Big Data, un caso vinícola sobre calidad y clima
El presente documento expone un análisis de variables climáticas conectado a una base de datos de calificaciones de múltiples vinos, el cual permite obtener información de rangos recomendables óptimos para la cosecha de la vid, y expone a un inversionista nuevos lugares para implementar un viñedo, o...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2023
- Institución:
- Universidad del Rosario
- Repositorio:
- Repositorio EdocUR - U. Rosario
- Idioma:
- spa
- OAI Identifier:
- oai:repository.urosario.edu.co:10336/41004
- Acceso en línea:
- https://doi.org/10.48713/10336_41004
https://repository.urosario.edu.co/handle/10336/41004
- Palabra clave:
- Big Data
Ciencia de Datos
Vinicultura
Vinos
Clima
Vinicola
Calidad
Uva
Cepas
Viñedos
Big Data
Data Science
Viticultire
Viticultire
Wine
Climate
Winery
Quality
Vine
Grape
Strains
Vineyard
- Rights
- License
- Attribution 4.0 International
id |
EDOCUR2_38a6e141b4bb139c656b2e32c838c6ec |
---|---|
oai_identifier_str |
oai:repository.urosario.edu.co:10336/41004 |
network_acronym_str |
EDOCUR2 |
network_name_str |
Repositorio EdocUR - U. Rosario |
repository_id_str |
|
dc.title.none.fl_str_mv |
Big Data, un caso vinícola sobre calidad y clima |
dc.title.TranslatedTitle.none.fl_str_mv |
Big Data, a winery case about quality and climate |
title |
Big Data, un caso vinícola sobre calidad y clima |
spellingShingle |
Big Data, un caso vinícola sobre calidad y clima Big Data Ciencia de Datos Vinicultura Vinos Clima Vinicola Calidad Uva Cepas Viñedos Big Data Data Science Viticultire Viticultire Wine Climate Winery Quality Vine Grape Strains Vineyard |
title_short |
Big Data, un caso vinícola sobre calidad y clima |
title_full |
Big Data, un caso vinícola sobre calidad y clima |
title_fullStr |
Big Data, un caso vinícola sobre calidad y clima |
title_full_unstemmed |
Big Data, un caso vinícola sobre calidad y clima |
title_sort |
Big Data, un caso vinícola sobre calidad y clima |
dc.contributor.advisor.none.fl_str_mv |
Días Piraquive, Flor Nancy |
dc.subject.none.fl_str_mv |
Big Data Ciencia de Datos Vinicultura Vinos Clima Vinicola Calidad Uva Cepas Viñedos |
topic |
Big Data Ciencia de Datos Vinicultura Vinos Clima Vinicola Calidad Uva Cepas Viñedos Big Data Data Science Viticultire Viticultire Wine Climate Winery Quality Vine Grape Strains Vineyard |
dc.subject.keyword.none.fl_str_mv |
Big Data Data Science Viticultire Viticultire Wine Climate Winery Quality Vine Grape Strains Vineyard |
description |
El presente documento expone un análisis de variables climáticas conectado a una base de datos de calificaciones de múltiples vinos, el cual permite obtener información de rangos recomendables óptimos para la cosecha de la vid, y expone a un inversionista nuevos lugares para implementar un viñedo, o a un viñedo existente buscar nuevos sitios para implementar nuevas cosechas. |
publishDate |
2023 |
dc.date.accessioned.none.fl_str_mv |
2023-09-26T14:07:46Z |
dc.date.available.none.fl_str_mv |
2023-09-26T14:07:46Z |
dc.date.created.none.fl_str_mv |
2023-09-19 |
dc.type.none.fl_str_mv |
bachelorThesis |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.document.none.fl_str_mv |
Trabajo de grado |
dc.type.spa.none.fl_str_mv |
Trabajo de grado |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.48713/10336_41004 |
