Backward Ornstein-Uhlenbeck Transition Operators and Mild Solutions of Non-Autonomous Hamilton-Jacobi Equations in Banach Spaces

In this paper we revisit the mild-solution approach to second-order semi-linear PDEs of Hamilton-Jacobi type in infinite-dimensional spaces. We show that a well-known result on existence of mild solutions in Hilbert spaces can be easily extended to non-autonomous Hamilton-Jacobi equations in Banach...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2014
Institución:
Universidad del Rosario
Repositorio:
Repositorio EdocUR - U. Rosario
Idioma:
eng
OAI Identifier:
oai:repository.urosario.edu.co:10336/14405
Acceso en línea:
http://repository.urosario.edu.co/handle/10336/14405
Palabra clave:
Ornstein-Uhlenbeck Processes
Infinite-Dimensional Hamilton-Jacobi Equations
Mild Solution
Regularizing Property
Banach Spaces
Probabilidades & matemáticas aplicadas
Sistemas estocásticos
Sistemas de Hamilton
Rights
License
Abierto (Texto Completo)
id EDOCUR2_3c1cc53ba91585336cd708dbc6721161
oai_identifier_str oai:repository.urosario.edu.co:10336/14405
network_acronym_str EDOCUR2
network_name_str Repositorio EdocUR - U. Rosario
repository_id_str
spelling Facultad de Economía Serrano Perdomo, Rafael AntonioSerrano, Rafael800853686002018-02-19T14:44:01Z2018-02-19T14:44:01Z2014-10-092014In this paper we revisit the mild-solution approach to second-order semi-linear PDEs of Hamilton-Jacobi type in infinite-dimensional spaces. We show that a well-known result on existence of mild solutions in Hilbert spaces can be easily extended to non-autonomous Hamilton-Jacobi equations in Banach spaces. The main tool is the regularizing property of Ornstein-Uhlenbeck transition evolution operators for stochastic Cauchy problems in Banach spaces with time-dependent coefficients.application/pdf1916-9809http://repository.urosario.edu.co/handle/10336/14405eng76No. 455Journal Of Mathematics ResearchVol. 6Journal Of Mathematics Research, ISSN 1916-9795, Vol. 6, No. 4, (2014); pp. 55-76http://www.ccsenet.org/journal/index.php/jmr/article/view/41409/22688Abierto (Texto Completo)http://www.sherpa.ac.uk/romeo/issn/1916-9795/http://purl.org/coar/access_right/c_abf2instname:Universidad del Rosarioreponame:Repositorio Institucional EdocUROrnstein-Uhlenbeck ProcessesInfinite-Dimensional Hamilton-Jacobi EquationsMild SolutionRegularizing PropertyBanach SpacesProbabilidades & matemáticas aplicadas519600Sistemas estocásticosSistemas de HamiltonBackward Ornstein-Uhlenbeck Transition Operators and Mild Solutions of Non-Autonomous Hamilton-Jacobi Equations in Banach SpacesarticleArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501ORIGINALPDF40.pdfapplication/pdf212886https://repository.urosario.edu.co/bitstreams/4c358ecf-8a68-4761-8970-8b0b34e74a21/downloadd531ac25a8080801ecbec6c4bfb11a78MD51TEXTPDF40.pdf.txtPDF40.pdf.txtExtracted texttext/plain67749https://repository.urosario.edu.co/bitstreams/76281107-ed6e-448c-bae0-721fb9a9410b/download971554a950af3ed3e3c5e961469c6483MD56THUMBNAILPDF40.pdf.jpgPDF40.pdf.jpgGenerated Thumbnailimage/jpeg4135https://repository.urosario.edu.co/bitstreams/03f0bc16-a996-4494-9d52-cfee4cc0bd29/download0f9febffd3fe00df2ecac5b1b929f008MD5710336/14405oai:repository.urosario.edu.co:10336/144052019-09-19 07:37:54.609585http://www.sherpa.ac.uk/romeo/issn/1916-9795/https://repository.urosario.edu.coRepositorio institucional EdocURedocur@urosario.edu.co
dc.title.spa.fl_str_mv Backward Ornstein-Uhlenbeck Transition Operators and Mild Solutions of Non-Autonomous Hamilton-Jacobi Equations in Banach Spaces
title Backward Ornstein-Uhlenbeck Transition Operators and Mild Solutions of Non-Autonomous Hamilton-Jacobi Equations in Banach Spaces
spellingShingle Backward Ornstein-Uhlenbeck Transition Operators and Mild Solutions of Non-Autonomous Hamilton-Jacobi Equations in Banach Spaces
Ornstein-Uhlenbeck Processes
Infinite-Dimensional Hamilton-Jacobi Equations
Mild Solution
Regularizing Property
Banach Spaces
Probabilidades & matemáticas aplicadas
