Backward Ornstein-Uhlenbeck Transition Operators and Mild Solutions of Non-Autonomous Hamilton-Jacobi Equations in Banach Spaces
In this paper we revisit the mild-solution approach to second-order semi-linear PDEs of Hamilton-Jacobi type in infinite-dimensional spaces. We show that a well-known result on existence of mild solutions in Hilbert spaces can be easily extended to non-autonomous Hamilton-Jacobi equations in Banach...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2014
- Institución:
- Universidad del Rosario
- Repositorio:
- Repositorio EdocUR - U. Rosario
- Idioma:
- eng
- OAI Identifier:
- oai:repository.urosario.edu.co:10336/14405
- Acceso en línea:
- http://repository.urosario.edu.co/handle/10336/14405
- Palabra clave:
- Ornstein-Uhlenbeck Processes
Infinite-Dimensional Hamilton-Jacobi Equations
Mild Solution
Regularizing Property
Banach Spaces
Probabilidades & matemáticas aplicadas
Sistemas estocásticos
Sistemas de Hamilton
- Rights
- License
- Abierto (Texto Completo)
id |
EDOCUR2_3c1cc53ba91585336cd708dbc6721161 |
---|---|
oai_identifier_str |
oai:repository.urosario.edu.co:10336/14405 |
network_acronym_str |
EDOCUR2 |
network_name_str |
Repositorio EdocUR - U. Rosario |
repository_id_str |
|
spelling |
Facultad de Economía Serrano Perdomo, Rafael AntonioSerrano, Rafael800853686002018-02-19T14:44:01Z2018-02-19T14:44:01Z2014-10-092014In this paper we revisit the mild-solution approach to second-order semi-linear PDEs of Hamilton-Jacobi type in infinite-dimensional spaces. We show that a well-known result on existence of mild solutions in Hilbert spaces can be easily extended to non-autonomous Hamilton-Jacobi equations in Banach spaces. The main tool is the regularizing property of Ornstein-Uhlenbeck transition evolution operators for stochastic Cauchy problems in Banach spaces with time-dependent coefficients.application/pdf1916-9809http://repository.urosario.edu.co/handle/10336/14405eng76No. 455Journal Of Mathematics ResearchVol. 6Journal Of Mathematics Research, ISSN 1916-9795, Vol. 6, No. 4, (2014); pp. 55-76http://www.ccsenet.org/journal/index.php/jmr/article/view/41409/22688Abierto (Texto Completo)http://www.sherpa.ac.uk/romeo/issn/1916-9795/http://purl.org/coar/access_right/c_abf2instname:Universidad del Rosarioreponame:Repositorio Institucional EdocUROrnstein-Uhlenbeck ProcessesInfinite-Dimensional Hamilton-Jacobi EquationsMild SolutionRegularizing PropertyBanach SpacesProbabilidades & matemáticas aplicadas519600Sistemas estocásticosSistemas de HamiltonBackward Ornstein-Uhlenbeck Transition Operators and Mild Solutions of Non-Autonomous Hamilton-Jacobi Equations in Banach SpacesarticleArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501ORIGINALPDF40.pdfapplication/pdf212886https://repository.urosario.edu.co/bitstreams/4c358ecf-8a68-4761-8970-8b0b34e74a21/downloadd531ac25a8080801ecbec6c4bfb11a78MD51TEXTPDF40.pdf.txtPDF40.pdf.txtExtracted texttext/plain67749https://repository.urosario.edu.co/bitstreams/76281107-ed6e-448c-bae0-721fb9a9410b/download971554a950af3ed3e3c5e961469c6483MD56THUMBNAILPDF40.pdf.jpgPDF40.pdf.jpgGenerated Thumbnailimage/jpeg4135https://repository.urosario.edu.co/bitstreams/03f0bc16-a996-4494-9d52-cfee4cc0bd29/download0f9febffd3fe00df2ecac5b1b929f008MD5710336/14405oai:repository.urosario.edu.co:10336/144052019-09-19 07:37:54.609585http://www.sherpa.ac.uk/romeo/issn/1916-9795/https://repository.urosario.edu.coRepositorio institucional EdocURedocur@urosario.edu.co |
dc.title.spa.fl_str_mv |
Backward Ornstein-Uhlenbeck Transition Operators and Mild Solutions of Non-Autonomous Hamilton-Jacobi Equations in Banach Spaces |
title |
Backward Ornstein-Uhlenbeck Transition Operators and Mild Solutions of Non-Autonomous Hamilton-Jacobi Equations in Banach Spaces |
spellingShingle |
Backward Ornstein-Uhlenbeck Transition Operators and Mild Solutions of Non-Autonomous Hamilton-Jacobi Equations in Banach Spaces Ornstein-Uhlenbeck Processes Infinite-Dimensional Hamilton-Jacobi Equations Mild Solution Regularizing Property Banach Spaces Probabilidades & matemáticas aplicadas Sistemas estocásticos Sistemas de Hamilton |
