Evolutionary-games approach for distributed predictive control involving resource allocation
This study proposes a distributed model predictive control (DMPC) scheme based on population games for a system formed by a set of sub-systems. In addition to considering independent operational constraints for each sub-system, the controller addresses a coupled constraint that involves the sum of a...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2019
- Institución:
- Universidad del Rosario
- Repositorio:
- Repositorio EdocUR - U. Rosario
- Idioma:
- eng
- OAI Identifier:
- oai:repository.urosario.edu.co:10336/24254
- Acceso en línea:
- https://doi.org/10.1049/iet-cta.2018.5716
https://repository.urosario.edu.co/handle/10336/24254
- Palabra clave:
- Game theory
Model predictive control
Predictive control systems
Constrained controls
Coupled constraints
Decision variables
Distributed Model predictive Control
Distributed predictive control
Evolutionary game theory
Operational constraints
Stability analysis
Controllers
- Rights
- License
- Abierto (Texto Completo)
id |
EDOCUR2_4468fd42fda764289a93a4033f980567 |
---|---|
oai_identifier_str |
oai:repository.urosario.edu.co:10336/24254 |
network_acronym_str |
EDOCUR2 |
network_name_str |
Repositorio EdocUR - U. Rosario |
repository_id_str |
|
spelling |
788072ea-d487-4934-9119-cd2ff63606a1870696706003af5dba7-3d51-40e6-85a5-2a6c92dc072bc777da98-fab1-4bfb-9a12-5170db79a07e2020-05-26T00:10:44Z2020-05-26T00:10:44Z2019This study proposes a distributed model predictive control (DMPC) scheme based on population games for a system formed by a set of sub-systems. In addition to considering independent operational constraints for each sub-system, the controller addresses a coupled constraint that involves the sum of all control inputs. This constraint models an upper bound on the total amount of energy supplied to the plant. The proposed approach does not need a centralised coordinator when having a coupled constraint involving all the decision variables. The proposed methodology, which takes advantage of evolutionary game theory concepts, provides an optimal solution for the described problem. Moreover, it is shown that the methodology has plug- and-play features, i.e. for each already designed local MPC controller nothing changes when more sub-systems are added/ removed to/from the global constrained control problem. Furthermore, the stability analysis of the proposed DMPC scheme is presented. © The Institution of Engineering and Technology 2019application/pdfhttps://doi.org/10.1049/iet-cta.2018.571617518644https://repository.urosario.edu.co/handle/10336/24254engInstitution of Engineering and Technology782No. 6772IET Control Theory and ApplicationsVol. 13IET Control Theory and Applications, ISSN:17518644, Vol.13, No.6 (2019); pp. 772-782https://www.scopus.com/inward/record.uri?eid=2-s2.0-85064574798&doi=10.1049%2fiet-cta.2018.5716&partnerID=40&md5=46e02c2ee357991ada97828e6ff538b9Abierto (Texto Completo)http://purl.org/coar/access_right/c_abf2instname:Universidad del Rosarioreponame:Repositorio Institucional EdocURGame theoryModel predictive controlPredictive control systemsConstrained controlsCoupled constraintsDecision variablesDistributed Model predictive ControlDistributed predictive controlEvolutionary game theoryOperational constraintsStability analysisControllersEvolutionary-games approach for distributed predictive control involving resource allocationarticleArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501Barreiro-Gomez J.Obando Bravo, Germán DarioOcampo-Martinez C.Quijano N.10336/24254oai:repository.urosario.edu.co:10336/242542022-05-02 07:37:16.837046https://repository.urosario.edu.coRepositorio institucional EdocURedocur@urosario.edu.co |
dc.title.spa.fl_str_mv |
Evolutionary-games approach for distributed predictive control involving resource allocation |
title |
Evolutionary-games approach for distributed predictive control involving resource allocation |
spellingShingle |
Evolutionary-games approach for distributed predictive control involving resource allocation Game theory Model predictive control Predictive control systems Constrained controls Coupled constraints Decision variables Distributed Model predictive Control Distributed predictive control Evolutionary game theory Operational constraints Stability analysis Controllers |
