Impact of Bolivian paleolake evaporation on the ?18O of the Andean glaciers during the last deglaciation (18.5-11.7 ka): Diatom-inferred ?18O values and hydro-isotopic modeling

During the last deglaciation, the Bolivian Altiplano (15–23°S, 66–70°W) was occupied by paleolake Tauca covering, at least, ?51,000 km2 at its maximum highstand between 16.5 and 15 ka. Twenty-five hundred years later, after a massive regression, a new transgressive phase, produced paleolake Coipasa,...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2015
Institución:
Universidad del Rosario
Repositorio:
Repositorio EdocUR - U. Rosario
Idioma:
eng
OAI Identifier:
oai:repository.urosario.edu.co:10336/27849
Acceso en línea:
https://doi.org/10.1016/j.quascirev.2015.04.022
https://repository.urosario.edu.co/handle/10336/27849
Palabra clave:
Bolivian
Altiplano
Deglaciation
Paleolakes
Andean ice cores
Diatoms
Ostracods
Oxygen isotopes
Rights
License
Restringido (Acceso a grupos específicos)
id EDOCUR2_3aea91e1ab354e6b3dc63f91baa37b51
oai_identifier_str oai:repository.urosario.edu.co:10336/27849
network_acronym_str EDOCUR2
network_name_str Repositorio EdocUR - U. Rosario
repository_id_str
dc.title.spa.fl_str_mv Impact of Bolivian paleolake evaporation on the ?18O of the Andean glaciers during the last deglaciation (18.5-11.7 ka): Diatom-inferred ?18O values and hydro-isotopic modeling
dc.title.TranslatedTitle.spa.fl_str_mv Impacto de la evaporación del paleolaco boliviano en el ?18O de los glaciares andinos durante la última desglaciación (18,5-11,7 ka): valores de ?18O inferidos por diatomeas y modelado hidroisotópico
title Impact of Bolivian paleolake evaporation on the ?18O of the Andean glaciers during the last deglaciation (18.5-11.7 ka): Diatom-inferred ?18O values and hydro-isotopic modeling
spellingShingle Impact of Bolivian paleolake evaporation on the ?18O of the Andean glaciers during the last deglaciation (18.5-11.7 ka): Diatom-inferred ?18O values and hydro-isotopic modeling
Bolivian
Altiplano
Deglaciation
Paleolakes
Andean ice cores
Diatoms
Ostracods
Oxygen isotopes
title_short Impact of Bolivian paleolake evaporation on the ?18O of the Andean glaciers during the last deglaciation (18.5-11.7 ka): Diatom-inferred ?18O values and hydro-isotopic modeling
title_full Impact of Bolivian paleolake evaporation on the ?18O of the Andean glaciers during the last deglaciation (18.5-11.7 ka): Diatom-inferred ?18O values and hydro-isotopic modeling
title_fullStr Impact of Bolivian paleolake evaporation on the ?18O of the Andean glaciers during the last deglaciation (18.5-11.7 ka): Diatom-inferred ?18O values and hydro-isotopic modeling
title_full_unstemmed Impact of Bolivian paleolake evaporation on the ?18O of the Andean glaciers during the last deglaciation (18.5-11.7 ka): Diatom-inferred ?18O values and hydro-isotopic modeling
title_sort Impact of Bolivian paleolake evaporation on the ?18O of the Andean glaciers during the last deglaciation (18.5-11.7 ka): Diatom-inferred ?18O values and hydro-isotopic modeling
dc.subject.keyword.spa.fl_str_mv Bolivian
Altiplano
Deglaciation
Paleolakes
Andean ice cores
Diatoms
Ostracods
Oxygen isotopes
topic Bolivian
Altiplano
Deglaciation
Paleolakes
Andean ice cores
Diatoms
Ostracods
Oxygen isotopes
description During the last deglaciation, the Bolivian Altiplano (15–23°S, 66–70°W) was occupied by paleolake Tauca covering, at least, ?51,000 km2 at its maximum highstand between 16.5 and 15 ka. Twenty-five hundred years later, after a massive regression, a new transgressive phase, produced paleolake Coipasa, smaller than Tauca and restricted to the southern part of the basin. These paleolakes were overlooked at the west by the Sajama ice cap. The latter provides a continuous record of the oxygen isotopic composition of paleo-precipitation for the last 25 ka. Contemporaneously to the end of paleolake Tauca, around 14.3 ka, the