Detecting unexpected growths in health technologies expenditures
We developed an algorithm to explore unexpected growth in the usage and costs of health technologies. We exploit data from the expenditures on technologies funded by the Colombian government under the compulsory insurance system, where all prescriptions for technologies not included in an explicit l...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2023
- Institución:
- Universidad del Rosario
- Repositorio:
- Repositorio EdocUR - U. Rosario
- Idioma:
- eng
- OAI Identifier:
- oai:repository.urosario.edu.co:10336/42110
- Acceso en línea:
- https://repository.urosario.edu.co/handle/10336/42110
- Palabra clave:
- Health technologies
Health expenditures
High-cost technology
Enteral nutritional
Statistical data analysis
Data analytics
- Rights
- License
- Attribution-NonCommercial-ShareAlike 4.0 International
id |
EDOCUR2_49c9245847dc0bf548c56ffe3a54a197 |
---|---|
oai_identifier_str |
oai:repository.urosario.edu.co:10336/42110 |
network_acronym_str |
EDOCUR2 |
network_name_str |
Repositorio EdocUR - U. Rosario |
repository_id_str |
|
spelling |
266642de-18ee-4ee5-8680-db567b59d397c92e66ab-262d-4bbe-b68e-01f354354ee91532a261-e79a-4bb1-8971-f519f5d5d65f4cec0220-5a7a-4a78-8303-532d584dc516ff042368-9071-4ff0-9cf3-ef80ff07cd8a102625799341387456-cd5e-4f37-866e-be5aec5b0eb22024-01-31T18:23:46Z2024-01-31T18:23:46Z2023-12-012023We developed an algorithm to explore unexpected growth in the usage and costs of health technologies. We exploit data from the expenditures on technologies funded by the Colombian government under the compulsory insurance system, where all prescriptions for technologies not included in an explicit list must be registered in a centralized information system, covering the period from 2017 to 2022. The algorithm consists of two steps: an outlier detection method based on the density of the expenditures for selecting a frst set of technologies to consider (39 technologies out of 106,957), and two anomaly detection models for time series to determine which insurance companies, health providers, and regions have the most notorious increases. We have found that most medicines associated with atypi?cal behavior and signifcant monetary growth could be linked to the use of recently introduced drugs in the market. These drugs have valid patents and very specifc clinical indications, often involving high-cost pharmacological treat?ments. The most relevant case is the Burosumab, approved in 2018 to treat a rare genetic disorder afecting skeletal growth. Secondly, there is clear evidence of anomalous increasing trend evolutions in the identifed enteral nutritional support supplements or Food for Special Medical Purposes. The health system did not purchase these products before July 2021, but in 2022 they represented more than 500,000 USD per month.application/pdf10.1186/s12913-023-10155-w1472-6963https://repository.urosario.edu.co/handle/10336/42110engUniversidad del Rosariohttps://bmchealthservres.biomedcentral.com/articles/10.1186/s12913-023-10155-wAttribution-NonCommercial-ShareAlike 4.0 InternationalAbierto (Texto Completo)https://creativecommons.org/licenses/by/4.0/http://purl.org/coar/access_right/c_abf2BMC Health Services Researchinstname:Universidad del Rosarioreponame:Repositorio Institucional EdocURHealth technologiesHealth expendituresHigh-cost technologyEnteral nutritionalStatistical data analysisData analyticsDetecting unexpected growths in health technologies expendituresarticleArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501Espinosa, OscarBejarano, ValeriaSanabria, CristianRodríguez, JhonathanBasto, SergioRodríguez Lesmes, PaulRobayo, AdrianaORIGINALDetecting_unexpected_growths_in_health_technologie.pdfapplication/pdf2130647https://repository.urosario.edu.co/bitstreams/4f95aa4e-d998-40b0-b5bf-042bd8878636/download363e5e614221e2e32aa07a826af51349MD51TEXTDetecting_unexpected_growths_in_health_technologie.pdf.txtDetecting_unexpected_growths_in_health_technologie.pdf.txtExtracted texttext/plain39744https://repository.urosario.edu.co/bitstreams/57db449f-454c-4321-958e-e086c70e1205/download366ea9d74df13f18ffab1c6e24fb3277MD52THUMBNAILDetecting_unexpected_growths_in_health_technologie.pdf.jpgDetecting_unexpected_growths_in_health_technologie.pdf.jpgGenerated Thumbnailimage/jpeg4440https://repository.urosario.edu.co/bitstreams/809ec993-6b35-4283-98f3-d38ecb2beb99/download41e76a2d136a977ffba0a726e349af26MD5310336/42110oai:repository.urosario.edu.co:10336/421102024-02-01 03:02:07.069https://creativecommons.org/licenses/by/4.0/Attribution-NonCommercial-ShareAlike 4.0 Internationalhttps://repository.urosario.edu.coRepositorio institucional EdocURedocur@urosario.edu.co |