title_short |
Evolutionary-games approach for distributed predictive control involving resource allocation |
title_full |
Evolutionary-games approach for distributed predictive control involving resource allocation |
title_fullStr |
Evolutionary-games approach for distributed predictive control involving resource allocation |
title_full_unstemmed |
Evolutionary-games approach for distributed predictive control involving resource allocation |
title_sort |
Evolutionary-games approach for distributed predictive control involving resource allocation |
dc.subject.keyword.spa.fl_str_mv |
Game theory Model predictive control Predictive control systems Constrained controls Coupled constraints Decision variables Distributed Model predictive Control Distributed predictive control Evolutionary game theory Operational constraints Stability analysis Controllers |
topic |
Game theory Model predictive control Predictive control systems Constrained controls Coupled constraints Decision variables Distributed Model predictive Control Distributed predictive control Evolutionary game theory Operational constraints Stability analysis Controllers |
description |
This study proposes a distributed model predictive control (DMPC) scheme based on population games for a system formed by a set of sub-systems. In addition to considering independent operational constraints for each sub-system, the controller addresses a coupled constraint that involves the sum of all control inputs. This constraint models an upper bound on the total amount of energy supplied to the plant. The proposed approach does not need a centralised coordinator when having a coupled constraint involving all the decision variables. The proposed methodology, which takes advantage of evolutionary game theory concepts, provides an optimal solution for the described problem. Moreover, it is shown that the methodology has plug- and-play features, i.e. for each already designed local MPC controller nothing changes when more sub-systems are added/ removed to/from the global constrained control problem. Furthermore, the stability analysis of the proposed DMPC scheme is presented. © The Institution of Engineering and Technology 2019 |
publishDate |
2019 |
dc.date.created.spa.fl_str_mv |
2019 |
dc.date.accessioned.none.fl_str_mv |
2020-05-26T00:10:44Z |
dc.date.available.none.fl_str_mv |
2020-05-26T00:10:44Z |
dc.type.eng.fl_str_mv |
article |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.spa.spa.fl_str_mv |
Artículo |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.1049/iet-cta.2018.5716 |
dc.identifier.issn.none.fl_str_mv |
17518644 |
dc.identifier.uri.none.fl_str_mv |
https://repository.urosario.edu.co/handle/10336/24254 |
url |
https://doi.org/10.1049/iet-cta.2018.5716 https://repository.urosario.edu.co/handle/10336/24254 |
identifier_str_mv |
17518644 |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.relation.citationEndPage.none.fl_str_mv |
782 |
dc.relation.citationIssue.none.fl_str_mv |
No. 6 |
dc.relation.citationStartPage.none.fl_str_mv |
772 |
dc.relation.citationTitle.none.fl_str_mv |
IET Control Theory and Applications |
dc.relation.citationVolume.none.fl_str_mv |
Vol. 13 |
dc.relation.ispartof.spa.fl_str_mv |
IET Control Theory and Applications, ISSN:17518644, Vol.13, No.6 (2019); pp. 772-782 |
dc.relation.uri.spa.fl_str_mv |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85064574798&doi=10.1049%2fiet-cta.2018.5716&partnerID=40&md5=46e02c2ee357991ada97828e6ff538b9 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.acceso.spa.fl_str_mv |
Abierto (Texto Completo) |
rights_invalid_str_mv |
Abierto (Texto Completo) http://purl.org/coar/access_right/c_abf2 |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Institution of Engineering and Technology |
institution |
Universidad del Rosario |
dc.source.instname.spa.fl_str_mv |
instname:Universidad del Rosario |
dc.source.reponame.spa.fl_str_mv |
reponame:Repositorio Institucional EdocUR |
repository.name.fl_str_mv |
Repositorio institucional EdocUR |
repository.mail.fl_str_mv |
edocur@urosario.edu.co |
_version_ |
1818106495389138944 |