iron-oxide Nanoparticles in the era of Personalized Medicine. Nanotheranostics. 2023;7(4):424–49.Kwok WE. Basic Principles of and Practical Guide to Clinical MRI Radiofrequency Coils. Radiographics. 2022;42(3):898–918.Minhas AS, Oliver R. Magnetic Resonance Imaging Basics. Adv Exp Med Biol. 2022;1380:47–82.Grover VPB, Tognarelli JM, Crossey MME, Cox IJ, Taylor-Robinson SD, McPhail MJW. Magnetic Resonance Imaging: Principles and Techniques: Lessons for Clinicians. J Clin Exp Hepatol. 2015 Sep;5(3):246–55.Yan GP, Robinson L, Hogg P. Magnetic resonance imaging contrast agents: Overview and perspectives. Radiography [Internet]. 2007 Dec 1 [cited 2024 Oct 22];13:e5–19. Available from: https://www.radiographyonline.com/article/S1078-8174(06)00088-5/abstractAlzola-Aldamizetxebarria S, Fernández-Méndez L, Padro D, Ruíz-Cabello J, Ramos-Cabrer P. A Comprehensive Introduction to Magnetic Resonance Imaging Relaxometry and Contrast Agents. ACS Omega [Internet]. 2022 Oct 13 [cited 2024 Oct 22];7(42):36905. Available from: https://pmc.ncbi.nlm.nih.gov/articles/PMC9609087/Xiao YD, Paudel R, Liu J, Ma C, Zhang ZS, Zhou SK. MRI contrast agents: Classification and application (Review). Int J Mol Med. 2016 Nov;38(5):1319–26.Ibrahim MA, Hazhirkarzar B, Dublin AB. Gadolinium Magnetic Resonance Imaging. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024 [cited 2024 Oct 22]. Available from: http://www.ncbi.nlm.nih.gov/books/NBK482487/Liu Z, Cai J, Su H, Yang J, Sun W, Ma Y, et al. Feasibility of USPIOs for T1-weighted MR molecular imaging of tumor receptors. RSC Adv [Internet]. 2017 Jun 16 [cited 2022 Nov 8];7(50):31671–81. Available from: https://pubs.rsc.org/en/content/articlelanding/2017/ra/c7ra04903jBurtea C, Ballet S, Laurent S, Rousseaux O, Dencausse A, Gonzalez W, et al. Development of a magnetic resonance imaging protocol for the characterization of atherosclerotic plaque by using vascular cell adhesion molecule-1 and apoptosis-targeted ultrasmall superparamagnetic iron oxide derivatives. Arterioscler Thromb Vasc Biol. 2012 Jun;32(6):e36-48.Neema M, Stankiewicz J, Arora A, Dandamudi VSR, Batt CE, Guss ZD, et al. T1- and T2-based MRI measures of diffuse gray matter and white matter damage in patients with multiple sclerosis. J Neuroimaging. 2007 Apr;17 Suppl 1:16S-21S.Lv J, Roy S, Xie M, Yang X, Guo B. Contrast Agents of Magnetic Resonance Imaging and Future Perspective. Nanomaterials (Basel). 2023 Jul 4;13(13):2003.Kakaei N, Amirian R, Azadi M, Mohammadi G, Izadi Z. Perfluorocarbons: A perspective of theranostic applications and challenges. Front Bioeng Biotechnol. 2023;11:1115254.Platas-Iglesias C, Mato-Iglesias M, Djanashvili K, Muller RN, Elst LV, Peters JA, et al. Lanthanide chelates containing pyridine units with potential application as contrast agents in magnetic resonance imaging. Chemistry. 2004 Jul 19;10(14):3579–90.Weinmann HJ, Brasch RC, Press WR, Wesbey GE. Characteristics of gadolinium-DTPA complex: a potential NMR contrast agent. AJR Am J Roentgenol. 1984 Mar;142(3):619–24.Yang CT, Hattiholi A, Selvan ST, Yan SX, Fang WW, Chandrasekharan P, et al. Gadolinium-based bimodal probes to enhance T1-Weighted magnetic resonance/optical imaging. Acta Biomaterialia [Internet]. 2020 Jul 1 [cited 2024 Oct 22];110:15–36. Available from: https://www.sciencedirect.com/science/article/pii/S1742706120301884Nelson NR, Port JD, Pandey MK. Use of Superparamagnetic Iron Oxide Nanoparticles (SPIONs) via Multiple Imaging Modalities and Modifications to Reduce Cytotoxicity: An Educational Review. Journal of Nanotheranostics [Internet]. 2020 Dec [cited 2024 Oct 22];1(1):105–35. Available from: https://www.mdpi.com/2624-845X/1/1/8Bao Y, Sherwood JA, Sun Z. Magnetic iron oxide nanoparticles as T1 contrast agents for magnetic resonance imaging. J Mater Chem C [Internet]. 