Decomposition of a multiscale entropy tensor for sleep stage identification in preterm infants

Established sleep cycling is one of the main hallmarks of early brain development in preterm infants, therefore, automated classification of the sleep stages in preterm infants can be used to assess the neonate's cerebral maturation. Tensor algebra is a powerful tool to analyze multidimensional...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2019
Institución:
Universidad del Rosario
Repositorio:
Repositorio EdocUR - U. Rosario
Idioma:
eng
OAI Identifier:
oai:repository.urosario.edu.co:10336/23944
Acceso en línea:
https://doi.org/10.3390/e21100936
https://repository.urosario.edu.co/handle/10336/23944
Palabra clave:
Cpd
Eeg
Multiscale entropy
Preterm neonate
Sleep staging
Tensor decomposition
Rights
License
Abierto (Texto Completo)
id EDOCUR2_4c46d9bafc92be90cf19eda599854561
oai_identifier_str oai:repository.urosario.edu.co:10336/23944
network_acronym_str EDOCUR2
network_name_str Repositorio EdocUR - U. Rosario
repository_id_str
spelling 145a344a-2c6e-463b-9a5a-8ecaa7399d51-10e7723ef-4cdb-45fe-9a47-1b4cab0103ec-100e98a12-b91d-41fa-bda9-a90a09246209-155320cda-97a5-498e-9555-cec06026ceda-1373c77e3-5093-43fd-831b-0db88cefa50d-1141395126002020-05-26T00:06:56Z2020-05-26T00:06:56Z2019Established sleep cycling is one of the main hallmarks of early brain development in preterm infants, therefore, automated classification of the sleep stages in preterm infants can be used to assess the neonate's cerebral maturation. Tensor algebra is a powerful tool to analyze multidimensional data and has proven successful in many applications. In this paper, a novel unsupervised algorithm to identify neonatal sleep stages based on the decomposition of a multiscale entropy tensor is presented. The method relies on the difference in electroencephalography(EEG) complexity between the neonatal sleep stages and is evaluated on a dataset of 97 EEG recordings. An average sensitivity, specificity, accuracy and area under the receiver operating characteristic curve of 0.80, 0.79, 0.79 and 0.87 was obtained if the rank of the tensor decomposition is selected based on the age of the infant. © 2019 by the authors.application/pdfhttps://doi.org/10.3390/e2110093610994300https://repository.urosario.edu.co/handle/10336/23944engMDPI AGNo. 10EntropyVol. 21Entropy, ISSN:10994300, Vol.21, No.10 (2019)https://www.scopus.com/inward/record.uri?eid=2-s2.0-85074055832&doi=10.3390%2fe21100936&partnerID=40&md5=cd50de8c297378f76b7f8b3e65edbd72Abierto (Texto Completo)http://purl.org/coar/access_right/c_abf2instname:Universidad del Rosarioreponame:Repositorio Institucional EdocURCpdEegMultiscale entropyPreterm neonateSleep stagingTensor decompositionDecomposition of a multiscale entropy tensor for sleep stage identification in preterm infantsarticleArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501De Wel, OfelieLavanga, MarioJansen, KatrienNaulaers, GunnarVan Huffel, SabineCaicedo Dorado, AlexanderORIGINALentropy-21-00936-v2.pdfapplication/pdf919909https://repository.urosario.edu.co/bitstreams/8e6ab2f6-c4f1-4a5d-b209-a98e77702af3/downloadfd2c06ebac16ca38564bc8f30dd68df7MD51TEXTentropy-21-00936-v2.pdf.txtentropy-21-00936-v2.pdf.txtExtracted texttext/plain52098https://repository.urosario.edu.co/bitstreams/09a5f039-6bb0-4e5a-84f9-c370b0348b63/download31b12c16d5fc03ea61f5223f920b7753MD52THUMBNAILentropy-21-00936-v2.pdf.jpgentropy-21-00936-v2.pdf.jpgGenerated Thumbnailimage/jpeg5007https://repository.urosario.edu.co/bitstreams/9122d5d3-6d65-49ed-9f6b-9610e45c6fe6/downloadfb57f95d26c4dfe444fb8cc6d5b57822MD5310336/23944oai:repository.urosario.edu.co:10336/239442022-05-02 07:37:21.297238https://repository.urosario.edu.coRepositorio institucional EdocURedocur@urosario.edu.co
dc.title.spa.fl_str_mv Decomposition of a multiscale entropy tensor for sleep stage identification in preterm infants