title_short |
Backward Ornstein-Uhlenbeck Transition Operators and Mild Solutions of Non-Autonomous Hamilton-Jacobi Equations in Banach Spaces |
title_full |
Backward Ornstein-Uhlenbeck Transition Operators and Mild Solutions of Non-Autonomous Hamilton-Jacobi Equations in Banach Spaces |
title_fullStr |
Backward Ornstein-Uhlenbeck Transition Operators and Mild Solutions of Non-Autonomous Hamilton-Jacobi Equations in Banach Spaces |
title_full_unstemmed |
Backward Ornstein-Uhlenbeck Transition Operators and Mild Solutions of Non-Autonomous Hamilton-Jacobi Equations in Banach Spaces |
title_sort |
Backward Ornstein-Uhlenbeck Transition Operators and Mild Solutions of Non-Autonomous Hamilton-Jacobi Equations in Banach Spaces |
dc.contributor.gruplac.spa.fl_str_mv |
Facultad de Economía |
dc.subject.spa.fl_str_mv |
Ornstein-Uhlenbeck Processes Infinite-Dimensional Hamilton-Jacobi Equations Mild Solution Regularizing Property Banach Spaces |
topic |
Ornstein-Uhlenbeck Processes Infinite-Dimensional Hamilton-Jacobi Equations Mild Solution Regularizing Property Banach Spaces Probabilidades & matemáticas aplicadas Sistemas estocásticos Sistemas de Hamilton |
dc.subject.ddc.none.fl_str_mv |
Probabilidades & matemáticas aplicadas |
dc.subject.lemb.spa.fl_str_mv |
Sistemas estocásticos Sistemas de Hamilton |
description |
In this paper we revisit the mild-solution approach to second-order semi-linear PDEs of Hamilton-Jacobi type in infinite-dimensional spaces. We show that a well-known result on existence of mild solutions in Hilbert spaces can be easily extended to non-autonomous Hamilton-Jacobi equations in Banach spaces. The main tool is the regularizing property of Ornstein-Uhlenbeck transition evolution operators for stochastic Cauchy problems in Banach spaces with time-dependent coefficients. |
publishDate |
2014 |
dc.date.created.none.fl_str_mv |
2014-10-09 |
dc.date.issued.none.fl_str_mv |
2014 |
dc.date.accessioned.none.fl_str_mv |
2018-02-19T14:44:01Z |
dc.date.available.none.fl_str_mv |
2018-02-19T14:44:01Z |
dc.type.eng.fl_str_mv |
article |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.spa.spa.fl_str_mv |
Artículo |
dc.identifier.issn.none.fl_str_mv |
1916-9809 |
dc.identifier.uri.none.fl_str_mv |
http://repository.urosario.edu.co/handle/10336/14405 |
identifier_str_mv |
1916-9809 |
url |
http://repository.urosario.edu.co/handle/10336/14405 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.citationEndPage.none.fl_str_mv |
76 |
dc.relation.citationIssue.none.fl_str_mv |
No. 4 |
dc.relation.citationStartPage.none.fl_str_mv |
55 |
dc.relation.citationTitle.none.fl_str_mv |
Journal Of Mathematics Research |
dc.relation.citationVolume.none.fl_str_mv |
Vol. 6 |
dc.relation.ispartof.spa.fl_str_mv |
Journal Of Mathematics Research, ISSN 1916-9795, Vol. 6, No. 4, (2014); pp. 55-76 |
dc.relation.uri.none.fl_str_mv |
http://www.ccsenet.org/journal/index.php/jmr/article/view/41409/22688 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.acceso.spa.fl_str_mv |
Abierto (Texto Completo) |
dc.rights.uri.none.fl_str_mv |
http://www.sherpa.ac.uk/romeo/issn/1916-9795/ |
rights_invalid_str_mv |
Abierto (Texto Completo) http://www.sherpa.ac.uk/romeo/issn/1916-9795/ http://purl.org/coar/access_right/c_abf2 |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
institution |
Universidad del Rosario |
dc.source.instname.none.fl_str_mv |
instname:Universidad del Rosario |
dc.source.reponame.none.fl_str_mv |
reponame:Repositorio Institucional EdocUR |
bitstream.url.fl_str_mv |
https://repository.urosario.edu.co/bitstreams/4c358ecf-8a68-4761-8970-8b0b34e74a21/download https://repository.urosario.edu.co/bitstreams/76281107-ed6e-448c-bae0-721fb9a9410b/download https://repository.urosario.edu.co/bitstreams/03f0bc16-a996-4494-9d52-cfee4cc0bd29/download |
bitstream.checksum.fl_str_mv |
d531ac25a8080801ecbec6c4bfb11a78 971554a950af3ed3e3c5e961469c6483 0f9febffd3fe00df2ecac5b1b929f008 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio institucional EdocUR |
repository.mail.fl_str_mv |
edocur@urosario.edu.co |
_version_ |
1814167585736884224 |