2018 Feb 8 [cited 2024 Oct 22];6(6):1280–90. Available from: https://pubs.rsc.org/en/content/articlelanding/2018/tc/c7tc05854cJeon M, Halbert MV, Stephen ZR, Zhang M. Iron Oxide Nanoparticles as T1 Contrast Agents for Magnetic Resonance Imaging: Fundamentals, Challenges, Applications, and Prospectives. Adv Mater. 2021 Jun;33(23):e1906539.Ye F, Wu X, Jeong EK, Jia Z, Yang T, Parker D, et al. A peptide targeted contrast agent specific to fibrin-fibronectin complexes for cancer molecular imaging with MRI. Bioconjug Chem. 2008 Dec;19(12):2300–3.Zapata-Acevedo JF, Losada-Barragán M, Osma JF, Cruz JC, Reiber A, Petry KG, et al. Specific nanoprobe design for MRI: Targeting laminin in the blood-brain barrier to follow alteration due to neuroinflammation. PLoS One. 2024;19(4):e0302031.Burtea C, Laurent S, Lancelot E, Ballet S, Murariu O, Rousseaux O, et al. Peptidic Targeting of Phosphatidylserine for the MRI Detection of Apoptosis in Atherosclerotic Plaques. Mol Pharmaceutics [Internet]. 2009 Dec 7 [cited 2024 Oct 22];6(6):1903–19. Available from: https://doi.org/10.1021/mp900106mZhang X, Zhang X, Wang F. Intracellular transduction and potential of Tat PTD and its analogs: from basic drug delivery mechanism to application. Expert Opin Drug Deliv. 2012 Apr;9(4):457–72.Choi S, Oh JH, Kim H, Nam SH, Shin J, Park JS. Protective Effect of Tat PTD-Hsp27 Fusion Protein on Tau Hyperphosphorylation Induced by Okadaic Acid in the Human Neuroblastoma Cell Line SH-SY5Y. Cell Mol Neurobiol. 2015 Oct;35(7):1049–59.Demeule M, Currie JC, Bertrand Y, Ché C, Nguyen T, Régina A, et al. Involvement of the low-density lipoprotein receptor-related protein in the transcytosis of the brain delivery vector angiopep-2. J Neurochem. 2008 Aug;106(4):1534–44.Xie R, Wu Z, Zeng F, Cai H, Wang D, Gu L, et al. Retro-enantio isomer of angiopep-2 assists nanoprobes across the blood-brain barrier for targeted magnetic resonance/fluorescence imaging of glioblastoma. Signal Transduct Target Ther [Internet]. 2021 Aug 19 [cited 2022 Nov 8];6:309. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8377144/Thirumurugan S, Dash P, Liu X, Tseng YY, Huang WJ, Li Y, et al. Angiopep-2-decorated titanium-alloy core-shell magnetic nanoparticles for nanotheranostics and medical imaging. Nanoscale. 2022 Oct 13;14(39):14789–800.Choi M, Ryu J, Vu HD, Kim D, Youn YJ, Park MH, et al. Transferrin-Conjugated Melittin-Loaded L-Arginine-Coated Iron Oxide Nanoparticles for Mitigating Beta-Amyloid Pathology of the 5XFAD Mouse Brain. International Journal of Molecular Sciences [Internet]. 2023 Jan [cited 2024 Oct 22];24(19):14954. Available from: https://www.mdpi.com/1422-0067/24/19/14954Moura RP, Carvalho ED, Martins C, des Rieux A, Pêgo AP, Sarmento B. Functionalized retinoic acid lipid nanocapsules promotes a two-front attack on inflammation and lack of demyelination on neurodegenerative disorders. J Control Release. 2023 Jun;358:43–58.Richard S, Boucher M, Lalatonne Y, Mériaux S, Motte L. Iron oxide nanoparticle surface decorated with cRGD peptides for magnetic resonance imaging of brain tumors. Biochimica et Biophysica Acta (BBA) - General Subjects [Internet]. 2017 Jun 1 [cited 2024 Oct 22];1861(6):1515–20. Available from: https://www.sciencedirect.com/science/article/pii/S0304416516305141Chertok B, Moffat BA, David AE, Yu F, Bergemann C, Ross BD, et al. Iron oxide nanoparticles as a drug delivery vehicle for MRI monitored magnetic targeting of brain tumors. Biomaterials [Internet]. 2008 Feb 1 [cited 2024 Oct 22];29(4):487–96. Available from: https://www.sciencedirect.com/science/article/pii/S0142961207007910Lu X, Zhang Y, Wang L, Li G, Gao J, Wang Y. Development of L-carnosine functionalized iron oxide nanoparticles loaded with dexamethasone for simultaneous therapeutic potential of blood brain barrier crossing and ischemic stroke treatment. Drug Deliv. 2021 Dec;28(1):380–9.Tang T, Valenzuela A, Petit F, Chow S, Leung K, Gorin F, et al. In Vivo MRI of Functionalized Iron Oxide Nanoparticles for Brain Inflammation. Contrast Media Mol Imaging. 