Impact of Bolivian paleolake evaporation on the ?18O of the Andean glaciers during the last deglaciation (18.5-11.7 ka): Diatom-inferred ?18O values and hydro-isotopic modeling
During the last deglaciation, the Bolivian Altiplano (15–23°S, 66–70°W) was occupied by paleolake Tauca covering, at least, ?51,000 km2 at its maximum highstand between 16.5 and 15 ka. Twenty-five hundred years later, after a massive regression, a new transgressive phase, produced paleolake Coipasa,...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2015
- Institución:
- Universidad del Rosario
- Repositorio:
- Repositorio EdocUR - U. Rosario
- Idioma:
- eng
- OAI Identifier:
- oai:repository.urosario.edu.co:10336/27849
- Acceso en línea:
- https://doi.org/10.1016/j.quascirev.2015.04.022
https://repository.urosario.edu.co/handle/10336/27849
- Palabra clave:
- Bolivian
Altiplano
Deglaciation
Paleolakes
Andean ice cores
Diatoms
Ostracods
Oxygen isotopes
- Rights
- License
- Restringido (Acceso a grupos específicos)
id |
EDOCUR2_3aea91e1ab354e6b3dc63f91baa37b51 |
---|---|
oai_identifier_str |
oai:repository.urosario.edu.co:10336/27849 |
network_acronym_str |
EDOCUR2 |
network_name_str |
Repositorio EdocUR - U. Rosario |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Impact of Bolivian paleolake evaporation on the ?18O of the Andean glaciers during the last deglaciation (18.5-11.7 ka): Diatom-inferred ?18O values and hydro-isotopic modeling |
dc.title.TranslatedTitle.spa.fl_str_mv |
Impacto de la evaporación del paleolaco boliviano en el ?18O de los glaciares andinos durante la última desglaciación (18,5-11,7 ka): valores de ?18O inferidos por diatomeas y modelado hidroisotópico |
title |
Impact of Bolivian paleolake evaporation on the ?18O of the Andean glaciers during the last deglaciation (18.5-11.7 ka): Diatom-inferred ?18O values and hydro-isotopic modeling |
spellingShingle |
Impact of Bolivian paleolake evaporation on the ?18O of the Andean glaciers during the last deglaciation (18.5-11.7 ka): Diatom-inferred ?18O values and hydro-isotopic modeling Bolivian Altiplano Deglaciation Paleolakes Andean ice cores Diatoms Ostracods Oxygen isotopes |
title_short |
Impact of Bolivian paleolake evaporation on the ?18O of the Andean glaciers during the last deglaciation (18.5-11.7 ka): Diatom-inferred ?18O values and hydro-isotopic modeling |
title_full |
Impact of Bolivian paleolake evaporation on the ?18O of the Andean glaciers during the last deglaciation (18.5-11.7 ka): Diatom-inferred ?18O values and hydro-isotopic modeling |
title_fullStr |
Impact of Bolivian paleolake evaporation on the ?18O of the Andean glaciers during the last deglaciation (18.5-11.7 ka): Diatom-inferred ?18O values and hydro-isotopic modeling |
title_full_unstemmed |
Impact of Bolivian paleolake evaporation on the ?18O of the Andean glaciers during the last deglaciation (18.5-11.7 ka): Diatom-inferred ?18O values and hydro-isotopic modeling |
title_sort |
Impact of Bolivian paleolake evaporation on the ?18O of the Andean glaciers during the last deglaciation (18.5-11.7 ka): Diatom-inferred ?18O values and hydro-isotopic modeling |
dc.subject.keyword.spa.fl_str_mv |
Bolivian Altiplano Deglaciation Paleolakes Andean ice cores Diatoms Ostracods Oxygen isotopes |
topic |
Bolivian Altiplano Deglaciation Paleolakes Andean ice cores Diatoms Ostracods Oxygen isotopes |
description |
