The core of roommate problems: size and rank-fairness within matched pairs

This paper deals with roommate problems (Gale and Shapley, Am Math Mon 69(1):9–15, 1962) that are solvable, i.e., have a non-empty core (set of stable matchings). We study rank-fairness within pairs of stable matchings and the size of the core by means of maximal and average rank gaps. We provide up...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2019
Institución:
Universidad del Rosario
Repositorio:
Repositorio EdocUR - U. Rosario
Idioma:
eng
OAI Identifier:
oai:repository.urosario.edu.co:10336/24358
Acceso en línea:
https://doi.org/10.1007/s00182-018-0651-9
https://repository.urosario.edu.co/handle/10336/24358
Palabra clave:
Bound
Core
Matching
Rank gap
Rank-fairness
Roommate problem
Stability
Rights
License
Abierto (Texto Completo)
id EDOCUR2_499f411f4a909cb946122d508c85caf0
oai_identifier_str oai:repository.urosario.edu.co:10336/24358
network_acronym_str EDOCUR2
network_name_str Repositorio EdocUR - U. Rosario
repository_id_str
spelling d2a65295-6149-4598-9d22-74d557fac837-1aa10203f-e8e5-4b86-803f-f160a1cfe8b2-1652aa837-c6ce-4d57-b3ef-8bc27bf11097-12020-05-26T00:12:06Z2020-05-26T00:12:06Z2019This paper deals with roommate problems (Gale and Shapley, Am Math Mon 69(1):9–15, 1962) that are solvable, i.e., have a non-empty core (set of stable matchings). We study rank-fairness within pairs of stable matchings and the size of the core by means of maximal and average rank gaps. We provide upper bounds in terms of maximal and average disagreements in the agents’ rankings. Finally, we show that most of our bounds are tight. © 2018, Springer-Verlag GmbH Germany, part of Springer Nature.application/pdfhttps://doi.org/10.1007/s00182-018-0651-91432127000207276https://repository.urosario.edu.co/handle/10336/24358engSpringer Verlag179No. 1157International Journal of Game TheoryVol. 48International Journal of Game Theory, ISSN:14321270, 00207276, Vol.48, No.1 (2019); pp. 157-179https://www.scopus.com/inward/record.uri?eid=2-s2.0-85057620481&doi=10.1007%2fs00182-018-0651-9&partnerID=40&md5=07c6867490b93626030d778e9b810afdAbierto (Texto Completo)http://purl.org/coar/access_right/c_abf2instname:Universidad del Rosarioreponame:Repositorio Institucional EdocURBoundCoreMatchingRank gapRank-fairnessRoommate problemStabilityThe core of roommate problems: size and rank-fairness within matched pairsarticleArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501Jaramillo P.Kay? Ç.Klijn F.10336/24358oai:repository.urosario.edu.co:10336/243582022-05-02 07:37:21.769888https://repository.urosario.edu.coRepositorio institucional EdocURedocur@urosario.edu.co
dc.title.spa.fl_str_mv The core of roommate problems: size and rank-fairness within matched pairs
title The core of roommate problems: size and rank-fairness within matched pairs
spellingShingle The core of roommate problems: size and rank-fairness within matched pairs
Bound
Core
Matching
Rank gap
Rank-fairness
Roommate problem
Stability
title_short The core of roommate problems: size and rank-fairness within matched pairs
title_full The core of roommate problems: size and rank-fairness within matched pairs
title_fullStr The core of roommate problems: size and rank-fairness within matched pairs
title_full_unstemmed The core of roommate problems: size and rank-fairness within matched pairs
title_sort The core of roommate problems: size and rank-fairness within matched pairs
dc.subject.keyword.spa.fl_str_mv Bound
Core
Matching
Rank gap
Rank-fairness
Roommate problem
Stability
topic Bound
Core
Matching
Rank gap
Rank-fairness
Roommate problem
Stability
description This paper deals with roommate problems (Gale and Shapley, Am Math Mon 69(1):9–15, 1962) that are solvable, i.e., have a non-empty core (set of stable matchings). We study rank-fairness within pairs of stable matchings and the size of the core by means of maximal and average rank gaps. We provide upper bounds in terms of maximal and average disagreements in the agents’ rankings. Finally, we show that most of our bounds are tight. © 2018, Springer-Verlag GmbH Germany, part of Springer Nature.
publishDate 2019
dc.date.created.spa.fl_str_mv 2019
dc.date.accessioned.none.fl_str_mv 2020-05-26T00:12:06Z
dc.date.available.none.fl_str_mv 2020-05-26T00:12:06Z
dc.type.eng.fl_str_mv article
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.spa.spa.fl_str_mv Artículo
dc.identifier.doi.none.fl_str_mv https://doi.org/10.1007/s00182-018-0651-9
dc.identifier.issn.none.fl_str_mv 14321270
00207276
dc.identifier.uri.none.fl_str_mv https://repository.urosario.edu.co/handle/10336/24358
url https://doi.org/10.1007/s00182-018-0651-9
https://repository.urosario.edu.co/handle/10336/24358
identifier_str_mv 14321270
00207276
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.citationEndPage.none.fl_str_mv 179
dc.relation.citationIssue.none.fl_str_mv No. 1
dc.relation.citationStartPage.none.fl_str_mv 157
dc.relation.citationTitle.none.fl_str_mv International Journal of Game Theory
dc.relation.citationVolume.none.fl_str_mv Vol. 48
dc.relation.ispartof.spa.fl_str_mv International Journal of Game Theory, ISSN:14321270, 00207276, Vol.48, No.1 (2019); pp. 157-179
dc.relation.uri.spa.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-85057620481&doi=10.1007%2fs00182-018-0651-9&partnerID=40&md5=07c6867490b93626030d778e9b810afd
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.acceso.spa.fl_str_mv Abierto (Texto Completo)
rights_invalid_str_mv Abierto (Texto Completo)
http://purl.org/coar/access_right/c_abf2
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Springer Verlag
institution Universidad del Rosario
dc.source.instname.spa.fl_str_mv instname:Universidad del Rosario
dc.source.reponame.spa.fl_str_mv reponame:Repositorio Institucional EdocUR
repository.name.fl_str_mv Repositorio institucional EdocUR
repository.mail.fl_str_mv edocur@urosario.edu.co
_version_ 1814167446777495552