Sajama ice cap recorded a significant increase in ice oxygen isotopic composition (?18Oice). This paper examines to what extent the disappearance of Lake Tauca contributed to precipitation on the Sajama summit and this specific isotopic variation. The water ?18O values of paleolakes Tauca and Coipasa (?18Olake) were quantitatively reconstructed from 18.5 to 11.7 ka based on diatom isotopic composition (?18Odiatoms) and ostracod isotopic composition (?18Ocarbonates) retrieved in lacustrine sediments. At a centennial time scale, a strong trend appears: abrupt decreases of ?18Olake during lake fillings are immediately followed by abrupt increases of ?18Olake during lake level stable phases. The highest variation occurred at ?15.8 ka with a ?18Olake decrease of about ?10‰, concomitant with the Lake Tauca highstand, followed ?400 years later by a 7‰ increase in ?18Olake. A simple hydro-isotopic modeling approach reproduces consistently this rapid “decrease–increase” feature. Moreover, it suggests that this unexpected re-increase in ?18Olake after filling phases can be partly explained by an equilibration of isotopic fluxes during the lake steady-state. Based on isotopic calculations during lake evaporation and a simple water stable isotopes balance between potential moisture sources at Sajama (advection versus lake evaporation), we show that total or partial evaporation (from 5 to 60%) of paleolake Tauca during its major regression phase at 14.3 ka could explain the pronounced isotopic excursion at Sajama ice cap. These results suggest that perturbations of the local hydrological cycle in lacustrine areas may substantially affect the paleoclimatic interpretation of the near-by isotopic signals (e.g. ice core or speleothems).
publishDate 2015
dc.date.created.spa.fl_str_mv 2015-07-12
dc.date.accessioned.none.fl_str_mv 2020-08-19T14:44:14Z
dc.date.available.none.fl_str_mv 2020-08-19T14:44:14Z
dc.type.eng.fl_str_mv article
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.spa.spa.fl_str_mv Artículo
dc.identifier.doi.none.fl_str_mv https://doi.org/10.1016/j.quascirev.2015.04.022
dc.identifier.issn.none.fl_str_mv ISSN: 0277-3791
EISSN: 1873-457X
dc.identifier.uri.none.fl_str_mv https://repository.urosario.edu.co/handle/10336/27849
url https://doi.org/10.1016/j.quascirev.2015.04.022
https://repository.urosario.edu.co/handle/10336/27849
identifier_str_mv ISSN: 0277-3791
EISSN: 1873-457X
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.citationEndPage.none.fl_str_mv 106
dc.relation.citationStartPage.none.fl_str_mv 93
dc.relation.citationTitle.none.fl_str_mv Quaternary Science Reviews
dc.relation.citationVolume.none.fl_str_mv Vol. 120
dc.relation.ispartof.spa.fl_str_mv Quaternary Science Reviews, ISSN: 0277-3791;EISSN: 1873-457X, Vol.120 (2015); pp. 93-106
dc.relation.uri.spa.fl_str_mv https://www.sciencedirect.com/science/article/abs/pii/S0277379115001808
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
dc.rights.acceso.spa.fl_str_mv Restringido (Acceso a grupos específicos)
rights_invalid_str_mv Restringido (Acceso a grupos específicos)
http://purl.org/coar/access_right/c_16ec
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Elsevier
dc.source.spa.fl_str_mv Quaternary Science Reviews
institution Universidad del Rosario
dc.source.instname.none.fl_str_mv instname:Universidad del Rosario
dc.source.reponame.none.fl_str_mv reponame:Repositorio Institucional EdocUR
repository.name.fl_str_mv Repositorio institucional EdocUR
repository.mail.fl_str_mv edocur@urosario.edu.co
_version_ 1814167502995849216