During the last deglaciation, the Bolivian Altiplano (15–23°S, 66–70°W) was occupied by paleolake Tauca covering, at least, ?51,000 km2 at its maximum highstand between 16.5 and 15 ka. Twenty-five hundred years later, after a massive regression, a new transgressive phase, produced paleolake Coipasa, smaller than Tauca and restricted to the southern part of the basin. These paleolakes were overlooked at the west by the Sajama ice cap. The latter provides a continuous record of the oxygen isotopic composition of paleo-precipitation for the last 25 ka. Contemporaneously to the end of paleolake Tauca, around 14.3 ka, the Sajama ice cap recorded a significant increase in ice oxygen isotopic composition (?18Oice). This paper examines to what extent the disappearance of Lake Tauca contributed to precipitation on the Sajama summit and this specific isotopic variation. The water ?18O values of paleolakes Tauca and Coipasa (?18Olake) were quantitatively reconstructed from 18.5 to 11.7 ka based on diatom isotopic composition (?18Odiatoms) and ostracod isotopic composition (?18Ocarbonates) retrieved in lacustrine sediments. At a centennial time scale, a strong trend appears: abrupt decreases of ?18Olake during lake fillings are immediately followed by abrupt increases of ?18Olake during lake level stable phases. The highest variation occurred at ?15.8 ka with a ?18Olake decrease of about ?10‰, concomitant with the Lake Tauca highstand, followed ?400 years later by a 7‰ increase in ?18Olake. A simple hydro-isotopic modeling approach reproduces consistently this rapid “decrease–increase” feature. Moreover, it suggests that this unexpected re-increase in ?18Olake after filling phases can be partly explained by an equilibration of isotopic fluxes during the lake steady-state. Based on isotopic calculations during lake evaporation and a simple water stable isotopes balance between potential moisture sources at Sajama (advection versus lake evaporation), we show that total or partial evaporation (from 5 to 60%) of paleolake Tauca during its major regression phase at 14.3 ka could explain the pronounced isotopic excursion at Sajama ice cap. These results suggest that perturbations of the local hydrological cycle in lacustrine areas may substantially affect the paleoclimatic interpretation of the near-by isotopic signals (e.g. ice core or speleothems). |
publishDate |
2015 |
dc.date.created.spa.fl_str_mv |
2015-07-12 |
dc.date.accessioned.none.fl_str_mv |
2020-08-19T14:44:14Z |
dc.date.available.none.fl_str_mv |
2020-08-19T14:44:14Z |
dc.type.eng.fl_str_mv |
article |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.spa.spa.fl_str_mv |
Artículo |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.1016/j.quascirev.2015.04.022 |
dc.identifier.issn.none.fl_str_mv |
ISSN: 0277-3791 EISSN: 1873-457X |
dc.identifier.uri.none.fl_str_mv |
https://repository.urosario.edu.co/handle/10336/27849 |
url |
https://doi.org/10.1016/j.quascirev.2015.04.022 https://repository.urosario.edu.co/handle/10336/27849 |
identifier_str_mv |
ISSN: 0277-3791 EISSN: 1873-457X |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.relation.citationEndPage.none.fl_str_mv |
106 |
dc.relation.citationStartPage.none.fl_str_mv |
93 |
dc.relation.citationTitle.none.fl_str_mv |
Quaternary Science Reviews |
dc.relation.citationVolume.none.fl_str_mv |
Vol. 120 |
dc.relation.ispartof.spa.fl_str_mv |
Quaternary Science Reviews, ISSN: 0277-3791;EISSN: 1873-457X, Vol.120 (2015); pp. 93-106 |
dc.relation.uri.spa.fl_str_mv |
https://www.sciencedirect.com/science/article/abs/pii/S0277379115001808 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_16ec |
dc.rights.acceso.spa.fl_str_mv |
Restringido (Acceso a grupos específicos) |
rights_invalid_str_mv |
Restringido (Acceso a grupos específicos) http://purl.org/coar/access_right/c_16ec |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Elsevier |
dc.source.spa.fl_str_mv |
Quaternary Science Reviews |
institution |
Universidad del Rosario |
dc.source.instname.none.fl_str_mv |
instname:Universidad del Rosario |
dc.source.reponame.none.fl_str_mv |
reponame:Repositorio Institucional EdocUR |
repository.name.fl_str_mv |
Repositorio institucional EdocUR |
repository.mail.fl_str_mv |
edocur@urosario.edu.co |
_version_ |
1814167502995849216 |
spelling |
