Estimating computational requirements in multi-threaded applications

Performance models provide effective support for managing quality-of-service (QoS) and costs of enterprise applications. However, expensive high-resolution monitoring would be needed to obtain key model parameters, such as the CPU consumption of individual requests, which are thus more commonly esti...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2014
Institución:
Universidad del Rosario
Repositorio:
Repositorio EdocUR - U. Rosario
Idioma:
eng
OAI Identifier:
oai:repository.urosario.edu.co:10336/27672
Acceso en línea:
https://doi.org/10.1109/TSE.2014.2363472
https://repository.urosario.edu.co/handle/10336/27672
Palabra clave:
Time factors
Servers
Instruction sets
Maximum likelihood estimation
Computational modeling
Time measurement
Rights
License
Restringido (Acceso a grupos específicos)
id EDOCUR2_412acd7485f537073b6640464cbe13d4
oai_identifier_str oai:repository.urosario.edu.co:10336/27672
network_acronym_str EDOCUR2
network_name_str Repositorio EdocUR - U. Rosario
repository_id_str
spelling 80035202600693f31c7-5e59-4d88-b96a-2175836ec1b066da4f5d-b45c-4a8c-aeda-54c9b5b169b72020-08-19T14:43:16Z2020-08-19T14:43:16Z2014-10-16Performance models provide effective support for managing quality-of-service (QoS) and costs of enterprise applications. However, expensive high-resolution monitoring would be needed to obtain key model parameters, such as the CPU consumption of individual requests, which are thus more commonly estimated from other measures. However, current estimators are often inaccurate in accounting for scheduling in multi-threaded application servers. To cope with this problem, we propose novel linear regression and maximum likelihood estimators. Our algorithms take as inputs response time and resource queue measurements and return estimates of CPU consumption for individual request types. Results on simulated and real application datasets indicate that our algorithms provide accurate estimates and can scale effectively with the threading levels.application/pdfhttps://doi.org/10.1109/TSE.2014.2363472ISSN: 0098-5589EISSN: 1939-3520https://repository.urosario.edu.co/handle/10336/27672engIEEE278No. 3264IEEE Transactions on Software EngineeringVol. 41IEEE Transactions on Software Engineering, ISSN: 0098-5589;EISSN: 1939-3520, Vol.41, No.3 (1 March 2015); pp. 264-278https://ieeexplore.ieee.org/document/6926798Restringido (Acceso a grupos específicos)http://purl.org/coar/access_right/c_16ecIEEE Transactions on Software Engineeringinstname:Universidad del Rosarioreponame:Repositorio Institucional EdocURTime factorsServersInstruction setsMaximum likelihood estimationComputational modelingTime measurementEstimating computational requirements in multi-threaded applicationsEstimación de los requisitos computacionales en aplicaciones multiprocesoarticleArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501Pérez, Juan F.Casale, GiulianoPacheco-Sanchez, Sergio10336/27672oai:repository.urosario.edu.co:10336/276722021-09-23 12:37:27.734https://repository.urosario.edu.coRepositorio institucional EdocURedocur@urosario.edu.co
dc.title.spa.fl_str_mv Estimating computational requirements in multi-threaded applications
dc.title.TranslatedTitle.spa.fl_str_mv Estimación de los requisitos computacionales en aplicaciones multiproceso
title Estimating computational requirements in multi-threaded applications
spellingShingle Estimating computational requirements in multi-threaded applications
Time factors
Servers
Instruction sets
Maximum likelihood estimation
Computational modeling
Time measurement
title_short Estimating computational requirements in multi-threaded applications
title_full Estimating computational requirements in multi-threaded applications
title_fullStr Estimating computational requirements in multi-threaded applications
title_full_unstemmed Estimating computational requirements in multi-threaded applications
title_sort Estimating computational requirements in multi-threaded applications
dc.subject.keyword.spa.fl_str_mv Time factors
Servers
Instruction sets
Maximum likelihood estimation
Computational modeling
Time measurement
topic Time factors
Servers
Instruction sets
Maximum likelihood estimation
Computational modeling
Time measurement
description Performance models provide effective support for managing quality-of-service (QoS) and costs of enterprise applications. However, expensive high-resolution monitoring would be needed to obtain key model parameters, such as the CPU consumption of individual requests, which are thus more commonly estimated from other measures. However, current estimators are often inaccurate in accounting for scheduling in multi-threaded application servers. To cope with this problem, we propose novel linear regression and maximum likelihood estimators. Our algorithms take as inputs response time and resource queue measurements and return estimates of CPU consumption for individual request types. Results on simulated and real application datasets indicate that our algorithms provide accurate estimates and can scale effectively with the threading levels.
publishDate 2014
dc.date.created.spa.fl_str_mv 2014-10-16
dc.date.accessioned.none.fl_str_mv 2020-08-19T14:43:16Z
dc.date.available.none.fl_str_mv 2020-08-19T14:43:16Z
dc.type.eng.fl_str_mv article
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.spa.spa.fl_str_mv Artículo
dc.identifier.doi.none.fl_str_mv https://doi.org/10.1109/TSE.2014.2363472
dc.identifier.issn.none.fl_str_mv ISSN: 0098-5589
EISSN: 1939-3520
dc.identifier.uri.none.fl_str_mv https://repository.urosario.edu.co/handle/10336/27672
url https://doi.org/10.1109/TSE.2014.2363472
https://repository.urosario.edu.co/handle/10336/27672
identifier_str_mv ISSN: 0098-5589
EISSN: 1939-3520
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.citationEndPage.none.fl_str_mv 278
dc.relation.citationIssue.none.fl_str_mv No. 3
dc.relation.citationStartPage.none.fl_str_mv 264
dc.relation.citationTitle.none.fl_str_mv IEEE Transactions on Software Engineering
dc.relation.citationVolume.none.fl_str_mv Vol. 41
dc.relation.ispartof.spa.fl_str_mv IEEE Transactions on Software Engineering, ISSN: 0098-5589;EISSN: 1939-3520, Vol.41, No.3 (1 March 2015); pp. 264-278
dc.relation.uri.spa.fl_str_mv https://ieeexplore.ieee.org/document/6926798
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
dc.rights.acceso.spa.fl_str_mv Restringido (Acceso a grupos específicos)
rights_invalid_str_mv Restringido (Acceso a grupos específicos)
http://purl.org/coar/access_right/c_16ec
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv IEEE
dc.source.spa.fl_str_mv IEEE Transactions on Software Engineering
institution Universidad del Rosario
dc.source.instname.none.fl_str_mv instname:Universidad del Rosario
dc.source.reponame.none.fl_str_mv reponame:Repositorio Institucional EdocUR
repository.name.fl_str_mv Repositorio institucional EdocUR
repository.mail.fl_str_mv edocur@urosario.edu.co
_version_ 1818106406240256000