Detecting unexpected growths in health technologies expenditures

We developed an algorithm to explore unexpected growth in the usage and costs of health technologies. We exploit data from the expenditures on technologies funded by the Colombian government under the compulsory insurance system, where all prescriptions for technologies not included in an explicit l...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2023
Institución:
Universidad del Rosario
Repositorio:
Repositorio EdocUR - U. Rosario
Idioma:
eng
OAI Identifier:
oai:repository.urosario.edu.co:10336/42110
Acceso en línea:
https://repository.urosario.edu.co/handle/10336/42110
Palabra clave:
Health technologies
Health expenditures
High-cost technology
Enteral nutritional
Statistical data analysis
Data analytics
Rights
License
Attribution-NonCommercial-ShareAlike 4.0 International
id EDOCUR2_49c9245847dc0bf548c56ffe3a54a197
oai_identifier_str oai:repository.urosario.edu.co:10336/42110
network_acronym_str EDOCUR2
network_name_str Repositorio EdocUR - U. Rosario
repository_id_str
spelling 266642de-18ee-4ee5-8680-db567b59d397c92e66ab-262d-4bbe-b68e-01f354354ee91532a261-e79a-4bb1-8971-f519f5d5d65f4cec0220-5a7a-4a78-8303-532d584dc516ff042368-9071-4ff0-9cf3-ef80ff07cd8a102625799341387456-cd5e-4f37-866e-be5aec5b0eb22024-01-31T18:23:46Z2024-01-31T18:23:46Z2023-12-012023We developed an algorithm to explore unexpected growth in the usage and costs of health technologies. We exploit data from the expenditures on technologies funded by the Colombian government under the compulsory insurance system, where all prescriptions for technologies not included in an explicit list must be registered in a centralized information system, covering the period from 2017 to 2022. The algorithm consists of two steps: an outlier detection method based on the density of the expenditures for selecting a frst set of technologies to consider (39 technologies out of 106,957), and two anomaly detection models for time series to determine which insurance companies, health providers, and regions have the most notorious increases. We have found that most medicines associated with atypi?cal behavior and signifcant monetary growth could be linked to the use of recently introduced drugs in the market. These drugs have valid patents and very specifc clinical indications, often involving high-cost pharmacological treat?ments. The most relevant case is the Burosumab, approved in 2018 to treat a rare genetic disorder afecting skeletal growth. Secondly, there is clear evidence of anomalous increasing trend evolutions in the identifed enteral nutritional support supplements or Food for Special Medical Purposes. The health system did not purchase these products before July 2021, but in 2022 they represented more than 500,000 USD per month.application/pdf10.1186/s12913-023-10155-w1472-6963https://repository.urosario.edu.co/handle/10336/42110engUniversidad del Rosariohttps://bmchealthservres.biomedcentral.com/articles/10.1186/s12913-023-10155-wAttribution-NonCommercial-ShareAlike 4.0 InternationalAbierto (Texto Completo)https://creativecommons.org/licenses/by/4.0/http://purl.org/coar/access_right/c_abf2BMC Health Services Researchinstname:Universidad del Rosarioreponame:Repositorio Institucional EdocURHealth technologiesHealth expendituresHigh-cost technologyEnteral nutritionalStatistical data analysisData analyticsDetecting unexpected growths in health technologies expendituresarticleArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501Espinosa, OscarBejarano, ValeriaSanabria, CristianRodríguez, JhonathanBasto, SergioRodríguez Lesmes, PaulRobayo, AdrianaORIGINALDetecting_unexpected_growths_in_health_technologie.pdfapplication/pdf2130647https://repository.urosario.edu.co/bitstreams/4f95aa4e-d998-40b0-b5bf-042bd8878636/download363e5e614221e2e32aa07a826af51349MD51TEXTDetecting_unexpected_growths_in_health_technologie.pdf.txtDetecting_unexpected_growths_in_health_technologie.pdf.txtExtracted texttext/plain39744https://repository.urosario.edu.co/bitstreams/57db449f-454c-4321-958e-e086c70e1205/download366ea9d74df13f18ffab1c6e24fb3277MD52THUMBNAILDetecting_unexpected_growths_in_health_technologie.pdf.jpgDetecting_unexpected_growths_in_health_technologie.pdf.jpgGenerated Thumbnailimage/jpeg4440https://repository.urosario.edu.co/bitstreams/809ec993-6b35-4283-98f3-d38ecb2beb99/download41e76a2d136a977ffba0a726e349af26MD5310336/42110oai:repository.urosario.edu.co:10336/421102024-02-01 03:02:07.069https://creativecommons.org/licenses/by/4.0/Attribution-NonCommercial-ShareAlike 4.0 Internationalhttps://repository.urosario.edu.coRepositorio institucional EdocURedocur@urosario.edu.co