8297216009210821e-6104-4bf5-bd4b-a6e541614c7b-1da28b5b4-16ab-4593-b3a7-ad494948c937-1eb3c8905-d1cc-4e31-a57d-e19d5ea0ea57-1e9998c1b-e641-4db8-acdc-eed566196eb5-126b52005-1b73-44c1-a12a-57eb6b152aea-10f277a2f-4976-458b-ae7d-a6c2c7f8f3a5-1d7e8cf7a-2cf4-4731-b291-36b240ac9dfc-15385c1ce-0b82-4015-86a3-e49f0187231d-1f17a5130-b568-43bf-ba42-118f328180bc-13c2b83fb-0fca-46a1-9e6e-58f78497ba5d-12020-08-19T14:44:14Z2020-08-19T14:44:14Z2015-07-12During the last deglaciation, the Bolivian Altiplano (15–23°S, 66–70°W) was occupied by paleolake Tauca covering, at least, ?51,000 km2 at its maximum highstand between 16.5 and 15 ka. Twenty-five hundred years later, after a massive regression, a new transgressive phase, produced paleolake Coipasa, smaller than Tauca and restricted to the southern part of the basin. These paleolakes were overlooked at the west by the Sajama ice cap. The latter provides a continuous record of the oxygen isotopic composition of paleo-precipitation for the last 25 ka. Contemporaneously to the end of paleolake Tauca, around 14.3 ka, the Sajama ice cap recorded a significant increase in ice oxygen isotopic composition (?18Oice). This paper examines to what extent the disappearance of Lake Tauca contributed to precipitation on the Sajama summit and this specific isotopic variation. The water ?18O values of paleolakes Tauca and Coipasa (?18Olake) were quantitatively reconstructed from 18.5 to 11.7 ka based on diatom isotopic composition (?18Odiatoms) and ostracod isotopic composition (?18Ocarbonates) retrieved in lacustrine sediments. At a centennial time scale, a strong trend appears: abrupt decreases of ?18Olake during lake fillings are immediately followed by abrupt increases of ?18Olake during lake level stable phases. The highest variation occurred at ?15.8 ka with a ?18Olake decrease of about ?10‰, concomitant with the Lake Tauca highstand, followed ?400 years later by a 7‰ increase in ?18Olake. A simple hydro-isotopic modeling approach reproduces consistently this rapid “decrease–increase” feature. Moreover, it suggests that this unexpected re-increase in ?18Olake after filling phases can be partly explained by an equilibration of isotopic fluxes during the lake steady-state. Based on isotopic calculations during lake evaporation and a simple water stable isotopes balance between potential moisture sources at Sajama (advection versus lake evaporation), we show that total or partial evaporation (from 5 to 60%) of paleolake Tauca during its major regression phase at 14.3 ka could explain the pronounced isotopic excursion at Sajama ice cap. These results suggest that perturbations of the local hydrological cycle in lacustrine areas may substantially affect the paleoclimatic interpretation of the near-by isotopic signals (e.g. ice core or speleothems).application/pdfhttps://doi.org/10.1016/j.quascirev.2015.04.022ISSN: 0277-3791EISSN: 1873-457Xhttps://repository.urosario.edu.co/handle/10336/27849engElsevier10693Quaternary Science ReviewsVol. 120Quaternary Science Reviews, ISSN: 0277-3791;EISSN: 1873-457X, Vol.120 (2015); pp. 93-106 https://www.sciencedirect.com/science/article/abs/pii/S0277379115001808Restringido (Acceso a grupos específicos)http://purl.org/coar/access_right/c_16ecQuaternary Science Reviewsinstname:Universidad del Rosarioreponame:Repositorio Institucional EdocURBolivianAltiplanoDeglaciationPaleolakesAndean ice coresDiatomsOstracodsOxygen isotopesImpact of Bolivian paleolake evaporation on the ?18O of the Andean glaciers during the last deglaciation (18.5-11.7 ka): Diatom-inferred ?18O values and hydro-isotopic modelingImpacto de la evaporación del paleolaco boliviano en el ?18O de los glaciares andinos durante la última desglaciación (18,5-11,7 ka): valores de ?18O inferidos por diatomeas y modelado hidroisotópicoarticleArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501Quesada, Benjamín RaphaelSylvestre, FlorenceVimeux, FrançoiseBlack, JessicaPaillès, ChristineSonzogni, CorinneAlexandre, AnneBlardd, Pierre-HenriTonetto, AlainMazura, Jean-CharlesBruneton, Hélène10336/27849oai:repository.urosario.edu.co:10336/278492021-06-03 00:51:04.76https://repository.urosario.edu.coRepositorio institucional EdocURedocur@urosario.edu.co |