Análisis comparativo de las respuestas transcripcionales de cinco especies de Leishmania frente al antimonio trivalente.
La leishmaniasis es considerada una enfermedad tropical desatendida para la cual no se cuenta con una vacuna. Por otra parte, las drogas de primera elección han presentado un aumento en las fallas terapéuticas, entre otras causas por la adquisición de resistencia por parte de su agente etiológico de...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2021
- Institución:
- Universidad del Rosario
- Repositorio:
- Repositorio EdocUR - U. Rosario
- Idioma:
- spa
- OAI Identifier:
- oai:repository.urosario.edu.co:10336/30923
- Acceso en línea:
- https://doi.org/10.48713/10336_30923
https://repository.urosario.edu.co/handle/10336/30923
- Palabra clave:
- Leishmania donovani
Leishmania infantum
Leishmania amazonensis
Leishmania Viannia
Leishmania panamensis
Leishmania braziliensis
Efectividad del Antimonio trivalente (SbIII) frente leishmania
Genómica y transcriptómica comparativa de Leishmania
Perfil transcriptómico de leishmania
Microbiología
Leishmania donovani
Leishmania infantum
Leishmania amazonensis
Leishmania Viannia
Leishmania panamensis
Leishmania braziliensis
Effectiveness of trivalent antimony (SbIII) against leishmania
Comparative genomics and transcriptomics of Leishmania
Leishmania transcriptomic profile
- Rights
- License
- Atribución-SinDerivadas 2.5 Colombia
id |
EDOCUR2_4c8a25816de6e495fcc736f7ca40a72f |
---|---|
oai_identifier_str |
oai:repository.urosario.edu.co:10336/30923 |
network_acronym_str |
EDOCUR2 |
network_name_str |
Repositorio EdocUR - U. Rosario |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Análisis comparativo de las respuestas transcripcionales de cinco especies de Leishmania frente al antimonio trivalente. |
dc.title.TranslatedTitle.eng.fl_str_mv |
Comparative analysis of the transcriptional responses of five Leishmania species against trivalent antimony. |
title |
Análisis comparativo de las respuestas transcripcionales de cinco especies de Leishmania frente al antimonio trivalente. |
spellingShingle |
Análisis comparativo de las respuestas transcripcionales de cinco especies de Leishmania frente al antimonio trivalente. Leishmania donovani Leishmania infantum Leishmania amazonensis Leishmania Viannia Leishmania panamensis Leishmania braziliensis Efectividad del Antimonio trivalente (SbIII) frente leishmania Genómica y transcriptómica comparativa de Leishmania Perfil transcriptómico de leishmania Microbiología Leishmania donovani Leishmania infantum Leishmania amazonensis Leishmania Viannia Leishmania panamensis Leishmania braziliensis Effectiveness of trivalent antimony (SbIII) against leishmania Comparative genomics and transcriptomics of Leishmania Leishmania transcriptomic profile |
title_short |
Análisis comparativo de las respuestas transcripcionales de cinco especies de Leishmania frente al antimonio trivalente. |
title_full |
Análisis comparativo de las respuestas transcripcionales de cinco especies de Leishmania frente al antimonio trivalente. |
title_fullStr |
Análisis comparativo de las respuestas transcripcionales de cinco especies de Leishmania frente al antimonio trivalente. |
title_full_unstemmed |
Análisis comparativo de las respuestas transcripcionales de cinco especies de Leishmania frente al antimonio trivalente. |
title_sort |
Análisis comparativo de las respuestas transcripcionales de cinco especies de Leishmania frente al antimonio trivalente. |
dc.contributor.advisor.none.fl_str_mv |
Ramírez, Juan David |
dc.subject.spa.fl_str_mv |
Leishmania donovani Leishmania infantum Leishmania amazonensis Leishmania Viannia Leishmania panamensis Leishmania braziliensis Efectividad del Antimonio trivalente (SbIII) frente leishmania Genómica y transcriptómica comparativa de Leishmania Perfil transcriptómico de leishmania |
topic |
Leishmania donovani Leishmania infantum Leishmania amazonensis Leishmania Viannia Leishmania panamensis Leishmania braziliensis Efectividad del Antimonio trivalente (SbIII) frente leishmania Genómica y transcriptómica comparativa de Leishmania Perfil transcriptómico de leishmania Microbiología Leishmania donovani Leishmania infantum Leishmania amazonensis Leishmania Viannia Leishmania panamensis Leishmania braziliensis Effectiveness of trivalent antimony (SbIII) against leishmania Comparative genomics and transcriptomics of Leishmania Leishmania transcriptomic profile |
dc.subject.ddc.spa.fl_str_mv |
Microbiología |
dc.subject.keyword.spa.fl_str_mv |
Leishmania donovani Leishmania infantum Leishmania amazonensis Leishmania Viannia Leishmania panamensis Leishmania braziliensis Effectiveness of trivalent antimony (SbIII) against leishmania Comparative genomics and transcriptomics of Leishmania Leishmania transcriptomic profile |
description |
La leishmaniasis es considerada una enfermedad tropical desatendida para la cual no se cuenta con una vacuna. Por otra parte, las drogas de primera elección han presentado un aumento en las fallas terapéuticas, entre otras causas por la adquisición de resistencia por parte de su agente etiológico dependiente de las características propias de cada especie (ej. manifestación clínica y distribución geográfica). Así, que comprender el mecanismo usado por el parásito para sobrevivir bajo la presión de tratamientos identificando probables blancos terapéuticos comunes y específicos es importante para el control de la leishmaniasis. Sin embargo, hasta el momento no se ha realizado un análisis donde se compare la expresión génica entre especies de Leishmania que exhiben diferentes características genéticas y biológicas reflejadas en las manifestaciones clínicas diferenciales asociadas. Aquí, aplicamos análisis comparativos de los perfiles transcriptómicos de líneas con resistencia inducida experimentalmente al antimonio trivalente (SbIII) de cinco especies de importancia médica (Subgénero L. (Leishmania): L. donovani, L. infantum y L. amazonensis; Subgénero L. (Viannia): L. panamensis y L. braziliensis), causantes de diferentes manifestaciones clínicas (que generalmente son Leishmaniasis cutánea para L. panamensis y L. amazonensis, mucocutánea para L. braziliensis y visceral para L. donovani y L. infantum) a partir de análisis funcionales de ontología y asignación de grupos ortólogos. Las líneas resistentes tenían respuestas diferenciales principalmente en procesos metabólicos, unión a compuestos y componentes membranales respecto a su contraparte sensible. Predominaron los genes ortólogos diferencialmente expresados asignados a las respuestas especie especificas con un total de 1426 genes propios. A nivel de la respuesta por subgénero no se encontraron genes compartidos entre las especies pertenecientes a L. (Leishmania) y solo 7 lo fueron entre aquellas pertenecientes a L. (Viannia). No se halló ningún gen diferencialmente expresado en común entre las 5 especies, pero se encontraron dos genes ortólogos sobrerregulados comunes entre 4 especies (L. donovani, L. braziliensis, L. amazonensis y L. panamensis) referidos a una proteína de unión a RNA y al complejo NAD(P)H citocromo B5 oxidorreductasa, asociados al control transcripcional y a la síntesis de novo del ácido linoleico, importantes en los mecanismos de resistencia a los antimoniales. Estos patrones obedecen probablemente el fenómeno multifactorial de la resistencia a drogas, dependiente de características intrínsecas del parásito y el entorno. Por ende, las aproximaciones especie específicas resultan más recomendables para la proposición de potenciales blancos terapéuticos. |
publishDate |
2021 |
dc.date.accessioned.none.fl_str_mv |
2021-02-16T23:44:21Z |
dc.date.available.none.fl_str_mv |
2021-02-16T23:44:21Z |
dc.date.created.none.fl_str_mv |
2021-01-25 |
dc.type.eng.fl_str_mv |
bachelorThesis |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.document.spa.fl_str_mv |
Artículo |
dc.type.spa.spa.fl_str_mv |
Trabajo de grado |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.48713/10336_30923 |
dc.identifier.uri.none.fl_str_mv |
https://repository.urosario.edu.co/handle/10336/30923 |
url |
https://doi.org/10.48713/10336_30923 https://repository.urosario.edu.co/handle/10336/30923 |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.rights.spa.fl_str_mv |
Atribución-SinDerivadas 2.5 Colombia |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.acceso.spa.fl_str_mv |
Abierto (Texto Completo) |
dc.rights.uri.none.fl_str_mv |
http://creativecommons.org/licenses/by-nd/2.5/co/ |
rights_invalid_str_mv |
Atribución-SinDerivadas 2.5 Colombia Abierto (Texto Completo) http://creativecommons.org/licenses/by-nd/2.5/co/ http://purl.org/coar/access_right/c_abf2 |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad del Rosario |
dc.publisher.department.spa.fl_str_mv |
Facultad de Ciencias Naturales y Matemáticas |
dc.publisher.program.spa.fl_str_mv |
Biología |
institution |
Universidad del Rosario |
dc.source.bibliographicCitation.spa.fl_str_mv |