spelling 8297216009210821e-6104-4bf5-bd4b-a6e541614c7b-1da28b5b4-16ab-4593-b3a7-ad494948c937-1eb3c8905-d1cc-4e31-a57d-e19d5ea0ea57-1e9998c1b-e641-4db8-acdc-eed566196eb5-126b52005-1b73-44c1-a12a-57eb6b152aea-10f277a2f-4976-458b-ae7d-a6c2c7f8f3a5-1d7e8cf7a-2cf4-4731-b291-36b240ac9dfc-15385c1ce-0b82-4015-86a3-e49f0187231d-1f17a5130-b568-43bf-ba42-118f328180bc-13c2b83fb-0fca-46a1-9e6e-58f78497ba5d-12020-08-19T14:44:14Z2020-08-19T14:44:14Z2015-07-12During the last deglaciation, the Bolivian Altiplano (15–23°S, 66–70°W) was occupied by paleolake Tauca covering, at least, ?51,000 km2 at its maximum highstand between 16.5 and 15 ka. Twenty-five hundred years later, after a massive regression, a new transgressive phase, produced paleolake Coipasa, smaller than Tauca and restricted to the southern part of the basin. These paleolakes were overlooked at the west by the Sajama ice cap. The latter provides a continuous record of the oxygen isotopic composition of paleo-precipitation for the last 25 ka. Contemporaneously to the end of paleolake Tauca, around 14.3 ka, the Sajama ice cap recorded a significant increase in ice oxygen isotopic composition (?18Oice). This paper examines to what extent the disappearance of Lake Tauca contributed to precipitation on the Sajama summit and this specific isotopic variation. The water ?18O values of paleolakes Tauca and Coipasa (?18Olake) were quantitatively reconstructed from 18.5 to 11.7 ka based on diatom isotopic composition (?18Odiatoms) and ostracod isotopic composition (?18Ocarbonates) retrieved in lacustrine sediments. At a centennial time scale, a strong trend appears: abrupt decreases of ?18Olake during lake fillings are immediately followed by abrupt increases of ?18Olake during lake level stable phases. The highest variation occurred at ?15.8 ka with a ?18Olake decrease of about ?10‰, concomitant with the Lake Tauca highstand, followed ?400 years later by a 7‰ increase in ?18Olake. A simple hydro-isotopic modeling approach reproduces consistently this rapid “decrease–increase” feature. Moreover, it suggests that this unexpected re-increase in ?18Olake after filling phases can be partly explained by an equilibration of isotopic fluxes during the lake steady-state. Based on isotopic calculations during lake evaporation and a simple water stable isotopes balance between potential moisture sources at Sajama (advection versus lake evaporation), we show that total or partial evaporation (from 5 to 60%) of paleolake Tauca during its major regression phase at 14.3 ka could explain the pronounced isotopic excursion at Sajama ice cap. These results suggest that perturbations of the local hydrological cycle in lacustrine areas may substantially affect the paleoclimatic interpretation of the near-by isotopic signals (e.g. ice core or speleothems).application/pdfhttps://doi.org/10.1016/j.quascirev.2015.04.022ISSN: 0277-3791EISSN: 1873-457Xhttps://repository.urosario.edu.co/handle/10336/27849engElsevier10693Quaternary Science ReviewsVol. 120Quaternary Science Reviews, ISSN: 0277-3791;EISSN: 1873-457X, Vol.120 (2015); pp. 93-106 https://www.sciencedirect.com/science/article/abs/pii/S0277379115001808Restringido (Acceso a grupos específicos)http://purl.org/coar/access_right/c_16ecQuaternary Science Reviewsinstname:Universidad del Rosarioreponame:Repositorio Institucional EdocURBolivianAltiplanoDeglaciationPaleolakesAndean ice coresDiatomsOstracodsOxygen isotopesImpact of Bolivian paleolake evaporation on the ?18O of the Andean glaciers during the last deglaciation (18.5-11.7 ka): Diatom-inferred ?18O values and hydro-isotopic modelingImpacto de la evaporación del paleolaco boliviano en el ?18O de los glaciares andinos durante la última desglaciación (18,5-11,7 ka): valores de ?18O inferidos por diatomeas y modelado hidroisotópicoarticleArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501Quesada, Benjamín RaphaelSylvestre, FlorenceVimeux, FrançoiseBlack, JessicaPaillès, ChristineSonzogni, CorinneAlexandre, AnneBlardd, Pierre-HenriTonetto, AlainMazura, Jean-CharlesBruneton, Hélène10336/27849oai:repository.urosario.edu.co:10336/278492021-06-03 00:51:04.76https://repository.urosario.edu.coRepositorio institucional EdocURedocur@urosario.edu.co