dc.identifier.uri.none.fl_str_mv |
https://repository.urosario.edu.co/handle/10336/41004 |
url |
https://doi.org/10.48713/10336_41004 https://repository.urosario.edu.co/handle/10336/41004 |
dc.language.iso.none.fl_str_mv |
spa |
language |
spa |
dc.rights.*.fl_str_mv |
Attribution 4.0 International |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.acceso.none.fl_str_mv |
Abierto (Texto Completo) |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by/4.0/ |
rights_invalid_str_mv |
Attribution 4.0 International Abierto (Texto Completo) http://creativecommons.org/licenses/by/4.0/ http://purl.org/coar/access_right/c_abf2 |
dc.format.extent.none.fl_str_mv |
62 |
dc.format.mimetype.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Universidad del Rosario |
dc.publisher.department.none.fl_str_mv |
Escuela de Administración |
dc.publisher.program.none.fl_str_mv |
Maestría en Administración MBA |
publisher.none.fl_str_mv |
Universidad del Rosario |
institution |
Universidad del Rosario |
dc.source.bibliographicCitation.none.fl_str_mv |
10 Most Innovative Data Science Companies in 2023. (s/f). Recuperado el 19 de agosto de 2023, de https://www.knowledgehut.com/blog/data-science/data-science-companies 43 Best Data Science MBA Programs & Data Analytics MBA. (s/f). DiscoverDataScience.Org. Recuperado el 19 de agosto de 2023, de https://www.discoverdatascience.org/programs/mba-data-science/ Bai, H., Gambetta, G. A., Wang, Y., Kong, J., Long, Q., Fan, P., Duan, W., Liang, Z., & Dai, Z. (2022). Historical long-term cultivar×climate suitability data to inform viticultural adaptation to climate change. Scientific Data, 9(1), Article 1. https://doi.org/10.1038/s41597-022-01367-6 Big Data and Agriculture: A Complete Guide. (s/f). Talend - A Leader in Data Integration & Data Integrity. Recuperado el 19 de agosto de 2023, de https://www.talend.com/resources/big-data-agriculture/ Corvain. (2022, marzo 25). Southern Hemisphere Wines: Facts and Wines from Coravin | Coravin. https://www.coravin.com/community/southern-hemisphere-wines-facts-and-wines-from-coravin Crisp DM methodology. (s/f). Smart Vision Europe. Recuperado el 19 de agosto de 2023, de https://www.sv-europe.com/crisp-dm-methodology/ Dutta, A. (2004). Big Data Analytics Changing the Centuries-Old Wine Industry. Sommeliers Choice Awards. https://sommelierschoiceawards.com/en/blog/insights-1/big-data-analytics-changing-the-centuries-old-wine-industry-684.htm Echeverri, L. (2019, junio 24). Part Time-Presentación Dirección de Marketing 2019. Frick, W. (2018, enero 22). 3 Ways to Improve Your Decision Making. Harvard Business Review. https://hbr.org/2018/01/3-ways-to-improve-your-decision-making Gambetta, G. A., & Kurtural, S. K. (2021). Global warming and wine quality: Are we close to the tipping point? OENO One, 55(3), Article 3. https://doi.org/10.20870/oeno-one.2021.55.3.4774 Globe Newswire. (2020, septiembre 8). Global Wine Industry. Benzinga; Benzinga. https://www.benzinga.com/pressreleases/20/09/g17403336/global-wine-industry Hayashi, A. M. (2001, febrero). When to Trust Your Gut. When-to-Trust-Your-Gut. https://hbr.org/2001/02/when-to-trust-your-gut Hillier, W. (2021, septiembre 20). 