Acino Brettmann, E. (2017). The Role of RNA Interference in the Control of Leishmania RNA virus 1 Infection. Retrieved from https://openscholarship.wustl.edu/art_sci_etds/1090 Akhoundi, M., Kuhls, K., Cannet, A., Votýpka, J., Marty, P., Delaunay, P., & Sereno, D. (2016). A Historical Overview of the Classification, Evolution, and Dispersion of Leishmania Parasites and Sandflies. PLOS Neglected Tropical Diseases, 10(3), e0004349. https://doi.org/10.1371/journal.pntd.0004349 Akhoundi, M., Downing, T., Votýpka, J., Kuhls, K., Lukeš, J., Cannet, A., … Sereno, D. (2017, October 1). Leishmania infections: Molecular targets and diagnosis. Molecular Aspects of Medicine, Vol. 57, pp. 1–29. https://doi.org/10.1016/j.mam.2016.11.012 Alemayehu, B., & Alemayehu, M. (2017). Leishmaniasis: A Review on Parasite, Vector and Reservoir Host. Health Science Journal, 11(4). https://doi.org/10.21767/1791-809x.1000519 Anders, S., Pyl, P. T., & Huber, W. (2015). HTSeq--a Python framework to work with high-throughput sequencing data. Bioinformatics, 31(2), 166–169. https://doi.org/10.1093/bioinformatics/btu638 Andrade, J. M & Murta, S. (2014). Functional analysis of cytosolic tryparedoxin peroxidase in antimony-resistant and –susceptible Leishmania braziliensis and Leishmania infantum lines. Parasites & Vectors, 7(1), 406–. doi:10.1186/1756-3305-7-406 Andrews, S. (2010). FastQC: A Quality Control Tool for High Throughput Sequence Data [Online]. Available online at: http://www.bioinformatics.babraham.ac.uk/projects/fastqc/ Aslett, M., Aurrecoechea, C., Berriman, M., Brestelli, J., Brunk, B. P., Carrington, M., Depledge, D. P., Fischer, S., Gajria, B., Gao, X., Gardner, M. J., Gingle, A., Grant, G., Harb, O. S., Heiges, M., Hertz-Fowler, C., Houston, R., Innamorato, F., Iodice, J., Kissinger, J. C., … Wang, H. (2010). TriTrypDB: a functional genomic resource for the Trypanosomatidae. Nucleic acids research, 38(Database issue), D457–D462. https://doi.org/10.1093/nar/gkp851 Aurrecoechea, C., Barreto, A., Basenko, E. Y., Brestelli, J., Brunk, B. P., Cade, S., … Zheng, J. (2017). EuPathDB: The eukaryotic pathogen genomics database resource. Nucleic Acids Research, 45(D1), D581–D591. https://doi.org/10.1093/nar/gkw1105 Bañuls, A. L., Hide, M., & Prugnolle, F. (2007, January 1). Leishmania and the Leishmaniases: A Parasite Genetic Update and Advances in Taxonomy, Epidemiology and Pathogenicity in Humans. Advances in Parasitology, Vol. 64, pp. 1–458. https://doi.org/10.1016/S0065-308X(06)64001-3 Barrera, M. C., Rojas, L. J., Weiss, A., Fernandez, O., McMahon-Pratt, D., Saravia, N. G., & Gomez, M. A. (2017). Profiling gene expression of antimony response genes in Leishmania (Viannia) panamensis and infected macrophages and its relationship with drug susceptibility. Acta Tropica, 176, 355–363. https://doi.org/10.1016/j.actatropica.2017.08.017 Biyani, N., Singh, A. K., Mandal, S., Chawla, B., & Madhubala, R. (2011). Differential expression of proteins in antimony-susceptible and -resistant isolates of Leishmania donovani. Molecular and Biochemical Parasitology, 179(2), 91–99. https://doi.org/10.1016/j.molbiopara.2011.06.004 Bolger, A. M., Lohse, M., & Usadel, B. (2014). Trimmomatic: A flexible trimmer for Illumina Sequence Data. Bioinformatics, btu170. Britto, C., Ravel, C., Bastien, P., Blaineau, C., Pagès, M., Dedet, J. P., & Wincker, P. (1998). Conserved linkage groups associated with large-scale chromosomal rearrangements between Old World and New World Leishmania genomes. Gene, 222(1), 107–117. https://doi.org/10.1016/S0378-1119(98)00472-7 Brotherton, M.-C., Bourassa, S., Leprohon, P., Légaré, D., Poirier, G. G., Droit, A., & Ouellette, M. (2013). Proteomic and Genomic Analyses of Antimony Resistant Leishmania infantum Mutant. PLoS ONE, 8(11), e81899. https://doi.org/10.1371/journal.pone.0081899 Burza, S., Croft, S. L. and Boelaert, M. (2018). Leishmaniasis. Lancet, 392, 951-970. doi: 10.1016/s0140-6736(18)31204-2. Chakravarty, J., & Sundar, S. (2010). Drug resistance in leishmaniasis. Journal of global infectious diseases, 2(2), 167–176. https://doi.org/10.4103/0974-777X.62887 Clayton, C. E. (2016, August 1). Gene expression in Kinetoplastids. Current Opinion in Microbiology, Vol. 32, pp. 46–51. https://doi.org/10.1016/j.mib.2016.04.018 Croft, S. L., Sundar, S., & Fairlamb, A. H. (2006). Drug resistance in leishmaniasis. Clinical microbiology reviews, 19(1), 111–126. https://doi.org/10.1128/CMR.19.1.111-126.2006 de Vries, H. J. C., Reedijk, S. H., & Schallig, H. D. F. H. (2015, March 18). Cutaneous Leishmaniasis: Recent Developments in Diagnosis and Management. American Journal of Clinical Dermatology, Vol. 16, pp. 99–109. https://doi.org/10.1007/s40257-015-0114-z Denis, S., Carla, M., & Khatima, A. O. (2012). Antimony resistance and environment: Elusive links to explore during Leishmania life cycle. International Journal for Parasitology: Drugs and Drug Resistance, 2, 200–203. https://doi.org/10.1016/j.ijpddr.2012.07.003 Depledge, D. P., Evans, K. J., Ivens, A. C., Aziz, N., Maroof, A., Kaye, P. M., & Smith, D. F. (2009). Comparative Expression Profiling of Leishmania: Modulation in Gene Expression between Species and in Different Host Genetic Backgrounds. PLoS Neglected Tropical Diseases, 3(7), e476. https://doi.org/10.1371/journal.pntd.0000476 Decuypere, S., Vanaerschot, M., Brunker, K., Imamura, H., Müller, S., Khanal, B., … Coombs, G. H. (2012). Molecular Mechanisms of Drug Resistance in Natural Leishmania Populations Vary with Genetic Background. PLoS Neglected Tropical Diseases, 6(2), e1514. https://doi.org/10.1371/journal.pntd.0001514 Dillon, L. A., Okrah, K., Hughitt, V. K., Suresh, R., Li, Y., Fernandes, M. C., Belew, A. T., Corrada Bravo, H., Mosser, D. M., & El-Sayed, N. M. (2015). Transcriptomic profiling of gene expression and RNA processing during Leishmania major differentiation. Nucleic acids research, 43(14), 6799–6813. https://doi.org/10.1093/nar/gkv656 Diotallevi, A., Buffi, G., Ceccarelli, M., Neitzke-Abreu, H. C., Gnutzmann, L. V., da Costa Lima, M. S., … Galluzzi, L. (2020). Real-time PCR to differentiate among Leishmania (Viannia) subgenus, Leishmania (Leishmania) infantum and Leishmania (Leishmania) amazonensis: Application on Brazilian clinical samples. Acta Tropica, 201, 105178. https://doi.org/10.1016/j.actatropica.2019.105178 Dobin, A., Davis, C. A., Schlesinger, F., Drenkow, J., Zaleski, C., Jha, S., … Gingeras, T. R. (2013). STAR: Ultrafast universal RNA-seq aligner. Bioinformatics, 29(1), 15–21. https://doi.org/10.1093/bioinformatics/bts635 Dostálová, A., & Volf, P. (2012). Leishmania development in sand flies: parasite-vector interactions overview. Parasites & vectors, 5, 276. https://doi.org/10.1186/1756-3305-5-276 Douanne, N., Wagner, V., Roy, G., Leprohon, P., Ouellette, M., & Fernandez-Prada, C. (2020). MRPA-independent mechanisms of antimony resistance in Leishmania infantum. International Journal for Parasitology: Drugs and Drug Resistance, 13, 28–37. https://doi.org/10.1016/j.ijpddr.2020.03.003 Doyle, M. (2019) Visualization of RNA-Seq results with Volcano Plot (Galaxy Training Materials). /training-material/topics/transcriptomics/tutorials/rna-seq-viz-with-volcanoplot/tutorial.html Online; accessed Sat Jan 09 2021 Downing, T., Imamura, H., Decuypere, S., Clark, T. G., Coombs, G. H., Cotton, J. A., … Berriman, M. (2011). Whole genome sequencing of multiple Leishmania donovani clinical isolates provides insights into population structure and mechanisms of drug resistance. Genome Research, 21(12), 2143–2156. https://doi.org/10.1101/gr.123430.111 Dumetz, F., Imamura, H., Sanders, M., Seblova, V., Myskova, J., Pescher, P., … Domagalska, M. A. (2017). Modulation of aneuploidy in leishmania donovani during adaptation to different in vitro and in vivo environments and its impact on gene expression. MBio, 8(3). https://doi.org/10.1128/mBio.00599-17 Eddaikra, N., Ait-Oudhia, K., Kherrachi, I., Oury, B., Moulti-Mati, F., Benikhlef, R., … Sereno, D. (2018). Antimony susceptibility of Leishmania isolates collected over a 30-year period in Algeria. PLOS Neglected Tropical Diseases, 12(3), e0006310. https://doi.org/10.1371/journal.pntd.0006310 El Fadili, K., Messier, N., Leprohon, P., Roy, G., Guimond, C., Trudel, N., Saravia, N. G., Papadopoulou, B., Légaré, D., & Ouellette, M. (2005). Role of the ABC transporter MRPA (PGPA) in antimony resistance in Leishmania infantum axenic and intracellular amastigotes. Antimicrobial agents and chemotherapy, 49(5), 1988–1993. https://doi.org/10.1128/AAC.49.5.1988-1993.2005 Fernandes, A. P., Canavaci, A. M. C., McCall, L. I., & Matlashewski, G. (2014). A2 and other visceralizing proteins of Leishmania: Role in pathogenesis and application for vaccine development. Sub-Cellular Biochemistry, 74, 77–101. https://doi.org/10.1007/978-94-007-7305-9_3 Fernández, O. L., Diaz-Toro, Y., Ovalle, C., Valderrama, L., Muvdi, S., Rodríguez, I., Gomez, M. A., & Saravia, N. G. (2014). Miltefosine and antimonial drug susceptibility of Leishmania Viannia species and populations in regions of high transmission in Colombia. PLoS neglected tropical diseases, 8(5), e2871. https://doi.org/10.1371/journal.pntd.0002871 Fraga, J., Montalvo, A. M., Van der Auwera, G., Maes, I., Dujardin, J. C., & Requena, J. M. (2013). Evolution and species discrimination according to the Leishmania heat-shock protein 20 gene. Infection, Genetics and