Aprendizaje por refuerzo de un parser semántico óptimo en DRT

Este documento se trata del procesamiento de lenguaje natural (NLP, por sus siglas en inglés), que se enfoca en desarrollar sistemas de comunicación efectivos entre computadoras y humanos. Aunque los mayores avances en esta área se han logrado mediante grandes modelos de lenguaje (LLMs, por sus sigl...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2024
Institución:
Universidad del Rosario
Repositorio:
Repositorio EdocUR - U. Rosario
Idioma:
spa
OAI Identifier:
oai:repository.urosario.edu.co:10336/43268
Acceso en línea:
https://doi.org/10.48713/10336_43268
https://repository.urosario.edu.co/handle/10336/43268
Palabra clave:
Representación formal del lenguaje
Razonamiento automático
Inferencia Lógica
Teoría de la Representación del Discurso
Procesamiento de Lenguaje Natural
Formal representation of language
Automatic reasoning
Logical inference
Discourse representation theory
Natural language processing
Rights
License
Attribution-NonCommercial-ShareAlike 4.0 International
Description
Summary:Este documento se trata del procesamiento de lenguaje natural (NLP, por sus siglas en inglés), que se enfoca en desarrollar sistemas de comunicación efectivos entre computadoras y humanos. Aunque los mayores avances en esta área se han logrado mediante grandes modelos de lenguaje (LLMs, por sus siglas en inglés), estos suelen ser imprecisos en dominios regidos por reglas, como las relaciones espaciales o las normas legales. Para abordar estos dominios, se utilizan parsers semánticos que asignan representaciones lógicas a los textos a través del análisis de su estructura sintáctica y la interpretación semántica. Sin embargo, estos parsers son complejos y su diseño es complicado debido a la implementación manual de reglas específicas. Este estudio propone un enfoque innovador que utiliza el aprendizaje por refuerzo profundo para desarrollar un parser semántico que pueda aprender y adaptarse automáticamente. El agente, a través de recompensas, optimizará su comportamiento con el tiempo, lo que podría tener un impacto significativo en el avance del procesamiento de lenguaje natural.