4 Fascinating Real-World Big Data Examples. https://careerfoundry.com/en/blog/data-analytics/big-data-examples/ IntelligentHQ. (2020, agosto 20). Why And How is Big Data Impacting The Hospitality Industry? IntelligentHQ. https://www.intelligenthq.com/big-data-impacting-hospitality-industry/ Jackson, R. S. (2017). Chapter 8—Nature and Origins of Wine Quality. En R. S. Jackson (Ed.), Wine Tasting (Third Edition) (pp. 337–370). Academic Press. https://doi.org/10.1016/B978-0-12-801813-2.00008-2 Jay, A. (2019, septiembre 11). 97 Big Data Statistics You Must Learn: 2023 Market Share & Data Analysis. Financesonline.Com. https://financesonline.com/big-data-statistics/ Jones, G., White, M., Cooper, O., & Storchmann, K. (2005). Climate Change and Global Wine Quality. Clim Change, 73, 319–343. https://doi.org/10.1007/s10584-005-4704-2 La influencia de la luna en la agricultura—Colombia Verde. (2023, mayo 11). https://colombiaverde.com.co/geografia/agricultura/la-influencia-de-la-luna-en-la-agricultura/ Leon, J. (2017, mayo 11). El ciclo de la vid ilustrado paso a paso. Jean Leon. https://www.jeanleon.com/el-ciclo-de-la-vid-ilustrado-paso-a-paso/ Marland, J. (2014, abril 30). SAP BrandVoice: How Big Data Can Predict The Wine Of The Century. Forbes. https://www.forbes.com/sites/sap/2014/04/30/how-big-data-can-predict-the-wine-of-the-century/ McKay, A. (Director). (2015, diciembre 23). The Big Short [Biography, Comedy, Drama, History]. Paramount Pictures, New Regency Productions, Plan B Entertainment. Nguyen, D. (2020, noviembre 25). Red Wine Quality Prediction Using Regression Modeling and Machine Learning. Medium. https://towardsdatascience.com/red-wine-quality-prediction-using-regression-modeling-and-machine-learning-7a3e2c3e1f46 Pandey, K. (2022, julio 14). 5 Real-World Examples of Data Analytics. Masai School. https://www.masaischool.com/blog/5-real-world-examples-of-data-analytics/ Pastrana De La Cruz, M. (2019, febrero 21). 2a Part Time—Presentación Administración 2019. Predictive Analytics: Grow your business like Netflix! (s/f). Engati. Recuperado el 19 de agosto de 2023, de https://www.engati.com/blog/predictive-analytics Python or R for Data Analysis: Which Should I Learn? (2023, junio 15). Coursera. https://www.coursera.org/articles/python-or-r-for-data-analysis ¿Qué es la ciencia de datos? - Explicación de la ciencia de datos - AWS. (s/f). Amazon Web Services, Inc. Recuperado el 30 de julio de 2023, de https://aws.amazon.com/es/what-is/data-science/ Santos, D. (2023, enero 20). Qué es un análisis de mercado, cómo se hace y ejemplos. https://blog.hubspot.es/marketing/como-hacer-analisis-mercado The Deciding Factor: Big Data & Decision Making. (2012, junio 4). Capgemini Worldwide. https://www.capgemini.com/resources/the-deciding-factor-big-data-decision-making/ Tudor, N. (2021, febrero 10). 7 real-world examples of how brands are using Big Data analytics. Bornfight. https://www.bornfight.com/blog/7-real-world-examples-of-how-brands-are-using-big-data-analytics/ Vaughan, A. (2023, junio 23). Top Big Data Tools & Software for 2023. TechnologyAdvice. https://technologyadvice.com/blog/information-technology/big-data-tools/ Vinos y Sabores. (s/f). Recuperado el 20 de agosto de 2023, de http://www.vinosygastronomia.com/variedades Webb, A. (2018, octubre 26). 