Evolution, 18, 229–237. https://doi.org/10.1016/j.meegid.2013.05.020 Frézard, F., Monte-Neto, R., & Reis, P. G. (2014). Antimony transport mechanisms in resistant leishmania parasites. Biophysical reviews, 6(1), 119–132. https://doi.org/10.1007/s12551-013-0134-y Galluzzi, L., Ceccarelli, M., Diotallevi, A., Menotta, M., & Magnani, M. (2018, May 2). Real-time PCR applications for diagnosis of leishmaniasis. Parasites and Vectors, Vol. 11, pp. 1–13. https://doi.org/10.1186/s13071-018-2859-8 Haldar, A. K., Sen, P., & Roy, S. (2011). Use of antimony in the treatment of leishmaniasis: current status and future directions. Molecular biology international, 2011, 571242. https://doi.org/10.4061/2011/571242 Hashiguchi, Y., & Gomez, E. A. (2018, June 28). Importance of Leishmania Species and Vector Sand Fly (Diptera: Psychodidae) Identification. Journal of Medical Entomology, Vol. 55, pp. 773–774. https://doi.org/10.1093/jme/tjy044 Hefnawy, A., Berg, M., Dujardin, J. C., & De Muylder, G. (2017, March 1). Exploiting Knowledge on Leishmania Drug Resistance to Support the Quest for New Drugs. Trends in Parasitology, Vol. 33, pp. 162–174. https://doi.org/10.1016/j.pt.2016.11.003 Iantorno, S. A., Durrant, C., Khan, A., Sanders, M. J., Beverley, S. M., Warren, W. C., … Grigg, M. E. (2017). Gene expression in Leishmania is regulated predominantly by gene dosage. MBio, 8(5). https://doi.org/10.1128/mBio.01393-17 Jain, K., & Jain, N. K. (2015, June 11). Vaccines for visceral leishmaniasis: A review. Journal of Immunological Methods, Vol. 422, pp. 1–12. https://doi.org/10.1016/j.jim.2015.03.017 Jeddi, F., Mary, C., Aoun, K., Harrat, Z., Bouratbine, A., Faraut, F., Benikhlef, R., Pomares, C., Pratlong, F., Marty, P., & Piarroux, R. (2014). Heterogeneity of molecular resistance patterns in antimony-resistant field isolates of Leishmania species from the western Mediterranean area. Antimicrobial agents and chemotherapy, 58(8), 4866–4874. https://doi.org/10.1128/AAC.02521-13 Laffitte, M. N., Leprohon, P., Papadopoulou, B., & Ouellette, M. (2016). Plasticity of the Leishmania genome leading to gene copy number variations and drug resistance. F1000Research, 5, 2350. https://doi.org/10.12688/f1000research.9218.1 Légaré, D., Richard, D., Mukhopadhyay, R., Stierhof, Y. D., Rosen, B. P., Haimeur, A., … Ouellette, M. (2001). The Leishmania ATP-binding Cassette Protein PGPA is an Intracellular Metal-Thiol Transporter ATPase. Journal of Biological Chemistry, 276(28), 26301–26307. https://doi.org/10.1074/jbc.M102351200 Leprohon, P., Légaré, D., Raymond, F., Madore, E., Hardiman, G., Corbeil, J., & Ouellette, M. (2009). Gene expression modulation is associated with gene amplification, supernumerary chromosomes and chromosome loss in antimony-resistant Leishmania infantum. Nucleic acids research, 37(5), 1387–1399. https://doi.org/10.1093/nar/gkn1069 Lin, G., Chai, J., Yuan, S., Mai, C., Cai, L., Murphy, R. W., … Luo, J. (2016). VennPainter: A Tool for the Comparison and Identification of Candidate Genes Based on Venn Diagrams. PLOS ONE, 11(4), e0154315. https://doi.org/10.1371/journal.pone.0154315 Lindoso, J., Costa, J., Queiroz, I. T., & Goto, H. (2012). Review of the current treatments for leishmaniases. Research and reports in tropical medicine, 3, 69–77. https://doi.org/10.2147/RRTM.S24764 Llanes, A., Restrepo, C. M., Vecchio, G. Del, Anguizola, F. J., & Lleonart, R. (2015). The genome of Leishmania panamensis: Insights into genomics of the L. (Viannia) subgenus. Scientific Reports, 5(1), 1–10. https://doi.org/10.1038/srep08550 Love MI, Huber W, Anders S (2014). “Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2.” Genome Biology, 15, 550. doi: 10.1186/s13059-014-0550-8. Manzano, J. I., García-Hernández, R., Castanys, S., & Gamarro, F. (2013). A new ABC half-transporter in leishmania major is involved in resistance to antimony. Antimicrobial Agents and Chemotherapy, 57(8), 3719–3730. https://doi.org/10.1128/AAC.00211-13 Martin, M. (2011). Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.Journal, 17(1), 10. https://doi.org/10.14806/ej.17.1.200 Marín, M., Aguilar, Y. A., Ramírez, J. R., Triana, O., & Muskus, C. E. (2008). Molecular and immunological analyses suggest the absence of hydrophilic surface proteins in Leishmania (Viannia) panamensis. Biomedica, 28(3), 423–432. https://doi.org/10.7705/biomedica.v28i3.80 Maharjan, M., & Madhubala, R. (2015). Heat shock protein 70 (HSP70) expression in antimony susceptible/resistant clinical isolates of Leishmania donovani. Nepal Journal of Biotechnology, 3(1), 22–28. https://doi.org/10.3126/njb.v3i1.14225 Mathur, R., Das, R. P., Ranjan, A., & Shaha, C. (2015). Elevated ergosterol protects Leishmania parasites against antimony-generated stress. FASEB Journal, 29(10), 4201–4213. https://doi.org/10.1096/fj.15-272757 Matrangolo, F. S. V., Liarte, D. B., Andrade, L. C., De Melo, M. F., Andrade, J. M., Ferreira, R. F., … Murta, S. M. F. (2013). Comparative proteomic analysis of antimony-resistant and-susceptible Leishmania braziliensis and Leishmania infantum chagasi lines. Molecular and Biochemical Parasitology, 190(2), 63–75. https://doi.org/10.1016/j.molbiopara.2013.06.006 Michaeli, S. (2011, April). Trans-splicing in trypanosomes: Machinery and its impact on the parasite transcriptome. Future Microbiology, Vol. 6, pp. 459–474. https://doi.org/10.2217/fmb.11.20 Monte-Neto, R., Laffitte, M. C., Leprohon, P., Reis, P., Frézard, F., & Ouellette, M. (2015). Intrachromosomal amplification, locus deletion and point mutation in the aquaglyceroporin AQP1 gene in antimony resistant Leishmania (Viannia) guyanensis. PLoS neglected tropical diseases, 9(2), e0003476. https://doi.org/10.1371/journal.pntd.0003476 Mukherjee, S., Sen Santara, S., Das, S., Bose, M., Roy, J., & Adak, S. (2012). NAD(P)H cytochrome b5 oxidoreductase deficiency in Leishmania major results in impaired linoleate synthesis followed by increased oxidative stress and cell death. The Journal of biological chemistry, 287(42), 34992–35003. https://doi.org/10.1074/jbc.M112.389338 Mukherjee, A., Boisvert, S., Monte-Neto, R. L. do, Coelho, A. C., Raymond, F., Mukhopadhyay, R., … Ouellette, M. (2013). Telomeric gene deletion and intrachromosomal amplification in antimony-resistant Leishmania. Molecular Microbiology, 88(1), 189–202. https://doi.org/10.1111/mmi.12178 Mukherjee, A., Adhikari, A., Das, P., Biswas, S., Mukherjee, S., & Adak, S. (2018). Loss of virulence in NAD(P)H cytochrome b5 oxidoreductase deficient Leishmania major. Biochemical and Biophysical Research Communications, 503(1), 371–377. https://doi.org/10.1016/j.bbrc.2018.06.037 Nocua, P. A., Ramirez, C. A., Requena, J. M., & Puerta, C. J. (2017). Leishmania braziliensis SCD6 and RBP42 proteins, two factors with RNA binding capacity. Parasites and Vectors, 10(1), 610. https://doi.org/10.1186/s13071-017-2557-y Oryan, A., & Akbari, M. (2016, October 1). Worldwide risk factors in leishmaniasis. Asian Pacific Journal of Tropical Medicine, Vol. 9, pp. 925–932. https://doi.org/10.1016/j.apjtm.2016.06.021 Ovalle-Bracho, C., Camargo, C., Díaz-Toro, Y., & Parra-Muñoz, M. (2018). Molecular typing of Leishmania (Leishmania) amazonensis and species of the subgenus Viannia associated with cutaneous and mucosal leishmaniasis in Colombia: A concordance study. Biomedica, 38(1), 86–95. https://doi.org/10.7705/biomedica.v38i0.3632 Patino, L. H., Imamura, H., Cruz-Saavedra, L., Pavia, P., Muskus, C., Méndez, C., … Ramírez, J. D. (2019). Major changes in chromosomal somy, gene expression and gene dosage driven by SbIII in Leishmania braziliensis and Leishmania panamensis. Scientific Reports, 9(1). https://doi.org/10.1038/s41598-019-45538-9 Patino, L. H., Muskus, C., & Ramírez, J. D. (2019). Transcriptional responses of Leishmania (Leishmania) amazonensis in the presence of trivalent sodium stibogluconate. Parasites and Vectors, 12(1). https://doi.org/10.1186/s13071-019-3603-8 Peacock, C. S., Seeger, K., Harris, D., Murphy, L., Ruiz, J. C., Quail, M. A., Peters, N., Adlem, E., Tivey, A., Aslett, M., Kerhornou, A., Ivens, A., Fraser, A., Rajandream, M. A., Carver, T., Norbertczak, H., Chillingworth, T., Hance, Z., Jagels, K., Moule, S., … Berriman, M. (2007). Comparative genomic analysis of three Leishmania species that cause diverse human disease. Nature genetics, 39(7), 839–847. https://doi.org/10.1038/ng2053 Pertea, G., & Pertea, M. (2020). GFF Utilities: GffRead and GffCompare. F1000Research, 9, 304. https://doi.org/10.12688/f1000research.23297.2 Pessenda, G., & da Silva, J. S. (2020, July 1). Arginase and its mechanisms in Leishmania persistence. Parasite Immunology, Vol. 42. https://doi.org/10.1111/pim.12722 Ponte-Sucre, A., Gamarro, F., Dujardin, J. C., Barrett, M. P., López-Vélez, R., García-Hernández, R., Pountain, A. W., Mwenechanya, R., & Papadopoulou, B. (2017). Drug resistance and treatment failure in leishmaniasis: A 21st century challenge. PLoS neglected tropical diseases, 11(12), e0006052. https://doi.org/10.1371/journal.pntd.0006052 Rabhi, I., Rabhi, S., Ben-Othman, R., Rasche, A., Consortium, S., Daskalaki, A., … Guizani-Tabbane, L. (2012). Transcriptomic Signature of Leishmania Infected Mice Macrophages: A