Decomposition of a multiscale entropy tensor for sleep stage identification in preterm infants
Established sleep cycling is one of the main hallmarks of early brain development in preterm infants, therefore, automated classification of the sleep stages in preterm infants can be used to assess the neonate's cerebral maturation. Tensor algebra is a powerful tool to analyze multidimensional...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2019
- Institución:
- Universidad del Rosario
- Repositorio:
- Repositorio EdocUR - U. Rosario
- Idioma:
- eng
- OAI Identifier:
- oai:repository.urosario.edu.co:10336/23944
- Acceso en línea:
- https://doi.org/10.3390/e21100936
https://repository.urosario.edu.co/handle/10336/23944
- Palabra clave:
- Cpd
Eeg
Multiscale entropy
Preterm neonate
Sleep staging
Tensor decomposition
- Rights
- License
- Abierto (Texto Completo)
id |
EDOCUR2_4c46d9bafc92be90cf19eda599854561 |
---|---|
oai_identifier_str |
oai:repository.urosario.edu.co:10336/23944 |
network_acronym_str |
EDOCUR2 |
network_name_str |
Repositorio EdocUR - U. Rosario |
repository_id_str |
|
spelling |
145a344a-2c6e-463b-9a5a-8ecaa7399d51-10e7723ef-4cdb-45fe-9a47-1b4cab0103ec-100e98a12-b91d-41fa-bda9-a90a09246209-155320cda-97a5-498e-9555-cec06026ceda-1373c77e3-5093-43fd-831b-0db88cefa50d-1141395126002020-05-26T00:06:56Z2020-05-26T00:06:56Z2019Established sleep cycling is one of the main hallmarks of early brain development in preterm infants, therefore, automated classification of the sleep stages in preterm infants can be used to assess the neonate's cerebral maturation. Tensor algebra is a powerful tool to analyze multidimensional data and has proven successful in many applications. In this paper, a novel unsupervised algorithm to identify neonatal sleep stages based on the decomposition of a multiscale entropy tensor is presented. The method relies on the difference in electroencephalography(EEG) complexity between the neonatal sleep stages and is evaluated on a dataset of 97 EEG recordings. An average sensitivity, specificity, accuracy and area under the receiver operating characteristic curve of 0.80, 0.79, 0.79 and 0.87 was obtained if the rank of the tensor decomposition is selected based on the age of the infant. © 2019 by the authors.application/pdfhttps://doi.org/10.3390/e2110093610994300https://repository.urosario.edu.co/handle/10336/23944engMDPI AGNo. 10EntropyVol. 21Entropy, ISSN:10994300, Vol.21, No.10 (2019)https://www.scopus.com/inward/record.uri?eid=2-s2.0-85074055832&doi=10.3390%2fe21100936&partnerID=40&md5=cd50de8c297378f76b7f8b3e65edbd72Abierto (Texto Completo)http://purl.org/coar/access_right/c_abf2instname:Universidad del Rosarioreponame:Repositorio Institucional EdocURCpdEegMultiscale entropyPreterm neonateSleep stagingTensor decompositionDecomposition of a multiscale entropy tensor for sleep stage identification in preterm infantsarticleArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501De Wel, OfelieLavanga, MarioJansen, KatrienNaulaers, GunnarVan Huffel, SabineCaicedo Dorado, AlexanderORIGINALentropy-21-00936-v2.pdfapplication/pdf919909https://repository.urosario.edu.co/bitstreams/8e6ab2f6-c4f1-4a5d-b209-a98e77702af3/downloadfd2c06ebac16ca38564bc8f30dd68df7MD51TEXTentropy-21-00936-v2.pdf.txtentropy-21-00936-v2.pdf.txtExtracted texttext/plain52098https://repository.urosario.edu.co/bitstreams/09a5f039-6bb0-4e5a-84f9-c370b0348b63/download31b12c16d5fc03ea61f5223f920b7753MD52THUMBNAILentropy-21-00936-v2.pdf.jpgentropy-21-00936-v2.pdf.jpgGenerated Thumbnailimage/jpeg5007https://repository.urosario.edu.co/bitstreams/9122d5d3-6d65-49ed-9f6b-9610e45c6fe6/downloadfb57f95d26c4dfe444fb8cc6d5b57822MD5310336/23944oai:repository.urosario.edu.co:10336/239442022-05-02 07:37:21.297238https://repository.urosario.edu.coRepositorio institucional EdocURedocur@urosario.edu.co |
dc.title.spa.fl_str_mv |
Decomposition of a multiscale entropy tensor for sleep stage identification in preterm infants |
title |
Decomposition of a multiscale entropy tensor for sleep stage identification in preterm infants |