2018;2018:3476476.Jin AY, Tuor UI, Rushforth D, Filfil R, Kaur J, Ni F, et al. Magnetic resonance molecular imaging of post-stroke neuroinflammation with a P-selectin targeted iron oxide nanoparticle. Contrast Media Mol Imaging. 2009;4(6):305–11.Barber PA. Magnetic resonance imaging of ischemia viability thresholds and the neurovascular unit. Sensors (Basel). 2013 May 27;13(6):6981–7003.Cuellar M, Cifuentes J, Perez J, Suarez-Arnedo A, Serna JA, Groot H, et al. Novel BUF2-magnetite nanobioconjugates with cell-penetrating abilities. Int J Nanomedicine [Internet]. 2018 Nov 28 [cited 2021 Nov 15];13:8087–94. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6276613/Andrade ÂL, Fabris JD, Ardisson JD, Valente MA, Ferreira JMF. Effect of Tetramethylammonium Hydroxide on Nucleation, Surface Modification and Growth of Magnetic Nanoparticles. Journal of Nanomaterials [Internet]. 2012 [cited 2024 Oct 22];2012(1):454759. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1155/2012/454759Shen L, Li B, Qiao Y. Fe₃O₄ Nanoparticles in Targeted Drug/Gene Delivery Systems. Materials (Basel). 2018 Feb 23;11(2):324.Liu Y, Li Y, Li XM, He T. Kinetics of (3-Aminopropyl)triethoxylsilane (APTES) Silanization of Superparamagnetic Iron Oxide Nanoparticles. Langmuir [Internet]. 2013 Dec 10 [cited 2021 Nov 15];29(49):15275–82. Available from: https://doi.org/10.1021/la403269uBurtea C, Laurent S, Sanli T, Fanfone D, Devalckeneer A, Sauvage S, et al. Screening for peptides targeted to IL-7Rα for molecular imaging of rheumatoid arthritis synovium. Arthritis Res Ther. 2016 Oct 12;18(1):230.PT1572246 NOVEL COMPOSITIONS OF MAGNETIC PARTICLES COVERED WITH GEM-BISPHOSPHONATE DERIVATIVES [Internet]. [cited 2024 Oct 22]. Available from: https://patentscope.wipo.int/search/en/detail.jsf?docId=PT108228813&docAn=03799680Maldonado-Camargo L, Unni M, Rinaldi C. Magnetic Characterization of Iron Oxide Nanoparticles for Biomedical Applications. Methods Mol Biol. 2017;1570:47–71.Boiziau C, Vekris A, Petry K. Hybridization process for enriching specific sequence from nucleic acid directory to test directory comprises e.g. adding restriction endonuclease to hybridized DNA of directory and incubating mixture to transform host cells in the mixture [Internet]. FR2952071A1, 2011 [cited 2024 Oct 23]. Available from: https://patents.google.com/patent/FR2952071A1/enMcCarthy SA, Davies GL, Gun’ko YK. Preparation of multifunctional nanoparticles and their assemblies. Nat Protoc [Internet]. 2012 Sep [cited 2021 Nov 15];7(9):1677–93. Available from: https://www.nature.com/articles/nprot.2012.082Stanicki D, Boutry S, Laurent S, Wacheul L, Nicolas E, Crombez D, et al. Carboxy-silane coated iron oxide nanoparticles: a convenient platform for cellular and small animal imaging. J Mater Chem B. 2014 Jan 28;2(4):387–97.Weksler BB, Subileau EA, Perrière N, Charneau P, Holloway K, Leveque M, et al. Blood-brain barrier-specific properties of a human adult brain endothelial cell line. FASEB J. 2005 Nov;19(13):1872–4.Baez-Jurado E, Vega GG, Aliev G, Tarasov VV, Esquinas P, Echeverria V, et al. Blockade of Neuroglobin Reduces Protection of Conditioned Medium from Human Mesenchymal Stem Cells in Human Astrocyte Model (T98G) Under a Scratch Assay. Mol Neurobiol. 2018 Mar;55(3):2285–300.Fujiwara H, Kikkawa Y, Sanzen N, Sekiguchi K. Purification and characterization of human laminin-8. Laminin-8 stimulates cell adhesion and migration through alpha3beta1 and alpha6beta1 integrins. J Biol Chem. 2001 May 18;276(20):17550–8.Kawataki T, Yamane T, Naganuma H, Rousselle P, Andurén I, Tryggvason K, et al. Laminin isoforms and their integrin receptors in glioma cell migration and invasiveness: Evidence for a role of alpha5-laminin(s) and alpha3beta1 integrin. Exp Cell Res. 2007/09/25 ed. 2007 Nov 1;313(18):3819–31.Bolte S, Cordelières FP. A guided tour into subcellular colocalization analysis in light microscopy. J Microsc. 