Metabolic Point of View. PLoS Neglected Tropical Diseases, 6(8), e1763. https://doi.org/10.1371/journal.pntd.0001763 Rashidi, S., Kalantar, K., Fernandez-Rubio, C., Anvari, E., Nguewa, P., & Hatam, G. (2020, February 1). Chitin binding protein as a possible RNA binding protein in Leishmania parasites. Pathogens and Disease, Vol. 78. https://doi.org/10.1093/femspd/ftaa007 Rastrojo, A., García-Hernández, R., Vargas, P., Camacho, E., Corvo, L., Imamura, H., Dujardin, J. C., Castanys, S., Aguado, B., Gamarro, F., & Requena, J. M. (2018). Genomic and transcriptomic alterations in Leishmania donovani lines experimentally resistant to antileishmanial drugs. International journal for parasitology. Drugs and drug resistance, 8(2), 246–264. https://doi.org/10.1016/j.ijpddr.2018.04.002 Restrepo, C. M., Llanes, A., Cedeño, E. M., Chang, J. H., Álvarez, J., Ríos, M., … Lleonart, R. (2019). Environmental conditions may shape the patterns of genomic variations in Leishmania panamensis. Genes, 10(11). https://doi.org/10.3390/genes10110838 Rochette, A., Raymond, F., Ubeda, J. M., Smith, M., Messier, N., Boisvert, S., … Papadopoulou, B. (2008). Genome-wide gene expression profiling analysis of Leishmania major and Leishmania infantum developmental stages reveals substantial differences between the two species. BMC Genomics, 9(1), 1–26. https://doi.org/10.1186/1471-2164-9-255 Rogers, M. B., Hilley, J. D., Dickens, N. J., Wilkes, J., Bates, P. A., Depledge, D. P., … Mottram, J. C. (2011). Chromosome and gene copy number variation allow major structural change between species and strains of Leishmania. Genome Research, 21(12), 2129–2142. https://doi.org/10.1101/gr.122945.111 Rojas, R., Valderrama, L., Valderrama, M., Varona, M. X., Ouellette, M., & Saravia, N. G. (2006). Resistance to antimony and treatment failure in human Leishmania (Viannia) infection. Journal of Infectious Diseases, 193(10), 1375–1383. https://doi.org/10.1086/503371 Romero, G. A. S., De Farias Guerra, M. V., Paes, M. G., & De Oliveira Macêdo, V. (2001). Comparison of cutaneous leishmaniasis due to Leishmania (Viannia) braziliensis and L. (V.) guyanensis in Brazil: Therapeutic response to meglumine antimoniate. American Journal of Tropical Medicine and Hygiene, 65(5), 456–465. https://doi.org/10.4269/ajtmh.2001.65.456 Rugani, J. N., Quaresma, P. F., Gontijo, C. F., Soares, R. P., & Monte-Neto, R. L. (2018). Intraspecies susceptibility of Leishmania (Viannia) braziliensis to antileishmanial drugs: Antimony resistance in human isolates from atypical lesions. Biomedicine and Pharmacotherapy, 108, 1170–1180. https://doi.org/10.1016/j.biopha.2018.09.149 Singh, N. & Sundar, S. (2017). Integrating genomics and proteomics permits identification of immunodominant antigens associated with drug resistance in human visceral leishmaniasis in India. Experimental Parasitology, 176(), 30–45. doi:10.1016/j.exppara.2017.02.019 Steverding D. (2017). The history of leishmaniasis. Parasites & vectors, 10(1), 82. https://doi.org/10.1186/s13071-017-2028-5 Sundar, S., & Chakravarty, J. (2015, February 1). An update on pharmacotherapy for leishmaniasis. Expert Opinion on Pharmacotherapy, Vol. 16, pp. 237–252. https://doi.org/10.1517/14656566.2015.973850 Sundar, S., Chakravarty, J., & Meena, L. P. (2019, January 2). Leishmaniasis: treatment, drug resistance and emerging therapies. Expert Opinion on Orphan Drugs, Vol. 7, pp. 1–10. https://doi.org/10.1080/21678707.2019.1552853 Torres-Guerrero, E., Quintanilla-Cedillo, M. R., Ruiz-Esmenjaud, J., & Arenas, R. (2017). Leishmaniasis: a review. F1000Research, 6, 750. https://doi.org/10.12688/f1000research.11120.1 Ubeda, J.-M., Raymond, F., Mukherjee, A., Plourde, M., Gingras, H., Roy, G., … Ouellette, M. (2014). Genome-Wide Stochastic Adaptive DNA Amplification at Direct and Inverted DNA Repeats in the Parasite Leishmania. PLoS Biology, 12(5), e1001868. https://doi.org/10.1371/journal.pbio.1001868 Uliana, S. R. B., Trinconi, C. T., & Coelho, A. C. (2018, April 1). Chemotherapy of leishmaniasis: Present challenges. Parasitology, Vol. 145, pp. 464–480. https://doi.org/10.1017/S0031182016002523 Urrea, D. A., Duitama, J., Imamura, H., Álzate, J. F., Gil, J., Muñoz, N., … Triana-Chavez, O. (2018). Genomic Analysis of Colombian Leishmania panamensis strains with different level of virulence. Scientific Reports, 8(1), 1–16. https://doi.org/10.1038/s41598-018-35778-6 Valero, N. N. H., & Uriarte, M. (2020, February 1). Environmental and socioeconomic risk factors associated with visceral and cutaneous leishmaniasis: a systematic review. Parasitology Research, Vol. 119, pp. 365–384. https://doi.org/10.1007/s00436-019-06575-5 Vanaerschot, M., Dumetz, F., Roy, S., Ponte-Sucre, A., Arevalo, J., & Dujardin, J. C. (2014). Treatment failure in leishmaniasis: Drug-resistance or another (epi-) phenotype? Expert Review of Anti-Infective Therapy, Vol. 12, pp. 937–946. https://doi.org/10.1586/14787210.2014.916614 Vanlerberghe, V., Diap, G., Guerin, P. J., Meheus, F., Gerstl, S., Stuyft, P. Van Der, & Boelaert, M. (2007). Drug policy for visceral leishmaniasis: A cost-effectiveness analysis. Tropical Medicine and International Health, 12(2), 274–283. https://doi.org/10.1111/j.1365-3156.2006.01782.x Verma, A., Bhandari, V., Deep, D. K., Sundar, S., Dujardin, J. C., Singh, R., & Salotra, P. (2017). Transcriptome profiling identifies genes/pathways associated with experimental resistance to paromomycin in Leishmania donovani. International Journal for Parasitology: Drugs and Drug Resistance, 7(3), 370–377. https://doi.org/10.1016/j.ijpddr.2017.10.004 Vermeersch, M., da Luz, R. I., Toté, K., Timmermans, J. P., Cos, P., & Maes, L. (2009). In vitro susceptibilities of Leishmania donovani promastigote and amastigote stages to antileishmanial reference drugs: practical relevance of stage-specific differences. Antimicrobial agents and chemotherapy, 53(9), 3855–3859. https://doi.org/10.1128/AAC.00548-09 Wickham H (2016). ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York. ISBN 978-3-319-24277-4, https://ggplot2.tidyverse.org. Yardley, V., Ortuño, N., Llanos‐Cuentas, A., Chappuis, F., Doncker, S. D., Ramirez, L., … Dujardin, J. (2006). American Tegumentary Leishmaniasis: Is Antimonial Treatment Outcome Related to Parasite Drug Susceptibility? The Journal of Infectious Diseases, 194(8), 1168–1175. https://doi.org/10.1086/507710 |
dc.source.instname.spa.fl_str_mv |
instname:Universidad del Rosario |
dc.source.reponame.spa.fl_str_mv |
reponame:Repositorio Institucional EdocUR |
bitstream.url.fl_str_mv |
https://repository.urosario.edu.co/bitstreams/961cd2d0-ebbe-4a8f-93df-6537464bdd50/download https://repository.urosario.edu.co/bitstreams/7d225681-c8bd-4e7d-b36c-5640cd455d9b/download https://repository.urosario.edu.co/bitstreams/c5476ae3-4ed2-4506-8b5b-1e1a041b29a0/download https://repository.urosario.edu.co/bitstreams/d9c9974e-0591-4dec-b14d-f27f39ba9bfe/download https://repository.urosario.edu.co/bitstreams/423dbb61-62d7-45c3-b1ee-b7ff4ce3fc8a/download https://repository.urosario.edu.co/bitstreams/a3491a23-1783-4d34-a14d-5b69dbf3b7e3/download https://repository.urosario.edu.co/bitstreams/0ae21b87-595f-4996-a5ad-3ce0ccddc995/download https://repository.urosario.edu.co/bitstreams/fb9881b1-dc3f-4f6c-842f-a00fda1e8b84/download https://repository.urosario.edu.co/bitstreams/e3653d09-12bf-408f-9923-a348c2b3841e/download https://repository.urosario.edu.co/bitstreams/24bee454-911b-4a64-a118-18430c623676/download https://repository.urosario.edu.co/bitstreams/1c12a684-e243-42e2-ad26-e6537c7dd7a8/download https://repository.urosario.edu.co/bitstreams/318b3017-84ca-4161-8006-e5b3705f91ef/download https://repository.urosario.edu.co/bitstreams/2f37bd03-6ff1-4dd5-a8f7-8eb119ad5660/download https://repository.urosario.edu.co/bitstreams/fc07ab63-d670-4ac1-af92-1ce30edb2f2e/download |
bitstream.checksum.fl_str_mv |
1163dd1d58e82cd08f6ee162e4fb1ac4 a7444214b60c7d2e26c602d08f35389c a7671c4b59a612954fbfd7a6b6be6406 82b5db001e017b41566e6273cf338509 fab9d9ed61d64f6ac005dee3306ae77e dab767be7a093b539031785b3bf95490 c19914f506cd016902f7d12b320865d9 d89ffc3f1169bfad5f8e2418ca717051 6a95ae5b21eedefceb8dfd7fb70acb81 ca899f459b82d4e7f77570d23c51b120 0e0389f98a77a738e76d8fe8c225b49b 7f170ac6e8064524b53bb62e20ff5808 a31382a3d23efbe132f9c17a2d07f265 9bee1d04f7c1300b9287977e692183d4 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio institucional EdocUR |
repository.mail.fl_str_mv |
edocur@urosario.edu.co |
_version_ |
1831928121150930944 |
spelling |