12 Wines From Countries You Didn’t Even Know... Culture Trip. https://theculturetrip.com/europe/united-kingdom/articles/12-wines-from-countries-you-didnt-even-know-made-wine/ What Is Big Data? (s/f). Google Cloud. Recuperado el 21 de agosto de 2023, de https://cloud.google.com/learn/what-is-big-data What the Wine Industry Understands About Connecting with Consumers. (2019, marzo 5). Harvard Business Review. https://hbr.org/2019/03/what-the-u-s-wine-industry-understands-about-connecting-with-customers Where Did Wine Come From? The True Origin of Wine. (s/f). Wine Folly. Recuperado el 4 de julio de 2022, de https://winefolly.com/deep-dive/where-did-wine-come-from/ Wine (HS: 2204) Product Trade, Exporters and Importers. (2018). https://oec.world/en/profile/hs92/wine Yanet Acosta et al. (2013). El mundo del vino. LAROUSEE EDITORIAL. |
dc.source.instname.none.fl_str_mv |
instname:Universidad del Rosario |
dc.source.reponame.none.fl_str_mv |
reponame:Repositorio Institucional EdocUR |
bitstream.url.fl_str_mv |
https://repository.urosario.edu.co/bitstreams/d4c51684-cdf4-4bbb-adb1-b01be52313cc/download https://repository.urosario.edu.co/bitstreams/b68f4282-ba75-48cd-a192-34ee81631c2f/download https://repository.urosario.edu.co/bitstreams/28993a71-fe21-4799-b398-d3ffc22e2e60/download https://repository.urosario.edu.co/bitstreams/13faa69b-f349-49fb-b2a6-f5ee2212a78b/download https://repository.urosario.edu.co/bitstreams/c8b01f30-a920-453c-9a6d-42f05c852786/download https://repository.urosario.edu.co/bitstreams/35f1327c-fc09-40b3-8f60-c893f802cea6/download https://repository.urosario.edu.co/bitstreams/608d2d8a-4147-49b2-97b0-177d6957335b/download https://repository.urosario.edu.co/bitstreams/da8fb935-14b9-4aef-a9ad-0042e0b8254a/download |
bitstream.checksum.fl_str_mv |
b2825df9f458e9d5d96ee8b7cd74fde6 313ea3fe4cd627df823c57a0f12776e5 e1cabc7f993167ff2b308aa2d006e9eb 620c0c59b5a5b7ae0e7b248c86b26a9b dd47e7d734ae3cf32a749fc3b5b1513d 95cec7bd521f94dfb7c58d66da524016 81b412a55d8a1e2d97238702fbe230c2 c6661f1c03ba8d8e9a1b4d3d43b495d2 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio institucional EdocUR |
repository.mail.fl_str_mv |
edocur@urosario.edu.co |
_version_ |
1814167474303664128 |
spelling |
Días Piraquive, Flor Nancya0a6ba82-a2a0-4a9d-bbd8-ebef9e579f80-1Rodríguez Coronado, Carlos EnriqueMagíster en AdministraciónMagíster en AdministraciónMaestríaFull timeb3aa7f07-aa29-4486-9538-5895a02bd019-12023-09-26T14:07:46Z2023-09-26T14:07:46Z2023-09-19El presente documento expone un análisis de variables climáticas conectado a una base de datos de calificaciones de múltiples vinos, el cual permite obtener información de rangos recomendables óptimos para la cosecha de la vid, y expone a un inversionista nuevos lugares para implementar un viñedo, o a un viñedo existente buscar nuevos sitios para implementar nuevas cosechas.This document presents an analysis of climate variables connected to a database related to the quality of multiple wines, that allow to obtain information and recommend optimal ranges for the vine, and exposes to an investor new places to implement a vineyard, or existing vineyards to look for new places to implement new crops62application/pdfapplication/pdfhttps://doi.org/10.48713/10336_41004 https://repository.urosario.edu.co/handle/10336/41004spaUniversidad del RosarioEscuela de AdministraciónMaestría en Administración MBAAttribution 4.0 InternationalAbierto (Texto Completo)EL AUTOR, manifiesta que la obra objeto de la presente autorización es