2006 Dec;224(Pt 3):213–32.Simberg D, Park JH, Karmali PP, Zhang WM, Merkulov S, McCrae K, et al. Differential proteomics analysis of the surface heterogeneity of dextran iron oxide nanoparticles and the implications for their in vivo clearance. Biomaterials [Internet]. 2009 Aug [cited 2024 Jan 16];30(23–24):3926–33. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2792080/Simberg D, Zhang WM, Merkulov S, McCrae K, Park JH, Sailor MJ, et al. Contact activation of kallikrein-kinin system by superparamagnetic iron oxide nanoparticles in vitro and in vivo. Journal of controlled release : official journal of the Controlled Release Society [Internet]. 2009 Dec 12 [cited 2024 Jan 16];140(3):301. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2787880/Semmler A, Hermann S, Mormann F, Weberpals M, Paxian SA, Okulla T, et al. Sepsis causes neuroinflammation and concomitant decrease of cerebral metabolism. J Neuroinflammation. 2008 Sep 15;5:38.Semmler A, Okulla T, Sastre M, Dumitrescu-Ozimek L, Heneka MT. Systemic inflammation induces apoptosis with variable vulnerability of different brain regions. J Chem Neuroanat. 2005 Oct;30(2–3):144–57.Hanesch M. Raman spectroscopy of iron oxides and (oxy)hydroxides at low laser power and possible applications in environmental magnetic studies. Geophysical Journal International [Internet]. 2009 Jun 1 [cited 2022 Nov 8];177(3):941–8. Available from: https://doi.org/10.1111/j.1365-246X.2009.04122.xSchwaminger SP, Bauer D, Fraga-García P, Wagner FE, Berensmeier S. Oxidation of magnetite nanoparticles: impact on surface and crystal properties. CrystEngComm [Internet]. 2017 Jan 4 [cited 2022 Nov 8];19(2):246–55. Available from: https://pubs.rsc.org/en/content/articlelanding/2017/ce/c6ce02421aSchwaminger SP, Syhr C, Berensmeier S. Controlled Synthesis of Magnetic Iron Oxide Nanoparticles: Magnetite or Maghemite? Crystals [Internet]. 2020 Mar [cited 2022 Nov 8];10(3):214. Available from: https://www.mdpi.com/2073-4352/10/3/214Chourpa I, Douziech-Eyrolles L, Ngaboni-Okassa L, Fouquenet JF, Cohen-Jonathan S, Soucé M, et al. Molecular composition of iron oxide nanoparticles, precursors for magnetic drug targeting, as characterized by confocal Raman microspectroscopy. Analyst [Internet]. 2005 Sep 19 [cited 2022 Nov 8];130(10):1395–403. Available from: https://pubs.rsc.org/en/content/articlelanding/2005/an/b419004aHervé K, Douziech-Eyrolles L, Munnier E, Cohen-Jonathan S, Soucé M, Marchais H, et al. The development of stable aqueous suspensions of PEGylated SPIONs for biomedical applications. Nanotechnology [Internet]. 2008 Oct [cited 2022 Nov 8];19(46):465608. Available from: https://dx.doi.org/10.1088/0957-4484/19/46/465608Danaei M, Dehghankhold M, Ataei S, Hasanzadeh Davarani F, Javanmard R, Dokhani A, et al. Impact of Particle Size and Polydispersity Index on the Clinical Applications of Lipidic Nanocarrier Systems. Pharmaceutics [Internet]. 2018 Jun [cited 2023 Mar 19];10(2):57. Available from: https://www.mdpi.com/1999-4923/10/2/57Yin J, Yin G, Pu X, Huang Z, Yao D. Preparation and characterization of peptide modified ultrasmall superparamagnetic iron oxides used as tumor targeting MRI contrast agent. RSC Adv [Internet]. 2019 Jun 19 [cited 2022 Nov 8];9(34):19397–407. Available from: https://pubs.rsc.org/en/content/articlelanding/2019/ra/c9ra02636cKhalil MI. Co-precipitation in aqueous solution synthesis of magnetite nanoparticles using iron(III) salts as precursors. Arabian Journal of Chemistry [Internet]. 2015 Mar 1 [cited 2022 Nov 8];8(2):279–84. Available from: https://www.sciencedirect.com/science/article/pii/S1878535215000428Stoia M, Istratie R, Păcurariu C. Investigation of magnetite nanoparticles stability in air by thermal analysis and FTIR spectroscopy. J Therm Anal Calorim [Internet]. 2016 Sep 1 [cited 2022 Nov 8];125(3):1185–98. Available from: https://doi.org/10.1007/s10973-016-5393-ySingh M, Ulbrich P, Prokopec V, Svoboda P, Šantavá E, Štěpánek F. Vapour phase approach for iron oxide nanoparticle synthesis from solid precursors. Journal of Solid State Chemistry [Internet]. 