Ramírez, Juan David1011716118600Medina Velasquez, Julián EstebanBiólogoFull timef12cac92-fc6f-4b21-a221-fbb43a1641956002021-02-16T23:44:21Z2021-02-16T23:44:21Z2021-01-25La leishmaniasis es considerada una enfermedad tropical desatendida para la cual no se cuenta con una vacuna. Por otra parte, las drogas de primera elección han presentado un aumento en las fallas terapéuticas, entre otras causas por la adquisición de resistencia por parte de su agente etiológico dependiente de las características propias de cada especie (ej. manifestación clínica y distribución geográfica). Así, que comprender el mecanismo usado por el parásito para sobrevivir bajo la presión de tratamientos identificando probables blancos terapéuticos comunes y específicos es importante para el control de la leishmaniasis. Sin embargo, hasta el momento no se ha realizado un análisis donde se compare la expresión génica entre especies de Leishmania que exhiben diferentes características genéticas y biológicas reflejadas en las manifestaciones clínicas diferenciales asociadas. Aquí, aplicamos análisis comparativos de los perfiles transcriptómicos de líneas con resistencia inducida experimentalmente al antimonio trivalente (SbIII) de cinco especies de importancia médica (Subgénero L. (Leishmania): L. donovani, L. infantum y L. amazonensis; Subgénero L. (Viannia): L. panamensis y L. braziliensis), causantes de diferentes manifestaciones clínicas (que generalmente son Leishmaniasis cutánea para L. panamensis y L. amazonensis, mucocutánea para L. braziliensis y visceral para L. donovani y L. infantum) a partir de análisis funcionales de ontología y asignación de grupos ortólogos. Las líneas resistentes tenían respuestas diferenciales principalmente en procesos metabólicos, unión a compuestos y componentes membranales respecto a su contraparte sensible. Predominaron los genes ortólogos diferencialmente expresados asignados a las respuestas especie especificas con un total de 1426 genes propios. A nivel de la respuesta por subgénero no se encontraron genes compartidos entre las especies pertenecientes a L. (Leishmania) y solo 7 lo fueron entre aquellas pertenecientes a L. (Viannia). No se halló ningún gen diferencialmente expresado en común entre las 5 especies, pero se encontraron dos genes ortólogos sobrerregulados comunes entre 4 especies (L. donovani, L. braziliensis, L. amazonensis y L. panamensis) referidos a una proteína de unión a RNA y al complejo NAD(P)H citocromo B5 oxidorreductasa, asociados al control transcripcional y a la síntesis de novo del ácido linoleico, importantes en los mecanismos de resistencia a los antimoniales. Estos patrones obedecen probablemente el fenómeno multifactorial de la resistencia a drogas, dependiente de características intrínsecas del parásito y el entorno. Por ende, las aproximaciones especie específicas resultan más recomendables para la proposición de potenciales blancos terapéuticos.Leishmaniasis is considered a neglected tropical disease for which there is no vaccine. On the other hand, first-line drugs have shown an increase in therapeutic failures, among other causes due to the acquisition of resistance by their etiological agent, depending on the characteristics of each species (eg, clinical manifestation and geographic distribution). Thus, understanding the mechanism used by the parasite to survive under the pressure of treatments by identifying probable common and specific therapeutic targets is important for the control of leishmaniasis. However, to date no analysis has been performed comparing gene expression between Leishmania species that exhibit different genetic and biological characteristics reflected in the associated differential clinical manifestations. Here, we apply comparative analyzes of the transcriptomic profiles of lines with experimentally induced resistance to trivalent antimony (SbIII) of five species of medical importance (Subgenus L. (Leishmania): L. donovani, L. infantum and L. amazonensis; Subgenus L. (Viannia): L. panamensis and L. braziliensis), causing different clinical manifestations (which are generally cutaneous Leishmaniasis for L. panamensis and L. amazonensis, mucocutaneous for L. braziliensis and visceral for L. donovani and L. infantum) a starting from functional analysis of ontology and assignment of orthologous groups. The resistant lines had differential responses mainly in metabolic processes, compound binding and membrane components with respect to their sensitive counterpart. metabolic, binding to membrane compounds and components relative to their sensitive counterpart. Differentially expressed orthologous genes assigned to species-specific responses predominated with a total of 1426 self genes. At the level of the response by subgenus, no shared genes were found among the species belonging to L. (Leishmania) and only 7 were found among those belonging to L. (Viannia). No differentially expressed gene was found in common among the 5 species, but two common upregulated orthologous genes were found among 4 species (L. donovani, L. braziliensis, L. amazonensis and L. panamensis) referred to an RNA-binding protein and the NAD (P) H cytochrome B5 oxidoreductase complex, associated with transcriptional control and de novo synthesis of linoleic acid, important in the mechanisms of resistance to antimonials. These patterns probably obey the multifactorial phenomenon of drug resistance, dependent on the intrinsic characteristics of the parasite and the environment. Therefore, species-specific approaches are more advisable for proposing potential therapeutic targets.application/pdfhttps://doi.org/10.48713/10336_30923 https://repository.urosario.edu.co/handle/10336/30923spaUniversidad del RosarioFacultad de Ciencias Naturales y MatemáticasBiologíaAtribución-SinDerivadas 2.5 ColombiaAbierto (Texto Completo)EL AUTOR, manifiesta que la obra objeto de la presente autorización es original y la realizó sin violar o usurpar derechos de autor de terceros, por lo tanto la obra es de exclusiva autoría y tiene la titularidad sobre la misma.http://creativecommons.org/licenses/by-nd/2.5/co/http://purl.org/coar/access_right/c_abf2Acino Brettmann, E. (2017). The Role of RNA Interference in the Control of Leishmania RNA virus 1 Infection. Retrieved from https://openscholarship.wustl.edu/art_sci_etds/1090Akhoundi, M., Kuhls, K., Cannet, A., Votýpka, J., Marty, P., Delaunay, P., & Sereno, D. (2016). A Historical Overview of the Classification, Evolution, and Dispersion of Leishmania Parasites and Sandflies. PLOS Neglected Tropical Diseases, 10(3), e0004349. https://doi.org/10.1371/journal.pntd.0004349Akhoundi, M., Downing, T., Votýpka, J., Kuhls, K., Lukeš, J., Cannet, A., … Sereno, D. (2017, October 1). Leishmania infections: Molecular targets and diagnosis. Molecular Aspects of Medicine, Vol. 57, pp. 1–29. https://doi.org/10.1016/j.mam.2016.11.012Alemayehu, B., & Alemayehu, M. (2017). Leishmaniasis: A Review on Parasite, Vector and Reservoir Host. Health Science Journal, 11(4). https://doi.org/10.21767/1791-809x.1000519Anders, S., Pyl, P. T., & Huber, W. (2015). HTSeq--a Python framework to work with high-throughput sequencing data. Bioinformatics, 31(2), 166–169. https://doi.org/10.1093/bioinformatics/btu638Andrade, J. M & Murta, S. (2014). Functional analysis of cytosolic tryparedoxin peroxidase in antimony-resistant and –susceptible Leishmania braziliensis and Leishmania infantum lines. Parasites & Vectors, 7(1), 406–. doi:10.1186/1756-3305-7-406Andrews, S. (2010). FastQC: A Quality Control Tool for High Throughput Sequence Data [Online]. Available online at: http://www.bioinformatics.babraham.ac.uk/projects/fastqc/Aslett, M., Aurrecoechea, C., Berriman, M., Brestelli, J., Brunk, B. P., Carrington, M., Depledge, D. P., Fischer, S., Gajria, B., Gao, X., Gardner, M. J., Gingle, A., Grant, G., Harb, O. S., Heiges, M., Hertz-Fowler, C., Houston, R., Innamorato, F., Iodice, J., Kissinger, J. C., … Wang, H. (2010). TriTrypDB: a functional genomic resource for the Trypanosomatidae. Nucleic acids research, 38(Database issue), D457–D462. https://doi.org/10.1093/nar/gkp851Aurrecoechea, C., Barreto, A., Basenko, E. Y., Brestelli, J., Brunk, B. P., Cade, S., … Zheng, J. (2017). EuPathDB: The eukaryotic pathogen genomics database resource. Nucleic Acids Research, 45(D1), D581–D591. https://doi.org/10.1093/nar/gkw1105Bañuls, A. L., Hide, M., & Prugnolle, F. (2007, January 1). Leishmania and the Leishmaniases: A Parasite Genetic Update and Advances in Taxonomy, Epidemiology and Pathogenicity in Humans. Advances in Parasitology, Vol. 64, pp. 1–458. https://doi.org/10.1016/S0065-308X(06)64001-3Barrera, M. C., Rojas, L. J., Weiss, A., Fernandez, O., McMahon-Pratt, D., Saravia, N. G., & Gomez, M. A. (2017). Profiling gene expression of antimony response genes in Leishmania (Viannia) panamensis and infected macrophages and its relationship with drug susceptibility. Acta Tropica, 176, 355–363. https://doi.org/10.1016/j.actatropica.2017.08.017Biyani, N., Singh, A. K., Mandal, S., Chawla, B., & Madhubala, R. (2011). Differential expression of proteins in antimony-susceptible and -resistant isolates of Leishmania donovani. Molecular and Biochemical Parasitology, 179(2), 91–99. https://doi.org/10.1016/j.molbiopara.2011.06.004Bolger, A. M., Lohse, M., & Usadel, B. (2014). Trimmomatic: A flexible trimmer for Illumina Sequence Data. Bioinformatics, btu170.Britto, C., Ravel, C., Bastien, P., Blaineau, C., Pagès, M., Dedet, J. P., & Wincker, P. (1998). Conserved linkage groups associated with large-scale chromosomal rearrangements between Old World and New World Leishmania genomes. Gene, 222(1), 107–117. https://doi.org/10.1016/S0378-1119(98)00472-7Brotherton, M.