Estimating computational requirements in multi-threaded applications
Performance models provide effective support for managing quality-of-service (QoS) and costs of enterprise applications. However, expensive high-resolution monitoring would be needed to obtain key model parameters, such as the CPU consumption of individual requests, which are thus more commonly esti...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2014
- Institución:
- Universidad del Rosario
- Repositorio:
- Repositorio EdocUR - U. Rosario
- Idioma:
- eng
- OAI Identifier:
- oai:repository.urosario.edu.co:10336/27672
- Acceso en línea:
- https://doi.org/10.1109/TSE.2014.2363472
https://repository.urosario.edu.co/handle/10336/27672
- Palabra clave:
- Time factors
Servers
Instruction sets
Maximum likelihood estimation
Computational modeling
Time measurement
- Rights
- License
- Restringido (Acceso a grupos específicos)
id |
EDOCUR2_412acd7485f537073b6640464cbe13d4 |
---|---|
oai_identifier_str |
oai:repository.urosario.edu.co:10336/27672 |
network_acronym_str |
EDOCUR2 |
network_name_str |
Repositorio EdocUR - U. Rosario |
repository_id_str |
|
spelling |
80035202600693f31c7-5e59-4d88-b96a-2175836ec1b066da4f5d-b45c-4a8c-aeda-54c9b5b169b72020-08-19T14:43:16Z2020-08-19T14:43:16Z2014-10-16Performance models provide effective support for managing quality-of-service (QoS) and costs of enterprise applications. However, expensive high-resolution monitoring would be needed to obtain key model parameters, such as the CPU consumption of individual requests, which are thus more commonly estimated from other measures. However, current estimators are often inaccurate in accounting for scheduling in multi-threaded application servers. To cope with this problem, we propose novel linear regression and maximum likelihood estimators. Our algorithms take as inputs response time and resource queue measurements and return estimates of CPU consumption for individual request types. Results on simulated and real application datasets indicate that our algorithms provide accurate estimates and can scale effectively with the threading levels.application/pdfhttps://doi.org/10.1109/TSE.2014.2363472ISSN: 0098-5589EISSN: 1939-3520https://repository.urosario.edu.co/handle/10336/27672engIEEE278No. 3264IEEE Transactions on Software EngineeringVol. 41IEEE Transactions on Software Engineering, ISSN: 0098-5589;EISSN: 1939-3520, Vol.41, No.3 (1 March 2015); pp. 264-278https://ieeexplore.ieee.org/document/6926798Restringido (Acceso a grupos específicos)http://purl.org/coar/access_right/c_16ecIEEE Transactions on Software Engineeringinstname:Universidad del Rosarioreponame:Repositorio Institucional EdocURTime factorsServersInstruction setsMaximum likelihood estimationComputational modelingTime measurementEstimating computational requirements in multi-threaded applicationsEstimación de los requisitos computacionales en aplicaciones multiprocesoarticleArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501Pérez, Juan F.Casale, GiulianoPacheco-Sanchez, Sergio10336/27672oai:repository.urosario.edu.co:10336/276722021-09-23 12:37:27.734https://repository.urosario.edu.coRepositorio institucional EdocURedocur@urosario.edu.co |
dc.title.spa.fl_str_mv |
Estimating computational requirements in multi-threaded applications |
dc.title.TranslatedTitle.spa.fl_str_mv |
Estimación de los requisitos computacionales en aplicaciones multiproceso |
title |
Estimating computational requirements in multi-threaded applications |
spellingShingle |
Estimating computational requirements in multi-threaded applications Time factors Servers Instruction sets Maximum likelihood estimation Computational modeling Time measurement |
title_short |
Estimating computational requirements in multi-threaded applications |
title_full |
Estimating computational requirements in multi-threaded applications |
title_fullStr |
Estimating computational requirements in multi-threaded applications |
title_full_unstemmed |
Estimating computational requirements in multi-threaded applications |
title_sort |
Estimating computational requirements in multi-threaded applications |
dc.subject.keyword.spa.fl_str_mv |
Time factors Servers Instruction sets Maximum likelihood estimation Computational modeling Time measurement |
topic |
Time factors Servers Instruction sets Maximum likelihood estimation Computational modeling Time measurement |
description |
Performance models provide effective support for managing quality-of-service (QoS) and costs of enterprise applications. However, expensive high-resolution monitoring would be needed to obtain key model parameters, such as the CPU consumption of individual requests, which are thus more commonly estimated from other measures. However, current estimators are often inaccurate in accounting for scheduling in multi-threaded application servers. To cope with this problem, we propose novel linear regression and maximum likelihood estimators. Our algorithms take as inputs response time and resource queue measurements and return estimates of CPU consumption for individual request types. Results on simulated and real application datasets indicate that our algorithms provide accurate estimates and can scale effectively with the threading levels. |
publishDate |
2014 |
dc.date.created.spa.fl_str_mv |
2014-10-16 |
dc.date.accessioned.none.fl_str_mv |
2020-08-19T14:43:16Z |
dc.date.available.none.fl_str_mv |
2020-08-19T14:43:16Z |
dc.type.eng.fl_str_mv |
article |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.spa.spa.fl_str_mv |
Artículo |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.1109/TSE.2014.2363472 |
dc.identifier.issn.none.fl_str_mv |
ISSN: 0098-5589 EISSN: 1939-3520 |
dc.identifier.uri.none.fl_str_mv |
https://repository.urosario.edu.co/handle/10336/27672 |
url |
https://doi.org/10.1109/TSE.2014.2363472 https://repository.urosario.edu.co/handle/10336/27672 |
identifier_str_mv |
ISSN: 0098-5589 EISSN: 1939-3520 |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.relation.citationEndPage.none.fl_str_mv |
278 |
dc.relation.citationIssue.none.fl_str_mv |
No. 3 |
dc.relation.citationStartPage.none.fl_str_mv |
264 |
dc.relation.citationTitle.none.fl_str_mv |
IEEE Transactions on Software Engineering |
dc.relation.citationVolume.none.fl_str_mv |
Vol. 41 |
dc.relation.ispartof.spa.fl_str_mv |
IEEE Transactions on Software Engineering, ISSN: 0098-5589;EISSN: 1939-3520, Vol.41, No.3 (1 March 2015); pp. 264-278 |
dc.relation.uri.spa.fl_str_mv |
https://ieeexplore.ieee.org/document/6926798 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_16ec |
dc.rights.acceso.spa.fl_str_mv |
Restringido (Acceso a grupos específicos) |
rights_invalid_str_mv |
Restringido (Acceso a grupos específicos) http://purl.org/coar/access_right/c_16ec |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
IEEE |
dc.source.spa.fl_str_mv |
IEEE Transactions on Software Engineering |
institution |
Universidad del Rosario |
dc.source.instname.none.fl_str_mv |
instname:Universidad del Rosario |
dc.source.reponame.none.fl_str_mv |
reponame:Repositorio Institucional EdocUR |
repository.name.fl_str_mv |
Repositorio institucional EdocUR |
repository.mail.fl_str_mv |
edocur@urosario.edu.co |
_version_ |
1818106406240256000 |