2013 Apr 1 [cited 2022 Nov 8];200:150–6. Available from: https://www.sciencedirect.com/science/article/pii/S0022459613000534Majoul N, Aouida S, Bessaïs B. Progress of porous silicon APTES-functionalization by FTIR investigations. Applied Surface Science [Internet]. 2015 Mar 15 [cited 2022 Nov 8];331:388–91. Available from: https://www.sciencedirect.com/science/article/pii/S0169433215001324Zhang D, Hegab HE, Lvov Y, Dale Snow L, Palmer J. Immobilization of cellulase on a silica gel substrate modified using a 3-APTES self-assembled monolayer. Springerplus [Internet]. 2016 Jan 20 [cited 2022 Nov 8];5(1):48. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4718907/Krishnan MA, Aneja KS, Shaikh A, Bohm S, Sarkar K, Bohm HLM, et al. Graphene-based anticorrosive coatings for copper. RSC Adv [Internet]. 2017 Dec 15 [cited 2022 Nov 8];8(1):499–507. Available from: https://pubs.rsc.org/en/content/articlelanding/2018/ra/c7ra10167hAlizadeh L, Alizadeh E, Zarebkohan A, Ahmadi E, Rahmati-Yamchi M, Salehi R. AS1411 aptamer-functionalized chitosan-silica nanoparticles for targeted delivery of epigallocatechin gallate to the SKOV-3 ovarian cancer cell lines. J Nanopart Res [Internet]. 2020 Jan 2 [cited 2022 Nov 8];22(1):5. Available from: https://doi.org/10.1007/s11051-019-4735-7Netzahual-Lopantzi Á, Sánchez-Ramírez JF, Jiménez-Pérez JL, Cornejo-Monroy D, López-Gamboa G, Correa-Pacheco ZN. Study of the thermal diffusivity of nanofluids containing SiO2 decorated with Au nanoparticles by thermal lens spectroscopy. Appl Phys A [Internet]. 2019 Aug 5 [cited 2022 Nov 8];125(9):588. Available from: https://doi.org/10.1007/s00339-019-2891-3Jain A, Ong SP, Hautier G, Chen W, Richards WD, Dacek S, et al. Commentary: The Materials Project: A materials genome approach to accelerating materials innovation. APL Materials [Internet]. 2013 Jul [cited 2023 Mar 19];1(1):011002. Available from: https://aip.scitation.org/doi/10.1063/1.4812323Materials Project [Internet]. [cited 2023 Mar 19]. Materials Project - Home. Available from: https://next-gen.materialsproject.org/Chamorro-Coral W, Caillard A, Brault P, Baranton S, Coutanceau C. Binary and ternary Pt-based clusters grown in a plasma multimagnetron-based gas aggregation source: electrocatalytic evaluation towards glycerol oxidation. Nanoscale Adv [Internet]. 2021 Mar 23 [cited 2023 Mar 19];3(6):1730–40. Available from: https://pubs.rsc.org/en/content/articlelanding/2021/na/d0na01009jKarim A, Fosse S, Persson KA. Surface structure and equilibrium particle shape of the LiMn${}_{2}$O${}_{4}$ spinel from first-principles calculations. Phys Rev B [Internet]. 2013 Feb 26 [cited 2023 Mar 19];87(7):075322. Available from: https://link.aps.org/doi/10.1103/PhysRevB.87.075322Hallare J, Gerriets V. Half Life. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2023 [cited 2023 Sep 5]. Available from: http://www.ncbi.nlm.nih.gov/books/NBK554498/Kraffert K, Kabelitz A, Siemensmeyer K, Schmack R, Bernsmeier D, Emmerling F, et al. Nanocasting of Superparamagnetic Iron Oxide Films with Ordered Mesoporosity. Advanced Materials Interfaces [Internet]. 2018 [cited 2023 Mar 5];5(3):1700960. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1002/admi.201700960Armenia I, Grazú Bonavia MV, De Matteis L, Ivanchenko P, Martra G, Gornati R, et al. Enzyme activation by alternating magnetic field: Importance of the bioconjugation methodology. Journal of Colloid and Interface Science [Internet]. 2019 Mar 1 [cited 2023 Mar 12];537:615–28. Available from: https://www.sciencedirect.com/science/article/pii/S0021979718313717Ma X, Wang S, Hu L, Feng S, Wu Z, Liu S, et al. Imaging Characteristics of USPIO Nanoparticles (<5 nm) as MR Contrast Agent In Vitro and in the Liver of Rats. Contrast Media & Molecular Imaging [Internet]. 