Evolutionary-games approach for distributed predictive control involving resource allocation

This study proposes a distributed model predictive control (DMPC) scheme based on population games for a system formed by a set of sub-systems. In addition to considering independent operational constraints for each sub-system, the controller addresses a coupled constraint that involves the sum of a...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2019
Institución:
Universidad del Rosario
Repositorio:
Repositorio EdocUR - U. Rosario
Idioma:
eng
OAI Identifier:
oai:repository.urosario.edu.co:10336/24254
Acceso en línea:
https://doi.org/10.1049/iet-cta.2018.5716
https://repository.urosario.edu.co/handle/10336/24254
Palabra clave:
Game theory
Model predictive control
Predictive control systems
Constrained controls
Coupled constraints
Decision variables
Distributed Model predictive Control
Distributed predictive control
Evolutionary game theory
Operational constraints
Stability analysis
Controllers
Rights
License
Abierto (Texto Completo)
id EDOCUR2_4468fd42fda764289a93a4033f980567
oai_identifier_str oai:repository.urosario.edu.co:10336/24254
network_acronym_str EDOCUR2
network_name_str Repositorio EdocUR - U. Rosario
repository_id_str
spelling 788072ea-d487-4934-9119-cd2ff63606a1870696706003af5dba7-3d51-40e6-85a5-2a6c92dc072bc777da98-fab1-4bfb-9a12-5170db79a07e2020-05-26T00:10:44Z2020-05-26T00:10:44Z2019This study proposes a distributed model predictive control (DMPC) scheme based on population games for a system formed by a set of sub-systems. In addition to considering independent operational constraints for each sub-system, the controller addresses a coupled constraint that involves the sum of all control inputs. This constraint models an upper bound on the total amount of energy supplied to the plant. The proposed approach does not need a centralised coordinator when having a coupled constraint involving all the decision variables. The proposed methodology, which takes advantage of evolutionary game theory concepts, provides an optimal solution for the described problem. Moreover, it is shown that the methodology has plug- and-play features, i.e. for each already designed local MPC controller nothing changes when more sub-systems are added/ removed to/from the global constrained control problem. Furthermore, the stability analysis of the proposed DMPC scheme is presented. © The Institution of Engineering and Technology 2019application/pdfhttps://doi.org/10.1049/iet-cta.2018.571617518644https://repository.urosario.edu.co/handle/10336/24254engInstitution of Engineering and Technology782No. 6772IET Control Theory and ApplicationsVol. 13IET Control Theory and Applications, ISSN:17518644, Vol.13, No.6 (2019); pp. 772-782https://www.scopus.com/inward/record.uri?eid=2-s2.0-85064574798&doi=10.1049%2fiet-cta.2018.5716&partnerID=40&md5=46e02c2ee357991ada97828e6ff538b9Abierto (Texto Completo)http://purl.org/coar/access_right/c_abf2instname:Universidad del Rosarioreponame:Repositorio Institucional EdocURGame theoryModel predictive controlPredictive control systemsConstrained controlsCoupled constraintsDecision variablesDistributed Model predictive ControlDistributed predictive controlEvolutionary game theoryOperational constraintsStability analysisControllersEvolutionary-games approach for distributed predictive control involving resource allocationarticleArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501Barreiro-Gomez J.Obando Bravo, Germán DarioOcampo-Martinez C.Quijano N.10336/24254oai:repository.urosario.edu.co:10336/242542022-05-02 07:37:16.837046https://repository.urosario.edu.coRepositorio institucional EdocURedocur@urosario.edu.co
dc.title.spa.fl_str_mv Evolutionary-games approach for distributed predictive control involving resource allocation
title Evolutionary-games approach for distributed predictive control involving resource allocation
spellingShingle Evolutionary-games approach for distributed predictive control involving resource allocation
Game theory
Model predictive control
Predictive control systems
Constrained controls
Coupled constraints
Decision variables
Distributed Model predictive Control
Distributed predictive control
Evolutionary game theory
Operational constraints
Stability analysis
Controllers
title_short Evolutionary-games approach for distributed predictive control involving resource allocation
title_full Evolutionary-games approach for distributed predictive control involving resource allocation
title_fullStr Evolutionary-games approach for distributed predictive control involving resource allocation
title_full_unstemmed Evolutionary-games approach for distributed predictive control involving resource allocation
title_sort Evolutionary-games approach for distributed predictive control involving resource allocation
dc.subject.keyword.spa.fl_str_mv Game theory
Model predictive control
Predictive control systems
Constrained controls
Coupled constraints
Decision variables
Distributed Model predictive Control
Distributed predictive control
Evolutionary game theory
Operational constraints
Stability analysis
Controllers
topic Game theory
Model predictive control
Predictive control systems
Constrained controls
Coupled constraints
Decision variables
Distributed Model predictive Control
Distributed predictive control
Evolutionary game theory
Operational constraints
Stability analysis
Controllers
description This study proposes a distributed model predictive control (DMPC) scheme based on population games for a system formed by a set of sub-systems. In addition to considering independent operational constraints for each sub-system, the controller addresses a coupled constraint that involves the sum of all control inputs. This constraint models an upper bound on the total amount of energy supplied to the plant. The proposed approach does not need a centralised coordinator when having a coupled constraint involving all the decision variables. The proposed methodology, which takes advantage of evolutionary game theory concepts, provides an optimal solution for the described problem. Moreover, it is shown that the methodology has plug- and-play features, i.e. for each already designed local MPC controller nothing changes when more sub-systems are added/ removed to/from the global constrained control problem. Furthermore, the stability analysis of the proposed DMPC scheme is presented. © The Institution of Engineering and Technology 2019
publishDate 2019
dc.date.created.spa.fl_str_mv 2019
dc.date.accessioned.none.fl_str_mv 2020-05-26T00:10:44Z
dc.date.available.none.fl_str_mv 2020-05-26T00:10:44Z
dc.type.eng.fl_str_mv article
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.spa.spa.fl_str_mv Artículo
dc.identifier.doi.none.fl_str_mv https://doi.org/10.1049/iet-cta.2018.5716
dc.identifier.issn.none.fl_str_mv 17518644
dc.identifier.uri.none.fl_str_mv https://repository.urosario.edu.co/handle/10336/24254
url https://doi.org/10.1049/iet-cta.2018.5716
https://repository.urosario.edu.co/handle/10336/24254
identifier_str_mv 17518644
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.citationEndPage.none.fl_str_mv 782
dc.relation.citationIssue.none.fl_str_mv No. 6
dc.relation.citationStartPage.none.fl_str_mv 772
dc.relation.citationTitle.none.fl_str_mv IET Control Theory and Applications
dc.relation.citationVolume.none.fl_str_mv Vol. 13
dc.relation.ispartof.spa.fl_str_mv IET Control Theory and Applications, ISSN:17518644, Vol.13, No.6 (2019); pp. 772-782
dc.relation.uri.spa.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-85064574798&doi=10.1049%2fiet-cta.2018.5716&partnerID=40&md5=46e02c2ee357991ada97828e6ff538b9
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.acceso.spa.fl_str_mv Abierto (Texto Completo)
rights_invalid_str_mv Abierto (Texto Completo)
http://purl.org/coar/access_right/c_abf2
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Institution of Engineering and Technology
institution Universidad del Rosario
dc.source.instname.spa.fl_str_mv instname:Universidad del Rosario
dc.source.reponame.spa.fl_str_mv reponame:Repositorio Institucional EdocUR
repository.name.fl_str_mv Repositorio institucional EdocUR
repository.mail.fl_str_mv edocur@urosario.edu.co
_version_ 1818106495389138944