original y la realizó sin violar o usurpar derechos de autor de terceros, por lo tanto la obra es de exclusiva autoría y tiene la titularidad sobre la misma. PARGRAFO: En caso de presentarse cualquier reclamación o acción por parte de un tercero en cuanto a los derechos de autor sobre la obra en cuestión, EL AUTOR, asumirá toda la responsabilidad, y saldrá en defensa de los derechos aquí autorizados; para todos los efectos la universidad actúa como un tercero de buena fe. EL AUTOR, autoriza a LA UNIVERSIDAD DEL ROSARIO, para que en los términos establecidos en la Ley 23 de 1982, Ley 44 de 1993, Decisión andina 351 de 1993, Decreto 460 de 1995 y demás normas generales sobre la materia, utilice y use la obra objeto de la presente autorización. -------------------------------------- POLITICA DE TRATAMIENTO DE DATOS PERSONALES. Declaro que autorizo previa y de forma informada el tratamiento de mis datos personales por parte de LA UNIVERSIDAD DEL ROSARIO para fines académicos y en aplicación de convenios con terceros o servicios conexos con actividades propias de la academia, con estricto cumplimiento de los principios de ley. Para el correcto ejercicio de mi derecho de habeas data cuento con la cuenta de correo habeasdata@urosario.edu.co, donde previa identificación podré solicitar la consulta, corrección y supresión de mis datos.http://creativecommons.org/licenses/by/4.0/http://purl.org/coar/access_right/c_abf210 Most Innovative Data Science Companies in 2023. (s/f). Recuperado el 19 de agosto de 2023, de https://www.knowledgehut.com/blog/data-science/data-science-companies43 Best Data Science MBA Programs & Data Analytics MBA. (s/f). DiscoverDataScience.Org. Recuperado el 19 de agosto de 2023, de https://www.discoverdatascience.org/programs/mba-data-science/Bai, H., Gambetta, G. A., Wang, Y., Kong, J., Long, Q., Fan, P., Duan, W., Liang, Z., & Dai, Z. (2022). Historical long-term cultivar×climate suitability data to inform viticultural adaptation to climate change. Scientific Data, 9(1), Article 1. https://doi.org/10.1038/s41597-022-01367-6Big Data and Agriculture: A Complete Guide. (s/f). Talend - A Leader in Data Integration & Data Integrity. Recuperado el 19 de agosto de 2023, de https://www.talend.com/resources/big-data-agriculture/Corvain. (2022, marzo 25). Southern Hemisphere Wines: Facts and Wines from Coravin | Coravin. https://www.coravin.com/community/southern-hemisphere-wines-facts-and-wines-from-coravinCrisp DM methodology. (s/f). Smart Vision Europe. Recuperado el 19 de agosto de 2023, de https://www.sv-europe.com/crisp-dm-methodology/Dutta, A. (2004). Big Data Analytics Changing the Centuries-Old Wine Industry. Sommeliers Choice Awards. https://sommelierschoiceawards.com/en/blog/insights-1/big-data-analytics-changing-the-centuries-old-wine-industry-684.htmEcheverri, L. (2019, junio 24). Part Time-Presentación Dirección de Marketing 2019.Frick, W. (2018, enero 22). 3 Ways to Improve Your Decision Making. Harvard Business Review. https://hbr.org/2018/01/3-ways-to-improve-your-decision-makingGambetta, G. A., & Kurtural, S. K. (2021). Global warming and wine quality: Are we close to the tipping point? OENO One, 55(3), Article 3. https://doi.org/10.20870/oeno-one.2021.55.3.4774Globe Newswire. (2020, septiembre 8). Global Wine Industry. Benzinga; Benzinga. https://www.benzinga.com/pressreleases/20/09/g17403336/global-wine-industryHayashi, A. M. (2001, febrero). When to Trust Your Gut. When-to-Trust-Your-Gut. https://hbr.org/2001/02/when-to-trust-your-gutHillier, W. (2021, septiembre 20). 