2019 Jul 21 [cited 2022 Nov 20];2019:e3687537. Available from: https://www.hindawi.com/journals/cmmi/2019/3687537/Wei H, Bruns OT, Kaul MG, Hansen EC, Barch M, Wiśniowska A, et al. Exceedingly small iron oxide nanoparticles as positive MRI contrast agents. Proc Natl Acad Sci U S A. 2017 Feb 28;114(9):2325–30.Wang YXJ, Hussain SM, Krestin GP. Superparamagnetic iron oxide contrast agents: physicochemical characteristics and applications in MR imaging. Eur Radiol [Internet]. 2001 Nov 1 [cited 2022 Nov 20];11(11):2319–31. Available from: https://doi.org/10.1007/s003300100908Geppert M, Himly M. Iron Oxide Nanoparticles in Bioimaging – An Immune Perspective. Frontiers in Immunology [Internet]. 2021 [cited 2023 Feb 14];12. Available from: https://www.frontiersin.org/articles/10.3389/fimmu.2021.688927Di Marco M, Guilbert I, Port M, Robic C, Couvreur P, Dubernet C. Colloidal stability of ultrasmall superparamagnetic iron oxide (USPIO) particles with different coatings. Int J Pharm. 2007 Mar 1;331(2):197–203.Yarjanli Z, Ghaedi K, Esmaeili A, Rahgozar S, Zarrabi A. Iron oxide nanoparticles may damage to the neural tissue through iron accumulation, oxidative stress, and protein aggregation. BMC Neuroscience [Internet]. 2017 Jun 26 [cited 2022 Dec 7];18(1):51. Available from: https://doi.org/10.1186/s12868-017-0369-9Pinkernelle J, Calatayud P, Goya GF, Fansa H, Keilhoff G. Magnetic nanoparticles in primary neural cell cultures are mainly taken up by microglia. BMC Neurosci. 2012 Mar 22;13:32.Manzanares D, Ceña V. Endocytosis: The Nanoparticle and Submicron Nanocompounds Gateway into the Cell. Pharmaceutics. 2020 Apr 17;12(4):371.Mazuel F, Espinosa A, Luciani N, Reffay M, Le Borgne R, Motte L, et al. Massive Intracellular Biodegradation of Iron Oxide Nanoparticles Evidenced Magnetically at Single-Endosome and Tissue Levels. ACS Nano [Internet]. 2016 Aug 23 [cited 2022 Dec 7];10(8):7627–38. Available from: https://doi.org/10.1021/acsnano.6b02876Volatron J, Carn F, Kolosnjaj-Tabi J, Javed Y, Vuong QL, Gossuin Y, et al. Ferritin Protein Regulates the Degradation of Iron Oxide Nanoparticles. Small. 2017 Jan;13(2).Laskar A, Ghosh M, Khattak SI, Li W, Yuan XM. Degradation of superparamagnetic iron oxide nanoparticle-induced ferritin by lysosomal cathepsins and related immune response. Nanomedicine (Lond). 2012 May;7(5):705–17.Imam SZ, Lantz-McPeak SM, Cuevas E, Rosas-Hernandez H, Liachenko S, Zhang Y, et al. Iron Oxide Nanoparticles Induce Dopaminergic Damage: In vitro Pathways and In Vivo Imaging Reveals Mechanism of Neuronal Damage. Mol Neurobiol. 2015 Oct;52(2):913–26.Aibani N, Rai R, Patel P, Cuddihy G, Wasan EK. Chitosan Nanoparticles at the Biological Interface: Implications for Drug Delivery. Pharmaceutics [Internet]. 2021 Oct 14 [cited 2024 Oct 23];13(10):1686. Available from: https://pmc.ncbi.nlm.nih.gov/articles/PMC8540112/Casco M, Olsen T, Herbst A, Evans G, Rothermel T, Pruett L, et al. Iron Oxide Nanoparticles Stimulates Extra-Cellular Matrix Production in Cellular Spheroids. Bioengineering (Basel) [Internet]. 2017 Jan 21 [cited 2022 Dec 14];4(1):4. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5590449/Könnecke H, Bechmann I. The role of microglia and matrix metalloproteinases involvement in neuroinflammation and gliomas. Clin Dev Immunol. 2013;2013:914104.Weksler B, Romero IA, Couraud PO. The hCMEC/D3 cell line as a model of the human blood brain barrier. Fluids Barriers CNS. 2013 Mar 26;10(1):16.Santa-Maria AR, Walter FR, Figueiredo R, Kincses A, Vigh JP, Heymans M, et al. Flow induces barrier and glycocalyx-related genes and negative surface charge in a lab-on-a-chip human blood-brain barrier model. J Cereb Blood Flow Metab. 2021 Sep;41(9):2201–15.Ader M, Tanaka EM. Modeling human development in 3D culture. Curr Opin Cell Biol. 2014 Dec;31:23–8.Bergmann S, Lawler SE, Qu Y, Fadzen CM, Wolfe JM, Regan MS, et al. Blood-brain-barrier organoids for investigating the permeability of CNS therapeutics. Nat Protoc [Internet]. 