dc.title.spa.fl_str_mv |
Detecting unexpected growths in health technologies expenditures |
title |
Detecting unexpected growths in health technologies expenditures |
spellingShingle |
Detecting unexpected growths in health technologies expenditures Health technologies Health expenditures High-cost technology Enteral nutritional Statistical data analysis Data analytics |
title_short |
Detecting unexpected growths in health technologies expenditures |
title_full |
Detecting unexpected growths in health technologies expenditures |
title_fullStr |
Detecting unexpected growths in health technologies expenditures |
title_full_unstemmed |
Detecting unexpected growths in health technologies expenditures |
title_sort |
Detecting unexpected growths in health technologies expenditures |
dc.subject.spa.fl_str_mv |
Health technologies Health expenditures High-cost technology Enteral nutritional Statistical data analysis Data analytics |
topic |
Health technologies Health expenditures High-cost technology Enteral nutritional Statistical data analysis Data analytics |
description |
We developed an algorithm to explore unexpected growth in the usage and costs of health technologies. We exploit data from the expenditures on technologies funded by the Colombian government under the compulsory insurance system, where all prescriptions for technologies not included in an explicit list must be registered in a centralized information system, covering the period from 2017 to 2022. The algorithm consists of two steps: an outlier detection method based on the density of the expenditures for selecting a frst set of technologies to consider (39 technologies out of 106,957), and two anomaly detection models for time series to determine which insurance companies, health providers, and regions have the most notorious increases. We have found that most medicines associated with atypi?cal behavior and signifcant monetary growth could be linked to the use of recently introduced drugs in the market. These drugs have valid patents and very specifc clinical indications, often involving high-cost pharmacological treat?ments. The most relevant case is the Burosumab, approved in 2018 to treat a rare genetic disorder afecting skeletal growth. Secondly, there is clear evidence of anomalous increasing trend evolutions in the identifed enteral nutritional support supplements or Food for Special Medical Purposes. The health system did not purchase these products before July 2021, but in 2022 they represented more than 500,000 USD per month. |
publishDate |
2023 |
dc.date.created.spa.fl_str_mv |
2023-12-01 |
dc.date.issued.spa.fl_str_mv |
2023 |
dc.date.accessioned.none.fl_str_mv |
2024-01-31T18:23:46Z |
dc.date.available.none.fl_str_mv |
2024-01-31T18:23:46Z |
dc.type.spa.fl_str_mv |
article |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.spa.spa.fl_str_mv |
Artículo |
dc.identifier.doi.spa.fl_str_mv |
10.1186/s12913-023-10155-w |
dc.identifier.issn.spa.fl_str_mv |
1472-6963 |
dc.identifier.uri.none.fl_str_mv |
https://repository.urosario.edu.co/handle/10336/42110 |
identifier_str_mv |
10.1186/s12913-023-10155-w 1472-6963 |
url |
https://repository.urosario.edu.co/handle/10336/42110 |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.relation.uri.spa.fl_str_mv |
https://bmchealthservres.biomedcentral.com/articles/10.1186/s12913-023-10155-w |
dc.rights.spa.fl_str_mv |
Attribution-NonCommercial-ShareAlike 4.0 International |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.acceso.spa.fl_str_mv |
Abierto (Texto Completo) |
dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by/4.0/ |
rights_invalid_str_mv |
Attribution-NonCommercial-ShareAlike 4.0 International Abierto (Texto Completo) https://creativecommons.org/licenses/by/4.0/ http://purl.org/coar/access_right/c_abf2 |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad del Rosario |
dc.source.spa.fl_str_mv |
BMC Health Services Research |
institution |
Universidad del Rosario |
dc.source.instname.spa.fl_str_mv |
instname:Universidad del Rosario |
dc.source.reponame.spa.fl_str_mv |
reponame:Repositorio Institucional EdocUR |
bitstream.url.fl_str_mv |
https://repository.urosario.edu.co/bitstreams/4f95aa4e-d998-40b0-b5bf-042bd8878636/download https://repository.urosario.edu.co/bitstreams/57db449f-454c-4321-958e-e086c70e1205/download https://repository.urosario.edu.co/bitstreams/809ec993-6b35-4283-98f3-d38ecb2beb99/download |
bitstream.checksum.fl_str_mv |
363e5e614221e2e32aa07a826af51349 366ea9d74df13f18ffab1c6e24fb3277 41e76a2d136a977ffba0a726e349af26 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio institucional EdocUR |
repository.mail.fl_str_mv |
edocur@urosario.edu.co |
_version_ |
1831928168354676736 |