title Decomposition of a multiscale entropy tensor for sleep stage identification in preterm infants
spellingShingle Decomposition of a multiscale entropy tensor for sleep stage identification in preterm infants
Cpd
Eeg
Multiscale entropy
Preterm neonate
Sleep staging
Tensor decomposition
title_short Decomposition of a multiscale entropy tensor for sleep stage identification in preterm infants
title_full Decomposition of a multiscale entropy tensor for sleep stage identification in preterm infants
title_fullStr Decomposition of a multiscale entropy tensor for sleep stage identification in preterm infants
title_full_unstemmed Decomposition of a multiscale entropy tensor for sleep stage identification in preterm infants
title_sort Decomposition of a multiscale entropy tensor for sleep stage identification in preterm infants
dc.subject.keyword.spa.fl_str_mv Cpd
Eeg
Multiscale entropy
Preterm neonate
Sleep staging
Tensor decomposition
topic Cpd
Eeg
Multiscale entropy
Preterm neonate
Sleep staging
Tensor decomposition
description Established sleep cycling is one of the main hallmarks of early brain development in preterm infants, therefore, automated classification of the sleep stages in preterm infants can be used to assess the neonate's cerebral maturation. Tensor algebra is a powerful tool to analyze multidimensional data and has proven successful in many applications. In this paper, a novel unsupervised algorithm to identify neonatal sleep stages based on the decomposition of a multiscale entropy tensor is presented. The method relies on the difference in electroencephalography(EEG) complexity between the neonatal sleep stages and is evaluated on a dataset of 97 EEG recordings. An average sensitivity, specificity, accuracy and area under the receiver operating characteristic curve of 0.80, 0.79, 0.79 and 0.87 was obtained if the rank of the tensor decomposition is selected based on the age of the infant. © 2019 by the authors.
publishDate 2019
dc.date.created.spa.fl_str_mv 2019
dc.date.accessioned.none.fl_str_mv 2020-05-26T00:06:56Z
dc.date.available.none.fl_str_mv 2020-05-26T00:06:56Z
dc.type.eng.fl_str_mv article
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.spa.spa.fl_str_mv Artículo
dc.identifier.doi.none.fl_str_mv https://doi.org/10.3390/e21100936
dc.identifier.issn.none.fl_str_mv 10994300
dc.identifier.uri.none.fl_str_mv https://repository.urosario.edu.co/handle/10336/23944
url https://doi.org/10.3390/e21100936
https://repository.urosario.edu.co/handle/10336/23944
identifier_str_mv 10994300
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.citationIssue.none.fl_str_mv No. 10
dc.relation.citationTitle.none.fl_str_mv Entropy
dc.relation.citationVolume.none.fl_str_mv Vol. 21
dc.relation.ispartof.spa.fl_str_mv Entropy, ISSN:10994300, Vol.21, No.10 (2019)
dc.relation.uri.spa.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-85074055832&doi=10.3390%2fe21100936&partnerID=40&md5=cd50de8c297378f76b7f8b3e65edbd72
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.acceso.spa.fl_str_mv Abierto (Texto Completo)
rights_invalid_str_mv Abierto (Texto Completo)
http://purl.org/coar/access_right/c_abf2
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv MDPI AG
institution Universidad del Rosario
dc.source.instname.spa.fl_str_mv instname:Universidad del Rosario
dc.source.reponame.spa.fl_str_mv reponame:Repositorio Institucional EdocUR
bitstream.url.fl_str_mv https://repository.urosario.edu.co/bitstreams/8e6ab2f6-c4f1-4a5d-b209-a98e77702af3/download
https://repository.urosario.edu.co/bitstreams/09a5f039-6bb0-4e5a-84f9-c370b0348b63/download
https://repository.urosario.edu.co/bitstreams/9122d5d3-6d65-49ed-9f6b-9610e45c6fe6/download
bitstream.checksum.fl_str_mv fd2c06ebac16ca38564bc8f30dd68df7
31b12c16d5fc03ea61f5223f920b7753
fb57f95d26c4dfe444fb8cc6d5b57822
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio institucional EdocUR
repository.mail.fl_str_mv edocur@urosario.edu.co
_version_ 1818106603189043200