2018 Dec [cited 2022 Nov 10];13(12):2827–43. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6673652/Arami H, Khandhar A, Liggitt D, Krishnan KM. In vivo delivery, pharmacokinetics, biodistribution and toxicity of iron oxide nanoparticles. Chem Soc Rev [Internet]. 2015 Dec 7 [cited 2023 Sep 5];44(23):8576–607. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4648695/Kresse M, Wagner S, Pfefferer D, Lawaczeck R, Elste V, Semmler W. Targeting of ultrasmall superparamagnetic iron oxide (USPIO) particles to tumor cells in vivo by using transferrin receptor pathways. Magn Reson Med. 1998 Aug;40(2):236–42.Zhang W, Sigdel G, Mintz KJ, Seven ES, Zhou Y, Wang C, et al. Carbon Dots: A Future Blood-Brain Barrier Penetrating Nanomedicine and Drug Nanocarrier. Int J Nanomedicine. 2021;16:5003–16.Sixt M, Engelhardt B, Pausch F, Hallmann R, Wendler O, Sorokin LM. Endothelial cell laminin isoforms, laminins 8 and 10, play decisive roles in T cell recruitment across the blood-brain barrier in experimental autoimmune encephalomyelitis. J Cell Biol. 2001 May 28;153(5):933–46.Hawkes CA, Michalski D, Anders R, Nissel S, Grosche J, Bechmann I, et al. Stroke-induced opposite and age-dependent changes of vessel-associated markers in co-morbid transgenic mice with Alzheimer-like alterations. Experimental Neurology [Internet]. 2013;250:270–81. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84886254101&doi=10.1016%2fj.expneurol.2013.09.020&partnerID=40&md5=7a9464e41a871c61b7d2d0c07d7ce6e4Ryu JK, McLarnon JG. Thalidomide inhibition of perturbed vasculature and glial-derived tumor necrosis factor-alpha in an animal model of inflamed Alzheimer’s disease brain. Neurobiol Dis. 2008 Feb;29(2):254–66.Chopra N, Menounos S, Choi JP, Hansbro PM, Diwan AD, Das A. Blood-Spinal Cord Barrier: Its Role in Spinal Disorders and Emerging Therapeutic Strategies. NeuroSci [Internet]. 2022 Mar [cited 2024 Oct 23];3(1):1–27. Available from: https://www.mdpi.com/2673-4087/3/1/1Kroeger N, Pantuck AJ. Re: Grant D. Stewart, Fiach C. O’Mahony, Alexander Laird, et al. carbonic anhydrase 9 expression increases with vascular endothelial growth factor-targeted therapy and is predictive of outcome in metastatic clear cell renal cancer. Eur Urol. In press. http://dx.doi.org/10.1016/j.eururo.2014.04.007. Eur Urol. 2014 Oct;66(4):e69-70.Bartanusz V, Jezova D, Alajajian B, Digicaylioglu M. The blood-spinal cord barrier: morphology and clinical implications. Ann Neurol. 2011 Aug;70(2):194–206.Polasky C, Studt T, Steuer AK, Loyal K, Lüdtke-Buzug K, Bruchhage KL, et al. Impact of Superparamagnetic Iron Oxide Nanoparticles on THP-1 Monocytes and Monocyte-Derived Macrophages. Front Mol Biosci [Internet]. 2022 Feb 4 [cited 2024 Oct 23];9. Available from: https://www.frontiersin.org/journals/molecular-biosciences/articles/10.3389/fmolb.2022.811116/fullErsoy H, Jacobs P, Kent CK, Prince MR. Blood Pool MR Angiography of Aortic Stent-Graft Endoleak. American Journal of Roentgenology [Internet]. 2004 May [cited 2024 Mar 19];182(5):1181–6. Available from: https://www.ajronline.org/doi/10.2214/ajr.182.5.1821181Vellinga MM, Oude Engberink RD, Seewann A, Pouwels PJW, Wattjes MP, van der Pol SMA, et al. Pluriformity of inflammation in multiple sclerosis shown by ultra-small iron oxide particle enhancement. Brain. 2008 Mar;131(Pt 3):800–7.Dadfar SM, Roemhild K, Drude NI, von Stillfried S, Knüchel R, Kiessling F, et al. Iron oxide nanoparticles: Diagnostic, therapeutic and theranostic applications. Adv Drug Deliv Rev. 2019 Jan 1;138:302–25.instname:Universidad del Rosarioreponame:Repositorio Institucional EdocURNeuroinflamaciónBarrera hematoencefálicaNanosondasResonancia magnéticaLamininaNanopartículas de óxido de hierroNeuroinflammationBlood brain barrierNanoprobeMagnetic resonanceLamininIron oxide nanoparticlesValidación de péptido conjugado a nanopartículas magnéticas de óxido de hierro como biomarcador de