-C., Bourassa, S., Leprohon, P., Légaré, D., Poirier, G. G., Droit, A., & Ouellette, M. (2013). Proteomic and Genomic Analyses of Antimony Resistant Leishmania infantum Mutant. PLoS ONE, 8(11), e81899. https://doi.org/10.1371/journal.pone.0081899Burza, S., Croft, S. L. and Boelaert, M. (2018). Leishmaniasis. Lancet, 392, 951-970. doi: 10.1016/s0140-6736(18)31204-2.Chakravarty, J., & Sundar, S. (2010). Drug resistance in leishmaniasis. Journal of global infectious diseases, 2(2), 167–176. https://doi.org/10.4103/0974-777X.62887Clayton, C. E. (2016, August 1). Gene expression in Kinetoplastids. Current Opinion in Microbiology, Vol. 32, pp. 46–51. https://doi.org/10.1016/j.mib.2016.04.018Croft, S. L., Sundar, S., & Fairlamb, A. H. (2006). Drug resistance in leishmaniasis. Clinical microbiology reviews, 19(1), 111–126. https://doi.org/10.1128/CMR.19.1.111-126.2006de Vries, H. J. C., Reedijk, S. H., & Schallig, H. D. F. H. (2015, March 18). Cutaneous Leishmaniasis: Recent Developments in Diagnosis and Management. American Journal of Clinical Dermatology, Vol. 16, pp. 99–109. https://doi.org/10.1007/s40257-015-0114-zDenis, S., Carla, M., & Khatima, A. O. (2012). Antimony resistance and environment: Elusive links to explore during Leishmania life cycle. International Journal for Parasitology: Drugs and Drug Resistance, 2, 200–203. https://doi.org/10.1016/j.ijpddr.2012.07.003Depledge, D. P., Evans, K. J., Ivens, A. C., Aziz, N., Maroof, A., Kaye, P. M., & Smith, D. F. (2009). Comparative Expression Profiling of Leishmania: Modulation in Gene Expression between Species and in Different Host Genetic Backgrounds. PLoS Neglected Tropical Diseases, 3(7), e476. https://doi.org/10.1371/journal.pntd.0000476Decuypere, S., Vanaerschot, M., Brunker, K., Imamura, H., Müller, S., Khanal, B., … Coombs, G. H. (2012). Molecular Mechanisms of Drug Resistance in Natural Leishmania Populations Vary with Genetic Background. PLoS Neglected Tropical Diseases, 6(2), e1514. https://doi.org/10.1371/journal.pntd.0001514Dillon, L. A., Okrah, K., Hughitt, V. K., Suresh, R., Li, Y., Fernandes, M. C., Belew, A. T., Corrada Bravo, H., Mosser, D. M., & El-Sayed, N. M. (2015). Transcriptomic profiling of gene expression and RNA processing during Leishmania major differentiation. Nucleic acids research, 43(14), 6799–6813. https://doi.org/10.1093/nar/gkv656Diotallevi, A., Buffi, G., Ceccarelli, M., Neitzke-Abreu, H. C., Gnutzmann, L. V., da Costa Lima, M. S., … Galluzzi, L. (2020). Real-time PCR to differentiate among Leishmania (Viannia) subgenus, Leishmania (Leishmania) infantum and Leishmania (Leishmania) amazonensis: Application on Brazilian clinical samples. Acta Tropica, 201, 105178. https://doi.org/10.1016/j.actatropica.2019.105178Dobin, A., Davis, C. A., Schlesinger, F., Drenkow, J., Zaleski, C., Jha, S., … Gingeras, T. R. (2013). STAR: Ultrafast universal RNA-seq aligner. Bioinformatics, 29(1), 15–21. https://doi.org/10.1093/bioinformatics/bts635Dostálová, A., & Volf, P. (2012). Leishmania development in sand flies: parasite-vector interactions overview. Parasites & vectors, 5, 276. https://doi.org/10.1186/1756-3305-5-276Douanne, N., Wagner, V., Roy, G., Leprohon, P., Ouellette, M., & Fernandez-Prada, C. (2020). MRPA-independent mechanisms of antimony resistance in Leishmania infantum. International Journal for Parasitology: Drugs and Drug Resistance, 13, 28–37. https://doi.org/10.1016/j.ijpddr.2020.03.003Doyle, M. (2019) Visualization of RNA-Seq results with Volcano Plot (Galaxy Training Materials). /training-material/topics/transcriptomics/tutorials/rna-seq-viz-with-volcanoplot/tutorial.html Online; accessed Sat Jan 09 2021Downing, T., Imamura, H., Decuypere, S., Clark, T. G., Coombs, G. H., Cotton, J. A., … Berriman, M. (2011). Whole genome sequencing of multiple Leishmania donovani clinical isolates provides insights into population structure and mechanisms of drug resistance. Genome Research, 21(12), 2143–2156. https://doi.org/10.1101/gr.123430.111Dumetz, F., Imamura, H., Sanders, M., Seblova, V., Myskova, J., Pescher, P., … Domagalska, M. A. (2017). Modulation of aneuploidy in leishmania donovani during adaptation to different in vitro and in vivo environments and its impact on gene expression. MBio, 8(3). https://doi.org/10.1128/mBio.00599-17Eddaikra, N., Ait-Oudhia, K., Kherrachi, I., Oury, B., Moulti-Mati, F., Benikhlef, R., … Sereno, D. (2018). Antimony susceptibility of Leishmania isolates collected over a 30-year period in Algeria. PLOS Neglected Tropical Diseases, 12(3), e0006310. https://doi.org/10.1371/journal.pntd.0006310El Fadili, K., Messier, N., Leprohon, P., Roy, G., Guimond, C., Trudel, N., Saravia, N. G., Papadopoulou, B., Légaré, D., & Ouellette, M. (2005). Role of the ABC transporter MRPA (PGPA) in antimony resistance in Leishmania infantum axenic and intracellular amastigotes. Antimicrobial agents and chemotherapy, 49(5), 1988–1993. https://doi.org/10.1128/AAC.49.5.1988-1993.2005Fernandes, A. P., Canavaci, A. M. C., McCall, L. I., & Matlashewski, G. (2014). A2 and other visceralizing proteins of Leishmania: Role in pathogenesis and application for vaccine development. Sub-Cellular Biochemistry, 74, 77–101. https://doi.org/10.1007/978-94-007-7305-9_3Fernández, O. L., Diaz-Toro, Y., Ovalle, C., Valderrama, L., Muvdi, S., Rodríguez, I., Gomez, M. A., & Saravia, N. G. (2014). Miltefosine and antimonial drug susceptibility of Leishmania Viannia species and populations in regions of high transmission in Colombia. PLoS neglected tropical diseases, 8(5), e2871. https://doi.org/10.1371/journal.pntd.0002871Fraga, J., Montalvo, A. M., Van der Auwera, G., Maes, I., Dujardin, J. C., & Requena, J. M. (2013). Evolution and species discrimination according to the Leishmania heat-shock protein 20 gene. Infection, Genetics and Evolution, 18, 229–237. https://doi.org/10.1016/j.meegid.2013.05.020Frézard, F., Monte-Neto, R., & Reis, P. G. (2014). Antimony transport mechanisms in resistant leishmania parasites. Biophysical reviews, 6(1), 119–132. https://doi.org/10.1007/s12551-013-0134-yGalluzzi, L., Ceccarelli, M., Diotallevi, A., Menotta, M., & Magnani, M. (2018, May 2). Real-time PCR applications for diagnosis of leishmaniasis. Parasites and Vectors, Vol. 11, pp. 1–13. https://doi.org/10.1186/s13071-018-2859-8Haldar, A. K., Sen, P., & Roy, S. (2011). Use of antimony in the treatment of leishmaniasis: current status and future directions. Molecular biology international, 2011, 571242. https://doi.org/10.4061/2011/571242Hashiguchi, Y., & Gomez, E. A. (2018, June 28). Importance of Leishmania Species and Vector Sand Fly (Diptera: Psychodidae) Identification. Journal of Medical Entomology, Vol. 55, pp. 773–774. https://doi.org/10.1093/jme/tjy044Hefnawy, A., Berg, M., Dujardin, J. C., & De Muylder, G. (2017, March 1). Exploiting Knowledge on Leishmania Drug Resistance to Support the Quest for New Drugs. Trends in Parasitology, Vol. 33, pp. 162–174. https://doi.org/10.1016/j.pt.2016.11.003Iantorno, S. A., Durrant, C., Khan, A., Sanders, M. J., Beverley, S. M., Warren, W. C., … Grigg, M. E. (2017). Gene expression in Leishmania is regulated predominantly by gene dosage. MBio, 8(5). https://doi.org/10.1128/mBio.01393-17Jain, K., & Jain, N. K. (2015, June 11). Vaccines for visceral leishmaniasis: A review. Journal of Immunological Methods, Vol. 422, pp. 1–12. https://doi.org/10.1016/j.jim.2015.03.017Jeddi, F., Mary, C., Aoun, K., Harrat, Z., Bouratbine, A., Faraut, F., Benikhlef, R., Pomares, C., Pratlong, F., Marty, P., & Piarroux, R. (2014). Heterogeneity of molecular resistance patterns in antimony-resistant field isolates of Leishmania species from the western Mediterranean area. Antimicrobial agents and chemotherapy, 58(8), 4866–4874. https://doi.org/10.1128/AAC.02521-13Laffitte, M. N., Leprohon, P., Papadopoulou, B., & Ouellette, M. (2016). Plasticity of the Leishmania genome leading to gene copy number variations and drug resistance. F1000Research, 5, 2350. https://doi.org/10.12688/f1000research.9218.1Légaré, D., Richard, D., Mukhopadhyay, R., Stierhof, Y. D., Rosen, B. P., Haimeur, A., … Ouellette, M. (2001). The Leishmania ATP-binding Cassette Protein PGPA is an Intracellular Metal-Thiol Transporter ATPase. Journal of Biological Chemistry, 276(28), 26301–26307. https://doi.org/10.1074/jbc.M102351200Leprohon, P., Légaré, D., Raymond, F., Madore, E., Hardiman, G., Corbeil, J., & Ouellette, M. (2009). Gene expression modulation is associated with gene amplification, supernumerary chromosomes and chromosome loss in antimony-resistant Leishmania infantum. Nucleic acids research, 37(5), 1387–1399. https://doi.org/10.1093/nar/gkn1069Lin, G., Chai, J., Yuan, S., Mai, C., Cai, L., Murphy, R. W., … Luo, J. (2016). VennPainter: A Tool for the Comparison and Identification of Candidate Genes Based on Venn Diagrams. PLOS ONE, 11(4), e0154315. https://doi.org/10.1371/journal.pone.0154315Lindoso, J., Costa, J., Queiroz, I. T., & Goto, H. (2012). Review of the current treatments for leishmaniases. Research and reports in tropical medicine, 3, 69–77. https://doi.org/10.2147/RRTM.S24764Llanes, A., Restrepo, C. M., Vecchio, G. Del, Anguizola, F. J., & Lleonart, R. (2015). The genome of Leishmania panamensis: Insights into genomics of the L. (Viannia) subgenus. Scientific Reports, 5(1), 1–10. https://doi.org/10.1038/srep08550Love MI, Huber W, Anders S (2014). “Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2.” Genome Biology, 15, 550. doi: 10.1186/s13059-014-0550-8.Manzano, J. I., García-Hernández, R., Castanys, S., & Gamarro, F. (2013). A new ABC half-transporter in leishmania major is involved in resistance to antimony. Antimicrobial Agents and Chemotherapy, 57(8), 3719–3730. https://doi.org/10.1128/AAC.00211-13Martin, M. (2011). Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.Journal, 17(1), 10. https://doi.org/10.14806/ej.17.1.200Marín, M., Aguilar, Y. A., Ramírez, J. R., Triana, O., & Muskus, C. E. (2008). Molecular and immunological analyses suggest the absence of hydrophilic surface proteins in Leishmania (Viannia) panamensis. Biomedica, 28(3), 423–432. https://doi.org/10.7705/biomedica.v28i3.80Maharjan, M., & Madhubala, R. (2015). Heat shock protein 70 (HSP70) expression in antimony susceptible/resistant clinical isolates of Leishmania donovani. Nepal Journal of Biotechnology, 3(1), 22–28. https://doi.org/10.3126/njb.v3i1.14225Mathur, R., Das, R. P., Ranjan, A., & Shaha, C. (2015). Elevated ergosterol protects Leishmania parasites against antimony-generated stress. FASEB Journal, 29(10), 4201–4213. https://doi.org/10.1096/fj.15-272757Matrangolo, F. S. V., Liarte, D. B., Andrade, L. C., De Melo, M. F., Andrade, J. M., Ferreira, R. F., … Murta, S. M. F. (2013). Comparative proteomic analysis of antimony-resistant and-susceptible Leishmania braziliensis and Leishmania infantum chagasi lines. Molecular and Biochemical Parasitology, 190(2), 63–75. https://doi.org/10.1016/j.molbiopara.2013.06.006Michaeli, S. (2011, April). Trans-splicing in trypanosomes: Machinery and its impact on the parasite transcriptome. Future Microbiology, Vol. 6, pp. 459–474. https://doi.org/10.2217/fmb.11.20Monte-Neto, R., Laffitte, M. C., Leprohon, P., Reis, P., Frézard, F., & Ouellette, M. (2015). Intrachromosomal amplification, locus deletion and point mutation in the aquaglyceroporin AQP1 gene in antimony resistant Leishmania (Viannia) guyanensis. PLoS neglected tropical diseases, 9(2), e0003476. https://doi.org/10.1371/journal.pntd.0003476Mukherjee, S., Sen Santara, S., Das, S., Bose, M., Roy, J., & Adak, S. (2012). NAD(P)H cytochrome b5 oxidoreductase deficiency in Leishmania major results in impaired linoleate synthesis followed by increased oxidative stress and cell death. The Journal of biological chemistry, 287(42), 34992–35003. https://doi.org/10.1074/jbc.M112.389338Mukherjee, A., Boisvert, S., Monte-Neto, R. L. do, Coelho, A. C., Raymond, F., Mukhopadhyay, R., … Ouellette, M. (2013). Telomeric gene deletion and intrachromosomal amplification in antimony-resistant Leishmania. Molecular Microbiology, 88(1), 189–202. https://doi.org/10.1111/mmi.12178Mukherjee, A., Adhikari, A., Das, P., Biswas, S., Mukherjee, S., & Adak, S. (2018). Loss of virulence in NAD(P)H cytochrome b5 oxidoreductase deficient Leishmania major. Biochemical and Biophysical Research Communications, 503(1), 371–377. https://doi.org/10.1016/j.bbrc.2018.06.037Nocua, P. A., Ramirez, C. A., Requena, J. M., & Puerta, C. J. (2017). Leishmania braziliensis SCD6 and RBP42 proteins, two factors with RNA binding capacity. Parasites and Vectors, 10(1), 610. https://doi.org/10.1186/s13071-017-2557-yOryan, A., & Akbari, M. (2016, October 1). Worldwide risk factors in leishmaniasis. Asian Pacific Journal of Tropical Medicine, Vol. 9, pp. 925–932. https://doi.org/10.1016/j.apjtm.2016.06.021Ovalle-Bracho, C., Camargo, C., Díaz-Toro, Y., & Parra-Muñoz, M. (2018). Molecular typing of Leishmania (Leishmania) amazonensis and species of the subgenus Viannia associated with cutaneous and mucosal leishmaniasis in Colombia: A concordance study. Biomedica, 38(1), 86–95. https://doi.org/10.7705/biomedica.v38i0.3632Patino, L. H., Imamura, H., Cruz-Saavedra, L., Pavia, P., Muskus, C., Méndez, C., … Ramírez, J. D. (2019). Major changes in chromosomal somy, gene expression and gene dosage driven by SbIII in Leishmania braziliensis and Leishmania panamensis. Scientific Reports, 9(1). https://doi.org/10.1038/s41598-019-45538-9Patino, L. H., Muskus, C., & Ramírez, J. D. (2019). Transcriptional responses of Leishmania (Leishmania) amazonensis in the presence of trivalent sodium stibogluconate. Parasites and Vectors, 12(1). https://doi.org/10.1186/s13071-019-3603-8Peacock, C. S., Seeger, K., Harris, D., Murphy, L., Ruiz, J. C., Quail, M. A., Peters, N., Adlem, E., Tivey, A., Aslett, M., Kerhornou, A., Ivens, A., Fraser, A., Rajandream, M. A., Carver, T., Norbertczak, H., Chillingworth, T., Hance, Z., Jagels, K., Moule, S., … Berriman, M. (2007). Comparative genomic analysis of three Leishmania species that cause diverse human disease. Nature genetics, 39(7), 839–847. https://doi.org/10.1038/ng2053Pertea, G., & Pertea, M. (2020). GFF Utilities: GffRead and GffCompare. F1000Research, 9, 304. https://doi.org/10.12688/f1000research.23297.2Pessenda, G., & da Silva, J. S. (2020, July 1). Arginase and its mechanisms in Leishmania persistence. Parasite Immunology, Vol. 42. https://doi.org/10.1111/pim.12722Ponte-Sucre, A., Gamarro, F., Dujardin, J. C., Barrett, M. P., López-Vélez, R., García-Hernández, R., Pountain, A. W., Mwenechanya, R., & Papadopoulou, B. (2017). Drug resistance and treatment failure in leishmaniasis: A 21st century challenge. PLoS neglected tropical diseases, 11(12), e0006052. https://doi.org/10.1371/journal.pntd.0006052Rabhi, I., Rabhi, S., Ben-Othman, R., Rasche, A., Consortium, S., Daskalaki, A., … Guizani-Tabbane, L. (2012). Transcriptomic Signature of Leishmania Infected Mice Macrophages: A Metabolic Point of View. PLoS Neglected Tropical Diseases, 6(8), e1763. https://doi.org/10.1371/journal.pntd.0001763Rashidi, S., Kalantar, K., Fernandez-Rubio, C., Anvari, E., Nguewa, P., & Hatam, G. (2020, February 1). Chitin binding protein as a possible RNA binding protein in Leishmania parasites. Pathogens and Disease, Vol. 78. https://doi.org/10.1093/femspd/ftaa007Rastrojo, A., García-Hernández, R., Vargas, P., Camacho, E., Corvo, L., Imamura, H., Dujardin, J. C., Castanys, S., Aguado, B., Gamarro, F., & Requena, J. M. (2018). Genomic and transcriptomic alterations in Leishmania donovani lines experimentally resistant to antileishmanial drugs. International journal for parasitology. Drugs and drug resistance, 8(2), 246–264. https://doi.org/10.1016/j.ijpddr.2018.04.002Restrepo, C. M., Llanes, A., Cedeño, E. M., Chang, J. H., Álvarez, J., Ríos, M., … Lleonart, R. (2019). Environmental conditions may shape the patterns of genomic variations in Leishmania panamensis. Genes, 10(11). https://doi.org/10.3390/genes10110838Rochette, A., Raymond, F., Ubeda, J. M., Smith, M., Messier, N., Boisvert, S., … Papadopoulou, B. (2008). Genome-wide gene expression profiling analysis of Leishmania major and Leishmania infantum developmental stages reveals substantial differences between the two species. BMC Genomics, 9(1), 1–26. https://doi.org/10.1186/1471-2164-9-255Rogers, M. B., Hilley, J. D., Dickens, N. J., Wilkes, J., Bates, P. A., Depledge, D. P., … Mottram, J. C. (2011). Chromosome and gene copy number variation allow major structural change between species and strains of Leishmania. Genome Research, 21(12), 2129–2142. https://doi.org/10.1101/gr.122945.111Rojas, R., Valderrama, L., Valderrama, M., Varona, M. X., Ouellette, M., & Saravia, N. G. (2006). Resistance to antimony and treatment failure in human Leishmania (Viannia) infection. Journal of Infectious Diseases, 193(10), 1375–1383. https://doi.org/10.1086/503371Romero, G. A. S., De Farias Guerra, M. V., Paes, M. G., & De Oliveira Macêdo, V. (2001). Comparison of cutaneous leishmaniasis due to Leishmania (Viannia) braziliensis and L. (V.) guyanensis in Brazil: Therapeutic response to meglumine antimoniate. American Journal of Tropical Medicine and Hygiene, 65(5), 456–465. https://doi.org/10.4269/ajtmh.2001.65.456Rugani, J. N., Quaresma, P. F., Gontijo, C. F., Soares, R. P., & Monte-Neto, R. L. (2018). Intraspecies susceptibility of Leishmania (Viannia) braziliensis to antileishmanial drugs: Antimony resistance in human isolates from atypical lesions. Biomedicine and Pharmacotherapy, 108, 1170–1180. https://doi.org/10.1016/j.biopha.2018.09.149Singh, N. & Sundar, S. (2017). Integrating genomics and proteomics permits identification of immunodominant antigens associated with drug resistance in human visceral leishmaniasis in India. Experimental Parasitology, 176(), 30–45. doi:10.1016/j.exppara.2017.02.019Steverding D. (2017). The history of leishmaniasis. Parasites & vectors, 10(1), 82. https://doi.org/10.1186/s13071-017-2028-5Sundar, S., & Chakravarty, J. (2015, February 1). An update on pharmacotherapy for leishmaniasis. Expert Opinion on Pharmacotherapy, Vol. 16, pp. 237–252. https://doi.org/10.1517/14656566.2015.973850Sundar, S., Chakravarty, J., & Meena, L. P. (2019, January 2). Leishmaniasis: treatment, drug resistance and emerging therapies. Expert Opinion on Orphan Drugs, Vol. 7, pp. 1–10. https://doi.org/10.1080/21678707.2019.1552853Torres-Guerrero, E., Quintanilla-Cedillo, M. R., Ruiz-Esmenjaud, J., & Arenas, R. (2017). Leishmaniasis: a review. F1000Research, 6, 750. https://doi.org/10.12688/f1000research.11120.1Ubeda, J.