4 Fascinating Real-World Big Data Examples. https://careerfoundry.com/en/blog/data-analytics/big-data-examples/IntelligentHQ. (2020, agosto 20). Why And How is Big Data Impacting The Hospitality Industry? IntelligentHQ. https://www.intelligenthq.com/big-data-impacting-hospitality-industry/Jackson, R. S. (2017). Chapter 8—Nature and Origins of Wine Quality. En R. S. Jackson (Ed.), Wine Tasting (Third Edition) (pp. 337–370). Academic Press. https://doi.org/10.1016/B978-0-12-801813-2.00008-2Jay, A. (2019, septiembre 11). 97 Big Data Statistics You Must Learn: 2023 Market Share & Data Analysis. Financesonline.Com. https://financesonline.com/big-data-statistics/Jones, G., White, M., Cooper, O., & Storchmann, K. (2005). Climate Change and Global Wine Quality. Clim Change, 73, 319–343. https://doi.org/10.1007/s10584-005-4704-2La influencia de la luna en la agricultura—Colombia Verde. (2023, mayo 11). https://colombiaverde.com.co/geografia/agricultura/la-influencia-de-la-luna-en-la-agricultura/Leon, J. (2017, mayo 11). El ciclo de la vid ilustrado paso a paso. Jean Leon. https://www.jeanleon.com/el-ciclo-de-la-vid-ilustrado-paso-a-paso/Marland, J. (2014, abril 30). SAP BrandVoice: How Big Data Can Predict The Wine Of The Century. Forbes. https://www.forbes.com/sites/sap/2014/04/30/how-big-data-can-predict-the-wine-of-the-century/McKay, A. (Director). (2015, diciembre 23). The Big Short [Biography, Comedy, Drama, History]. Paramount Pictures, New Regency Productions, Plan B Entertainment.Nguyen, D. (2020, noviembre 25). Red Wine Quality Prediction Using Regression Modeling and Machine Learning. Medium. https://towardsdatascience.com/red-wine-quality-prediction-using-regression-modeling-and-machine-learning-7a3e2c3e1f46Pandey, K. (2022, julio 14). 5 Real-World Examples of Data Analytics. Masai School. https://www.masaischool.com/blog/5-real-world-examples-of-data-analytics/Pastrana De La Cruz, M. (2019, febrero 21). 2a Part Time—Presentación Administración 2019.Predictive Analytics: Grow your business like Netflix! (s/f). Engati. Recuperado el 19 de agosto de 2023, de https://www.engati.com/blog/predictive-analyticsPython or R for Data Analysis: Which Should I Learn? (2023, junio 15). Coursera. https://www.coursera.org/articles/python-or-r-for-data-analysis¿Qué es la ciencia de datos? - Explicación de la ciencia de datos - AWS. (s/f). Amazon Web Services, Inc. Recuperado el 30 de julio de 2023, de https://aws.amazon.com/es/what-is/data-science/Santos, D. (2023, enero 20). Qué es un análisis de mercado, cómo se hace y ejemplos. https://blog.hubspot.es/marketing/como-hacer-analisis-mercadoThe Deciding Factor: Big Data & Decision Making. (2012, junio 4). Capgemini Worldwide. https://www.capgemini.com/resources/the-deciding-factor-big-data-decision-making/Tudor, N. (2021, febrero 10). 7 real-world examples of how brands are using Big Data analytics. Bornfight. https://www.bornfight.com/blog/7-real-world-examples-of-how-brands-are-using-big-data-analytics/Vaughan, A. (2023, junio 23). Top Big Data Tools & Software for 2023. TechnologyAdvice. https://technologyadvice.com/blog/information-technology/big-data-tools/Vinos y Sabores. (s/f). Recuperado el 20 de agosto de 2023, de http://www.vinosygastronomia.com/variedadesWebb, A. (2018, octubre 26). 