cambios moleculares en la barrera hematoencefálica bajo condiciones de neuroinflamaciónValidation of peptide conjugated to magnetic iron oxide nanoparticles as a biomarker of molecular changes in the blood-brain barrier under neuroinflammation conditionsdoctoralThesisTesis de doctoradohttp://purl.org/coar/resource_type/c_db06Escuela de Medicina y Ciencias de la SaludBogotáORIGINALValidacion_de_peptido_conjugado_a_nanoparticulas_magneticas_de_oxido_de_hierro_JuanFelipeZapataA.pdfValidacion_de_peptido_conjugado_a_nanoparticulas_magneticas_de_oxido_de_hierro_JuanFelipeZapataA.pdfapplication/pdf14603028https://repository.urosario.edu.co/bitstreams/8f8b5d85-cc42-4799-9304-b67dab9f360f/downloadd70e68c4e5ac2ce00dbe31f1c48a2c4eMD51LICENSElicense.txtlicense.txttext/plain1483https://repository.urosario.edu.co/bitstreams/86951c56-9d85-4116-8261-c30aa8b95b7b/downloadb2825df9f458e9d5d96ee8b7cd74fde6MD52CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81160https://repository.urosario.edu.co/bitstreams/eeb45942-7468-4499-ac66-9cdadf4423ab/download5643bfd9bcf29d560eeec56d584edaa9MD53TEXTValidacion_de_peptido_conjugado_a_nanoparticulas_magneticas_de_oxido_de_hierro_JuanFelipeZapataA.pdf.txtValidacion_de_peptido_conjugado_a_nanoparticulas_magneticas_de_oxido_de_hierro_JuanFelipeZapataA.pdf.txtExtracted texttext/plain107803https://repository.urosario.edu.co/bitstreams/3d0c7027-ba3a-43d0-ae40-6b2becdd6a06/downloade3f0f9067586e4415aeb55883213a797MD54THUMBNAILValidacion_de_peptido_conjugado_a_nanoparticulas_magneticas_de_oxido_de_hierro_JuanFelipeZapataA.pdf.jpgValidacion_de_peptido_conjugado_a_nanoparticulas_magneticas_de_oxido_de_hierro_JuanFelipeZapataA.pdf.jpgGenerated Thumbnailimage/jpeg2974https://repository.urosario.edu.co/bitstreams/2d472919-269f-4915-8579-901d31eb70ca/download5b1d497d6c98668b58414e7496c09160MD5510336/45030oai:repository.urosario.edu.co:10336/450302025-02-28 13:02:00.309http://creativecommons.org/licenses/by-nc-sa/4.0/Attribution-NonCommercial-ShareAlike 4.0 Internationalhttps://repository.urosario.edu.coRepositorio institucional EdocURedocur@urosario.edu.coRUwoTE9TKSBBVVRPUihFUyksIG1hbmlmaWVzdGEobWFuaWZlc3RhbW9zKSBxdWUgbGEgb2JyYSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIHJlYWxpesOzIHNpbiB2aW9sYXIgbyB1c3VycGFyIGRlcmVjaG9zIGRlIGF1dG9yIGRlIHRlcmNlcm9zLCBwb3IgbG8gdGFudG8gbGEgb2JyYSBlcyBkZSBleGNsdXNpdmEgYXV0b3LDrWEgeSB0aWVuZSBsYSB0aXR1bGFyaWRhZCBzb2JyZSBsYSBtaXNtYS4KPGJyLz4KUEFSQUdSQUZPOiBFbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbiwgRUwgQVVUT1IsIGFzdW1pcsOhIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkLCB5IHNhbGRyw6EgZW4gZGVmZW5zYSBkZSBsb3MgZGVyZWNob3MgYXF1w60gYXV0b3JpemFkb3M7IHBhcmEgdG9kb3MgbG9zIGVmZWN0b3MgbGEgdW5pdmVyc2lkYWQgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4KPGhyLz4KRUwgQVVUT1IsIGF1dG9yaXphIGEgTEEgVU5JVkVSU0lEQUQgREVMIFJPU0FSSU8sICBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgTGV5IDQ0IGRlIDE5OTMsIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbm9ybWFzIGdlbmVyYWxlcyBzb2JyZSBsYSBtYXRlcmlhLCAgdXRpbGljZSB5IHVzZSBsYSBvYnJhIG9iamV0byBkZSBsYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuLgoKLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0KClBPTElUSUNBIERFIFRSQVRBTUlFTlRPIERFIERBVE9TIFBFUlNPTkFMRVMuIERlY2xhcm8gcXVlIGF1dG9yaXpvIHByZXZpYSB5IGRlIGZvcm1hIGluZm9ybWFkYSBlbCB0cmF0YW1pZW50byBkZSBtaXMgZGF0b3MgcGVyc29uYWxlcyBwb3IgcGFydGUgZGUgTEEgVU5JVkVSU0lEQUQgREVMIFJPU0FSSU8gIHBhcmEgZmluZXMgYWNhZMOpbWljb3MgeSBlbiBhcGxpY2FjacOzbiBkZSBjb252ZW5pb3MgY29uIHRlcmNlcm9zIG8gc2VydmljaW9zIGNvbmV4b3MgY29uIGFjdGl2aWRhZGVzIHByb3BpYXMgZGUgbGEgYWNhZGVtaWEsIGNvbiBlc3RyaWN0byBjdW1wbGltaWVudG8gZGUgbG9zIHByaW5jaXBpb3MgZGUgbGV5LiBQYXJhIGVsIGNvcnJlY3RvIGVqZXJjaWNpbyBkZSBtaSBkZXJlY2hvIGRlIGhhYmVhcyBkYXRhICBjdWVudG8gY29uIGxhIGN1ZW50YSBkZSBjb3JyZW8gaGFiZWFzZGF0YUB1cm9zYXJpby5lZHUuY28sIGRvbmRlIHByZXZpYSBpZGVudGlmaWNhY2nDs24gIHBvZHLDqSBzb2xpY2l0YXIgbGEgY29uc3VsdGEsIGNvcnJlY2Npw7NuIHkgc3VwcmVzacOzbiBkZSBtaXMgZGF0b3MuCg== |