-M., Raymond, F., Mukherjee, A., Plourde, M., Gingras, H., Roy, G., … Ouellette, M. (2014). Genome-Wide Stochastic Adaptive DNA Amplification at Direct and Inverted DNA Repeats in the Parasite Leishmania. PLoS Biology, 12(5), e1001868. https://doi.org/10.1371/journal.pbio.1001868Uliana, S. R. B., Trinconi, C. T., & Coelho, A. C. (2018, April 1). Chemotherapy of leishmaniasis: Present challenges. Parasitology, Vol. 145, pp. 464–480. https://doi.org/10.1017/S0031182016002523Urrea, D. A., Duitama, J., Imamura, H., Álzate, J. F., Gil, J., Muñoz, N., … Triana-Chavez, O. (2018). Genomic Analysis of Colombian Leishmania panamensis strains with different level of virulence. Scientific Reports, 8(1), 1–16. https://doi.org/10.1038/s41598-018-35778-6Valero, N. N. H., & Uriarte, M. (2020, February 1). Environmental and socioeconomic risk factors associated with visceral and cutaneous leishmaniasis: a systematic review. Parasitology Research, Vol. 119, pp. 365–384. https://doi.org/10.1007/s00436-019-06575-5Vanaerschot, M., Dumetz, F., Roy, S., Ponte-Sucre, A., Arevalo, J., & Dujardin, J. C. (2014). Treatment failure in leishmaniasis: Drug-resistance or another (epi-) phenotype? Expert Review of Anti-Infective Therapy, Vol. 12, pp. 937–946. https://doi.org/10.1586/14787210.2014.916614Vanlerberghe, V., Diap, G., Guerin, P. J., Meheus, F., Gerstl, S., Stuyft, P. Van Der, & Boelaert, M. (2007). Drug policy for visceral leishmaniasis: A cost-effectiveness analysis. Tropical Medicine and International Health, 12(2), 274–283. https://doi.org/10.1111/j.1365-3156.2006.01782.xVerma, A., Bhandari, V., Deep, D. K., Sundar, S., Dujardin, J. C., Singh, R., & Salotra, P. (2017). Transcriptome profiling identifies genes/pathways associated with experimental resistance to paromomycin in Leishmania donovani. International Journal for Parasitology: Drugs and Drug Resistance, 7(3), 370–377. https://doi.org/10.1016/j.ijpddr.2017.10.004Vermeersch, M., da Luz, R. I., Toté, K., Timmermans, J. P., Cos, P., & Maes, L. (2009). In vitro susceptibilities of Leishmania donovani promastigote and amastigote stages to antileishmanial reference drugs: practical relevance of stage-specific differences. Antimicrobial agents and chemotherapy, 53(9), 3855–3859. https://doi.org/10.1128/AAC.00548-09Wickham H (2016). ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York. ISBN 978-3-319-24277-4, https://ggplot2.tidyverse.org.Yardley, V., Ortuño, N., Llanos‐Cuentas, A., Chappuis, F., Doncker, S. D., Ramirez, L., … Dujardin, J. (2006). American Tegumentary Leishmaniasis: Is Antimonial Treatment Outcome Related to Parasite Drug Susceptibility? The Journal of Infectious Diseases, 194(8), 1168–1175. https://doi.org/10.1086/507710instname:Universidad del Rosarioreponame:Repositorio Institucional EdocURLeishmania donovaniLeishmania infantumLeishmania amazonensisLeishmania VianniaLeishmania panamensisLeishmania braziliensisEfectividad del Antimonio trivalente (SbIII) frente leishmaniaGenómica y transcriptómica comparativa de LeishmaniaPerfil transcriptómico de leishmaniaMicrobiología576600Leishmania donovaniLeishmania infantumLeishmania amazonensisLeishmania VianniaLeishmania panamensisLeishmania braziliensisEffectiveness of trivalent antimony (SbIII) against leishmaniaComparative genomics and transcriptomics of LeishmaniaLeishmania transcriptomic profileAnálisis comparativo de las respuestas transcripcionales de cinco especies de Leishmania frente al antimonio trivalente.Comparative analysis of the transcriptional responses of five Leishmania species against trivalent antimony.bachelorThesisArtículoTrabajo de gradohttp://purl.org/coar/resource_type/c_7a1fORIGINALMedinaVelasquez-JulianEsteban-2021.pdfMedinaVelasquez-JulianEsteban-2021.pdfArtículo principalapplication/pdf1006986https://repository.urosario.edu.co/bitstreams/961cd2d0-ebbe-4a8f-93df-6537464bdd50/download1163dd1d58e82cd08f6ee162e4fb1ac4MD51MedinaVelasquez-JulianEsteban-1-2021.pdfMedinaVelasquez-JulianEsteban-1-2021.pdfMaterial Suplementario 1application/pdf1055994https://repository.urosario.edu.co/bitstreams/7d225681-c8bd-4e7d-b36c-5640cd455d9b/downloada7444214b60c7d2e26c602d08f35389cMD52MedinaVelasquez-JulianEsteban-2-2021.pdfMedinaVelasquez-JulianEsteban-2-2021.pdfMaterial Suplementario 2application/pdf1150308https://repository.urosario.edu.co/bitstreams/c5476ae3-4ed2-4506-8b5b-1e1a041b29a0/downloada7671c4b59a612954fbfd7a6b6be6406MD53MedinaVelasquez-JulianEsteban-3-2021.pdfMedinaVelasquez-JulianEsteban-3-2021.pdfMaterial Suplementario 3application/pdf397595https://repository.urosario.edu.co/bitstreams/d9c9974e-0591-4dec-b14d-f27f39ba9bfe/download82b5db001e017b41566e6273cf338509MD54LICENSElicense.txtlicense.txttext/plain1475https://repository.urosario.edu.co/bitstreams/423dbb61-62d7-45c3-b1ee-b7ff4ce3fc8a/downloadfab9d9ed61d64f6ac005dee3306ae77eMD55CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repository.urosario.edu.co/bitstreams/a3491a23-1783-4d34-a14d-5b69dbf3b7e3/downloaddab767be7a093b539031785b3bf95490MD56TEXTMedinaVelasquez-JulianEsteban-2021.pdf.txtMedinaVelasquez-JulianEsteban-2021.pdf.txtExtracted texttext/plain67062https://repository.urosario.edu.co/bitstreams/0ae21b87-595f-4996-a5ad-3ce0ccddc995/downloadc19914f506cd016902f7d12b320865d9MD57MedinaVelasquez-JulianEsteban-1-2021.pdf.txtMedinaVelasquez-JulianEsteban-1-2021.pdf.txtExtracted texttext/plain82972https://repository.urosario.edu.co/bitstreams/fb9881b1-dc3f-4f6c-842f-a00fda1e8b84/downloadd89ffc3f1169bfad5f8e2418ca717051MD59MedinaVelasquez-JulianEsteban-2-2021.pdf.txtMedinaVelasquez-JulianEsteban-2-2021.pdf.txtExtracted texttext/plain132240https://repository.urosario.edu.co/bitstreams/e3653d09-12bf-408f-9923-a348c2b3841e/download6a95ae5b21eedefceb8dfd7fb70acb81MD511MedinaVelasquez-JulianEsteban-3-2021.pdf.txtMedinaVelasquez-JulianEsteban-3-2021.pdf.txtExtracted texttext/plain28993https://repository.urosario.edu.co/bitstreams/24bee454-911b-4a64-a118-18430c623676/downloadca899f459b82d4e7f77570d23c51b120MD513THUMBNAILMedinaVelasquez-JulianEsteban-2021.pdf.jpgMedinaVelasquez-JulianEsteban-2021.pdf.jpgGenerated Thumbnailimage/jpeg2129https://repository.urosario.edu.co/bitstreams/1c12a684-e243-42e2-ad26-e6537c7dd7a8/download0e0389f98a77a738e76d8fe8c225b49bMD58MedinaVelasquez-JulianEsteban-1-2021.pdf.jpgMedinaVelasquez-JulianEsteban-1-2021.pdf.jpgGenerated Thumbnailimage/jpeg2421https://repository.urosario.edu.co/bitstreams/318b3017-84ca-4161-8006-e5b3705f91ef/download7f170ac6e8064524b53bb62e20ff5808MD510MedinaVelasquez-JulianEsteban-2-2021.pdf.jpgMedinaVelasquez-JulianEsteban-2-2021.pdf.jpgGenerated Thumbnailimage/jpeg2269https://repository.urosario.edu.co/bitstreams/2f37bd03-6ff1-4dd5-a8f7-8eb119ad5660/downloada31382a3d23efbe132f9c17a2d07f265MD512MedinaVelasquez-JulianEsteban-3-2021.pdf.jpgMedinaVelasquez-JulianEsteban-3-2021.pdf.jpgGenerated Thumbnailimage/jpeg2364https://repository.urosario.edu.co/bitstreams/fc07ab63-d670-4ac1-af92-1ce30edb2f2e/download9bee1d04f7c1300b9287977e692183d4MD51410336/30923oai:repository.urosario.edu.co:10336/309232021-02-17 03:03:06.881http://creativecommons.org/licenses/by-nd/2.5/co/Atribución-SinDerivadas 2.5 Colombiahttps://repository.urosario.edu.coRepositorio institucional EdocURedocur@urosario.edu.coRUwoTE9TKSBBVVRPUihFUyksIG1hbmlmaWVzdGEobWFuaWZlc3RhbW9zKSBxdWUgbGEgb2JyYSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIHJlYWxpesOzIHNpbiB2aW9sYXIgbyB1c3VycGFyIGRlcmVjaG9zIGRlIGF1dG9yIGRlIHRlcmNlcm9zLCBwb3IgbG8gdGFudG8gbGEgb2JyYSBlcyBkZSBleGNsdXNpdmEgYXV0b3LDrWEgeSB0aWVuZSBsYSB0aXR1bGFyaWRhZCBzb2JyZSBsYSBtaXNtYS4gCgpQQVJHUkFGTzogRW4gY2FzbyBkZSBwcmVzZW50YXJzZSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybyBlbiBjdWFudG8gYSBsb3MgZGVyZWNob3MgZGUgYXV0b3Igc29icmUgbGEgb2JyYSBlbiBjdWVzdGnDs24sIEVMIEFVVE9SLCBhc3VtaXLDoSB0b2RhIGxhIHJlc3BvbnNhYmlsaWRhZCwgeSBzYWxkcsOhIGVuIGRlZmVuc2EgZGUgbG9zIGRlcmVjaG9zIGFxdcOtIGF1dG9yaXphZG9zOyBwYXJhIHRvZG9zIGxvcyBlZmVjdG9zIGxhIHVuaXZlcnNpZGFkIGFjdMO6YSBjb21vIHVuIHRlcmNlcm8gZGUgYnVlbmEgZmUuIAoKRUwgQVVUT1IsIGF1dG9yaXphIGEgTEEgVU5JVkVSU0lEQUQgREVMIFJPU0FSSU8sICBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgTGV5IDQ0IGRlIDE5OTMsIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbm9ybWFzIGdlbmVyYWxlcyBzb2JyZSBsYSBtYXRlcmlhLCAgdXRpbGljZSB5IHVzZSBsYSBvYnJhIG9iamV0byBkZSBsYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuLgoKLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0KClBPTElUSUNBIERFIFRSQVRBTUlFTlRPIERFIERBVE9TIFBFUlNPTkFMRVMuIERlY2xhcm8gcXVlIGF1dG9yaXpvIHByZXZpYSB5IGRlIGZvcm1hIGluZm9ybWFkYSBlbCB0cmF0YW1pZW50byBkZSBtaXMgZGF0b3MgcGVyc29uYWxlcyBwb3IgcGFydGUgZGUgTEEgVU5JVkVSU0lEQUQgREVMIFJPU0FSSU8gIHBhcmEgZmluZXMgYWNhZMOpbWljb3MgeSBlbiBhcGxpY2FjacOzbiBkZSBjb252ZW5pb3MgY29uIHRlcmNlcm9zIG8gc2VydmljaW9zIGNvbmV4b3MgY29uIGFjdGl2aWRhZGVzIHByb3BpYXMgZGUgbGEgYWNhZGVtaWEsIGNvbiBlc3RyaWN0byBjdW1wbGltaWVudG8gZGUgbG9zIHByaW5jaXBpb3MgZGUgbGV5LiBQYXJhIGVsIGNvcnJlY3RvIGVqZXJjaWNpbyBkZSBtaSBkZXJlY2hvIGRlIGhhYmVhcyBkYXRhICBjdWVudG8gY29uIGxhIGN1ZW50YSBkZSBjb3JyZW8gaGFiZWFzZGF0YUB1cm9zYXJpby5lZHUuY28sIGRvbmRlIHByZXZpYSBpZGVudGlmaWNhY2nDs24gIHBvZHLDqSBzb2xpY2l0YXIgbGEgY29uc3VsdGEsIGNvcnJlY2Npw7NuIHkgc3VwcmVzacOzbiBkZSBtaXMgZGF0b3MuCgo= |