Dual toric codes and polytopes of degree one
We define a statistical measure of the typical size of words of low weight in a linear code over a finite field. We prove that the dual toric codes coming from polytopes of degree one are characterized, among all dual toric codes, by being extremal with respect to this measure. We also give a geomet...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2015
- Institución:
- Universidad del Rosario
- Repositorio:
- Repositorio EdocUR - U. Rosario
- Idioma:
- eng
- OAI Identifier:
- oai:repository.urosario.edu.co:10336/23299
- Acceso en línea:
- https://doi.org/10.1137/140966228
https://repository.urosario.edu.co/handle/10336/23299
- Palabra clave:
- Topology
Exact formulas
Finite fields
Geometric interpretation
Linear codes
Minimal degree
Minimum distance
Statistical measures
Toric varieties
Codes (symbols)
Codes over finite fields
Toric varieties
Varieties of minimal degree
- Rights
- License
- Abierto (Texto Completo)
id |
EDOCUR2_3cfc0e71cdc663694782777ba827282e |
---|---|
oai_identifier_str |
oai:repository.urosario.edu.co:10336/23299 |
network_acronym_str |
EDOCUR2 |
network_name_str |
Repositorio EdocUR - U. Rosario |
repository_id_str |
|
spelling |
09b3ee6b-73cc-4abc-b77c-b0de6472438f-12843d604-b6c5-43cc-868e-77af551542f9-12020-05-26T00:01:00Z2020-05-26T00:01:00Z2015We define a statistical measure of the typical size of words of low weight in a linear code over a finite field. We prove that the dual toric codes coming from polytopes of degree one are characterized, among all dual toric codes, by being extremal with respect to this measure. We also give a geometric interpretation of the minimum distance of dual toric codes and characterize its extremal values. Finally, we obtain exact formulas for the parameters of both primal and dual toric codes associated to polytopes of degree one. © 2015 Society for Industrial and Applied Mathematics.application/pdfhttps://doi.org/10.1137/1409662281095714608954801https://repository.urosario.edu.co/handle/10336/23299engSociety for Industrial and Applied Mathematics Publications692No. 1683SIAM Journal on Discrete MathematicsVol. 29SIAM Journal on Discrete Mathematics, ISSN:10957146, 08954801, Vol.29, No.1 (2015); pp. 683-692https://www.scopus.com/inward/record.uri?eid=2-s2.0-84982296411&doi=10.1137%2f140966228&partnerID=40&md5=f6db4e6d2f9eef4ce95e6a1c5f5d2238Abierto (Texto Completo)http://purl.org/coar/access_right/c_abf2instname:Universidad del Rosarioreponame:Repositorio Institucional EdocURTopologyExact formulasFinite fieldsGeometric interpretationLinear codesMinimal degreeMinimum distanceStatistical measuresToric varietiesCodes (symbols)Codes over finite fieldsToric varietiesVarieties of minimal degreeDual toric codes and polytopes of degree onearticleArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501Umaña V.G.Velasco M.10336/23299oai:repository.urosario.edu.co:10336/232992022-05-02 07:37:20.916171https://repository.urosario.edu.coRepositorio institucional EdocURedocur@urosario.edu.co |
dc.title.spa.fl_str_mv |
Dual toric codes and polytopes of degree one |
title |
Dual toric codes and polytopes of degree one |
spellingShingle |
Dual toric codes and polytopes of degree one Topology Exact formulas Finite fields Geometric interpretation Linear codes Minimal degree Minimum distance Statistical measures Toric varieties Codes (symbols) Codes over finite fields Toric varieties Varieties of minimal degree |
title_short |
Dual toric codes and polytopes of degree one |
title_full |
Dual toric codes and polytopes of degree one |
title_fullStr |
Dual toric codes and polytopes of degree one |
title_full_unstemmed |
Dual toric codes and polytopes of degree one |
title_sort |
Dual toric codes and polytopes of degree one |
dc.subject.keyword.spa.fl_str_mv |
Topology Exact formulas Finite fields Geometric interpretation Linear codes Minimal degree Minimum distance Statistical measures Toric varieties Codes (symbols) Codes over finite fields Toric varieties Varieties of minimal degree |
topic |
Topology Exact formulas Finite fields Geometric interpretation Linear codes Minimal degree Minimum distance Statistical measures Toric varieties Codes (symbols) Codes over finite fields Toric varieties Varieties of minimal degree |
description |
We define a statistical measure of the typical size of words of low weight in a linear code over a finite field. We prove that the dual toric codes coming from polytopes of degree one are characterized, among all dual toric codes, by being extremal with respect to this measure. We also give a geometric interpretation of the minimum distance of dual toric codes and characterize its extremal values. Finally, we obtain exact formulas for the parameters of both primal and dual toric codes associated to polytopes of degree one. © 2015 Society for Industrial and Applied Mathematics. |
publishDate |
2015 |
dc.date.created.spa.fl_str_mv |
2015 |
dc.date.accessioned.none.fl_str_mv |
2020-05-26T00:01:00Z |
dc.date.available.none.fl_str_mv |
2020-05-26T00:01:00Z |
dc.type.eng.fl_str_mv |
article |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.spa.spa.fl_str_mv |
Artículo |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.1137/140966228 |
dc.identifier.issn.none.fl_str_mv |
10957146 08954801 |
dc.identifier.uri.none.fl_str_mv |
https://repository.urosario.edu.co/handle/10336/23299 |
url |
https://doi.org/10.1137/140966228 https://repository.urosario.edu.co/handle/10336/23299 |
identifier_str_mv |
10957146 08954801 |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.relation.citationEndPage.none.fl_str_mv |
692 |
dc.relation.citationIssue.none.fl_str_mv |
No. 1 |
dc.relation.citationStartPage.none.fl_str_mv |
683 |
dc.relation.citationTitle.none.fl_str_mv |
SIAM Journal on Discrete Mathematics |
dc.relation.citationVolume.none.fl_str_mv |
Vol. 29 |
dc.relation.ispartof.spa.fl_str_mv |
SIAM Journal on Discrete Mathematics, ISSN:10957146, 08954801, Vol.29, No.1 (2015); pp. 683-692 |
dc.relation.uri.spa.fl_str_mv |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84982296411&doi=10.1137%2f140966228&partnerID=40&md5=f6db4e6d2f9eef4ce95e6a1c5f5d2238 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.acceso.spa.fl_str_mv |
Abierto (Texto Completo) |
rights_invalid_str_mv |
Abierto (Texto Completo) http://purl.org/coar/access_right/c_abf2 |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Society for Industrial and Applied Mathematics Publications |
institution |
Universidad del Rosario |
dc.source.instname.spa.fl_str_mv |
instname:Universidad del Rosario |
dc.source.reponame.spa.fl_str_mv |
reponame:Repositorio Institucional EdocUR |
repository.name.fl_str_mv |
Repositorio institucional EdocUR |
repository.mail.fl_str_mv |
edocur@urosario.edu.co |
_version_ |
1831928228937203712 |