dc.title.spa.fl_str_mv Detecting unexpected growths in health technologies expenditures
title Detecting unexpected growths in health technologies expenditures
spellingShingle Detecting unexpected growths in health technologies expenditures
Health technologies
Health expenditures
High-cost technology
Enteral nutritional
Statistical data analysis
Data analytics
title_short Detecting unexpected growths in health technologies expenditures
title_full Detecting unexpected growths in health technologies expenditures
title_fullStr Detecting unexpected growths in health technologies expenditures
title_full_unstemmed Detecting unexpected growths in health technologies expenditures
title_sort Detecting unexpected growths in health technologies expenditures
dc.subject.spa.fl_str_mv Health technologies
Health expenditures
High-cost technology
Enteral nutritional
Statistical data analysis
Data analytics
topic Health technologies
Health expenditures
High-cost technology
Enteral nutritional
Statistical data analysis
Data analytics
description We developed an algorithm to explore unexpected growth in the usage and costs of health technologies. We exploit data from the expenditures on technologies funded by the Colombian government under the compulsory insurance system, where all prescriptions for technologies not included in an explicit list must be registered in a centralized information system, covering the period from 2017 to 2022. The algorithm consists of two steps: an outlier detection method based on the density of the expenditures for selecting a frst set of technologies to consider (39 technologies out of 106,957), and two anomaly detection models for time series to determine which insurance companies, health providers, and regions have the most notorious increases. We have found that most medicines associated with atypi?cal behavior and signifcant monetary growth could be linked to the use of recently introduced drugs in the market. These drugs have valid patents and very specifc clinical indications, often involving high-cost pharmacological treat?ments. The most relevant case is the Burosumab, approved in 2018 to treat a rare genetic disorder afecting skeletal growth. Secondly, there is clear evidence of anomalous increasing trend evolutions in the identifed enteral nutritional support supplements or Food for Special Medical Purposes. The health system did not purchase these products before July 2021, but in 2022 they represented more than 500,000 USD per month.
publishDate 2023
dc.date.created.spa.fl_str_mv 2023-12-01
dc.date.issued.spa.fl_str_mv 2023
dc.date.accessioned.none.fl_str_mv 2024-01-31T18:23:46Z
dc.date.available.none.fl_str_mv 2024-01-31T18:23:46Z
dc.type.spa.fl_str_mv article
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.spa.spa.fl_str_mv Artículo
dc.identifier.doi.spa.fl_str_mv 10.1186/s12913-023-10155-w
dc.identifier.issn.spa.fl_str_mv 1472-6963
dc.identifier.uri.none.fl_str_mv https://repository.urosario.edu.co/handle/10336/42110
identifier_str_mv 10.1186/s12913-023-10155-w
1472-6963
url https://repository.urosario.edu.co/handle/10336/42110
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.uri.spa.fl_str_mv https://bmchealthservres.biomedcentral.com/articles/10.1186/s12913-023-10155-w
dc.rights.spa.fl_str_mv Attribution-NonCommercial-ShareAlike 4.0 International
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.acceso.spa.fl_str_mv Abierto (Texto Completo)
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by/4.0/
rights_invalid_str_mv Attribution-NonCommercial-ShareAlike 4.0 International
Abierto (Texto Completo)
https://creativecommons.org/licenses/by/4.0/
http://purl.org/coar/access_right/c_abf2
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad del Rosario
dc.source.spa.fl_str_mv BMC Health Services Research
institution Universidad del Rosario
dc.source.instname.spa.fl_str_mv instname:Universidad del Rosario
dc.source.reponame.spa.fl_str_mv reponame:Repositorio Institucional EdocUR
bitstream.url.fl_str_mv https://repository.urosario.edu.co/bitstreams/4f95aa4e-d998-40b0-b5bf-042bd8878636/download
https://repository.urosario.edu.co/bitstreams/57db449f-454c-4321-958e-e086c70e1205/download
https://repository.urosario.edu.co/bitstreams/809ec993-6b35-4283-98f3-d38ecb2beb99/download
bitstream.checksum.fl_str_mv 363e5e614221e2e32aa07a826af51349
366ea9d74df13f18ffab1c6e24fb3277
41e76a2d136a977ffba0a726e349af26
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio institucional EdocUR
repository.mail.fl_str_mv edocur@urosario.edu.co
_version_ 1831928168354676736