spellingShingle |
Decomposition of a multiscale entropy tensor for sleep stage identification in preterm infants Cpd Eeg Multiscale entropy Preterm neonate Sleep staging Tensor decomposition |
title_short |
Decomposition of a multiscale entropy tensor for sleep stage identification in preterm infants |
title_full |
Decomposition of a multiscale entropy tensor for sleep stage identification in preterm infants |
title_fullStr |
Decomposition of a multiscale entropy tensor for sleep stage identification in preterm infants |
title_full_unstemmed |
Decomposition of a multiscale entropy tensor for sleep stage identification in preterm infants |
title_sort |
Decomposition of a multiscale entropy tensor for sleep stage identification in preterm infants |
dc.subject.keyword.spa.fl_str_mv |
Cpd Eeg Multiscale entropy Preterm neonate Sleep staging Tensor decomposition |
topic |
Cpd Eeg Multiscale entropy Preterm neonate Sleep staging Tensor decomposition |
description |
Established sleep cycling is one of the main hallmarks of early brain development in preterm infants, therefore, automated classification of the sleep stages in preterm infants can be used to assess the neonate's cerebral maturation. Tensor algebra is a powerful tool to analyze multidimensional data and has proven successful in many applications. In this paper, a novel unsupervised algorithm to identify neonatal sleep stages based on the decomposition of a multiscale entropy tensor is presented. The method relies on the difference in electroencephalography(EEG) complexity between the neonatal sleep stages and is evaluated on a dataset of 97 EEG recordings. An average sensitivity, specificity, accuracy and area under the receiver operating characteristic curve of 0.80, 0.79, 0.79 and 0.87 was obtained if the rank of the tensor decomposition is selected based on the age of the infant. © 2019 by the authors. |
publishDate |
2019 |
dc.date.created.spa.fl_str_mv |
2019 |
dc.date.accessioned.none.fl_str_mv |
2020-05-26T00:06:56Z |
dc.date.available.none.fl_str_mv |
2020-05-26T00:06:56Z |
dc.type.eng.fl_str_mv |
article |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.spa.spa.fl_str_mv |
Artículo |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.3390/e21100936 |
dc.identifier.issn.none.fl_str_mv |
10994300 |
dc.identifier.uri.none.fl_str_mv |
https://repository.urosario.edu.co/handle/10336/23944 |
url |
https://doi.org/10.3390/e21100936 https://repository.urosario.edu.co/handle/10336/23944 |
identifier_str_mv |
10994300 |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.relation.citationIssue.none.fl_str_mv |
No. 10 |
dc.relation.citationTitle.none.fl_str_mv |
Entropy |
dc.relation.citationVolume.none.fl_str_mv |
Vol. 21 |
dc.relation.ispartof.spa.fl_str_mv |
Entropy, ISSN:10994300, Vol.21, No.10 (2019) |
dc.relation.uri.spa.fl_str_mv |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85074055832&doi=10.3390%2fe21100936&partnerID=40&md5=cd50de8c297378f76b7f8b3e65edbd72 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.acceso.spa.fl_str_mv |
Abierto (Texto Completo) |
rights_invalid_str_mv |
Abierto (Texto Completo) http://purl.org/coar/access_right/c_abf2 |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
MDPI AG |
institution |
Universidad del Rosario |
dc.source.instname.spa.fl_str_mv |
instname:Universidad del Rosario |
dc.source.reponame.spa.fl_str_mv |
reponame:Repositorio Institucional EdocUR |
bitstream.url.fl_str_mv |
https://repository.urosario.edu.co/bitstreams/8e6ab2f6-c4f1-4a5d-b209-a98e77702af3/download https://repository.urosario.edu.co/bitstreams/09a5f039-6bb0-4e5a-84f9-c370b0348b63/download https://repository.urosario.edu.co/bitstreams/9122d5d3-6d65-49ed-9f6b-9610e45c6fe6/download |
bitstream.checksum.fl_str_mv |
fd2c06ebac16ca38564bc8f30dd68df7 31b12c16d5fc03ea61f5223f920b7753 fb57f95d26c4dfe444fb8cc6d5b57822 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio institucional EdocUR |
repository.mail.fl_str_mv |
edocur@urosario.edu.co |
_version_ |
1818106603189043200 |