Sistemas estocásticos
Sistemas de Hamilton
title_short Backward Ornstein-Uhlenbeck Transition Operators and Mild Solutions of Non-Autonomous Hamilton-Jacobi Equations in Banach Spaces
title_full Backward Ornstein-Uhlenbeck Transition Operators and Mild Solutions of Non-Autonomous Hamilton-Jacobi Equations in Banach Spaces
title_fullStr Backward Ornstein-Uhlenbeck Transition Operators and Mild Solutions of Non-Autonomous Hamilton-Jacobi Equations in Banach Spaces
title_full_unstemmed Backward Ornstein-Uhlenbeck Transition Operators and Mild Solutions of Non-Autonomous Hamilton-Jacobi Equations in Banach Spaces
title_sort Backward Ornstein-Uhlenbeck Transition Operators and Mild Solutions of Non-Autonomous Hamilton-Jacobi Equations in Banach Spaces
dc.contributor.gruplac.spa.fl_str_mv Facultad de Economía
dc.subject.spa.fl_str_mv Ornstein-Uhlenbeck Processes
Infinite-Dimensional Hamilton-Jacobi Equations
Mild Solution
Regularizing Property
Banach Spaces
topic Ornstein-Uhlenbeck Processes
Infinite-Dimensional Hamilton-Jacobi Equations
Mild Solution
Regularizing Property
Banach Spaces
Probabilidades & matemáticas aplicadas
Sistemas estocásticos
Sistemas de Hamilton
dc.subject.ddc.none.fl_str_mv Probabilidades & matemáticas aplicadas
dc.subject.lemb.spa.fl_str_mv Sistemas estocásticos
Sistemas de Hamilton
description In this paper we revisit the mild-solution approach to second-order semi-linear PDEs of Hamilton-Jacobi type in infinite-dimensional spaces. We show that a well-known result on existence of mild solutions in Hilbert spaces can be easily extended to non-autonomous Hamilton-Jacobi equations in Banach spaces. The main tool is the regularizing property of Ornstein-Uhlenbeck transition evolution operators for stochastic Cauchy problems in Banach spaces with time-dependent coefficients.
publishDate 2014
dc.date.created.none.fl_str_mv 2014-10-09
dc.date.issued.none.fl_str_mv 2014
dc.date.accessioned.none.fl_str_mv 2018-02-19T14:44:01Z
dc.date.available.none.fl_str_mv 2018-02-19T14:44:01Z
dc.type.eng.fl_str_mv article
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.spa.spa.fl_str_mv Artículo
dc.identifier.issn.none.fl_str_mv 1916-9809
dc.identifier.uri.none.fl_str_mv http://repository.urosario.edu.co/handle/10336/14405
identifier_str_mv 1916-9809
url http://repository.urosario.edu.co/handle/10336/14405
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.citationEndPage.none.fl_str_mv 76
dc.relation.citationIssue.none.fl_str_mv No. 4
dc.relation.citationStartPage.none.fl_str_mv 55
dc.relation.citationTitle.none.fl_str_mv Journal Of Mathematics Research
dc.relation.citationVolume.none.fl_str_mv Vol. 6
dc.relation.ispartof.spa.fl_str_mv Journal Of Mathematics Research, ISSN 1916-9795, Vol. 6, No. 4, (2014); pp. 55-76
dc.relation.uri.none.fl_str_mv http://www.ccsenet.org/journal/index.php/jmr/article/view/41409/22688
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.acceso.spa.fl_str_mv Abierto (Texto Completo)
dc.rights.uri.none.fl_str_mv http://www.sherpa.ac.uk/romeo/issn/1916-9795/
rights_invalid_str_mv Abierto (Texto Completo)
http://www.sherpa.ac.uk/romeo/issn/1916-9795/
http://purl.org/coar/access_right/c_abf2
dc.format.mimetype.none.fl_str_mv application/pdf
institution Universidad del Rosario
dc.source.instname.none.fl_str_mv instname:Universidad del Rosario
dc.source.reponame.none.fl_str_mv reponame:Repositorio Institucional EdocUR
bitstream.url.fl_str_mv https://repository.urosario.edu.co/bitstreams/4c358ecf-8a68-4761-8970-8b0b34e74a21/download
https://repository.urosario.edu.co/bitstreams/76281107-ed6e-448c-bae0-721fb9a9410b/download
https://repository.urosario.edu.co/bitstreams/03f0bc16-a996-4494-9d52-cfee4cc0bd29/download
bitstream.checksum.fl_str_mv d531ac25a8080801ecbec6c4bfb11a78
971554a950af3ed3e3c5e961469c6483
0f9febffd3fe00df2ecac5b1b929f008
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio institucional EdocUR
repository.mail.fl_str_mv edocur@urosario.edu.co
_version_ 1814167585736884224