12 Wines From Countries You Didn’t Even Know... Culture Trip. https://theculturetrip.com/europe/united-kingdom/articles/12-wines-from-countries-you-didnt-even-know-made-wine/What Is Big Data? (s/f). Google Cloud. Recuperado el 21 de agosto de 2023, de https://cloud.google.com/learn/what-is-big-dataWhat the Wine Industry Understands About Connecting with Consumers. (2019, marzo 5). Harvard Business Review. https://hbr.org/2019/03/what-the-u-s-wine-industry-understands-about-connecting-with-customersWhere Did Wine Come From? The True Origin of Wine. (s/f). Wine Folly. Recuperado el 4 de julio de 2022, de https://winefolly.com/deep-dive/where-did-wine-come-from/Wine (HS: 2204) Product Trade, Exporters and Importers. (2018). https://oec.world/en/profile/hs92/wineYanet Acosta et al. (2013). El mundo del vino. LAROUSEE EDITORIAL.instname:Universidad del Rosarioreponame:Repositorio Institucional EdocURBig DataCiencia de DatosViniculturaVinosClimaVinicolaCalidadUvaCepasViñedosBig DataData ScienceViticultireViticultireWineClimateWineryQualityVineGrapeStrainsVineyardBig Data, un caso vinícola sobre calidad y climaBig Data, a winery case about quality and climatebachelorThesisTrabajo de gradoTrabajo de gradohttp://purl.org/coar/resource_type/c_7a1fEscuela de AdministraciónLICENSElicense.txtlicense.txttext/plain1483https://repository.urosario.edu.co/bitstreams/d4c51684-cdf4-4bbb-adb1-b01be52313cc/downloadb2825df9f458e9d5d96ee8b7cd74fde6MD54CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81019https://repository.urosario.edu.co/bitstreams/b68f4282-ba75-48cd-a192-34ee81631c2f/download313ea3fe4cd627df823c57a0f12776e5MD55ORIGINALBig-data-caso-vinicola-Rodriguez-Coronado-Carlos-Enrique-2023.pdfBig-data-caso-vinicola-Rodriguez-Coronado-Carlos-Enrique-2023.pdfapplication/pdf2091291https://repository.urosario.edu.co/bitstreams/28993a71-fe21-4799-b398-d3ffc22e2e60/downloade1cabc7f993167ff2b308aa2d006e9ebMD56Big-data-caso-vinicola-Rodriguez-Coronado-Carlos-Enrique-Anexo-2023.pdfBig-data-caso-vinicola-Rodriguez-Coronado-Carlos-Enrique-Anexo-2023.pdfapplication/pdf4061873https://repository.urosario.edu.co/bitstreams/13faa69b-f349-49fb-b2a6-f5ee2212a78b/download620c0c59b5a5b7ae0e7b248c86b26a9bMD57TEXTBig-data-caso-vinicola-Rodriguez-Coronado-Carlos-Enrique-2023.pdf.txtBig-data-caso-vinicola-Rodriguez-Coronado-Carlos-Enrique-2023.pdf.txtExtracted texttext/plain86834https://repository.urosario.edu.co/bitstreams/c8b01f30-a920-453c-9a6d-42f05c852786/downloaddd47e7d734ae3cf32a749fc3b5b1513dMD58Big-data-caso-vinicola-Rodriguez-Coronado-Carlos-Enrique-Anexo-2023.pdf.txtBig-data-caso-vinicola-Rodriguez-Coronado-Carlos-Enrique-Anexo-2023.pdf.txtExtracted texttext/plain80484https://repository.urosario.edu.co/bitstreams/35f1327c-fc09-40b3-8f60-c893f802cea6/download95cec7bd521f94dfb7c58d66da524016MD510THUMBNAILBig-data-caso-vinicola-Rodriguez-Coronado-Carlos-Enrique-2023.pdf.jpgBig-data-caso-vinicola-Rodriguez-Coronado-Carlos-Enrique-2023.pdf.jpgGenerated Thumbnailimage/jpeg2010https://repository.urosario.edu.co/bitstreams/608d2d8a-4147-49b2-97b0-177d6957335b/download81b412a55d8a1e2d97238702fbe230c2MD59Big-data-caso-vinicola-Rodriguez-Coronado-Carlos-Enrique-Anexo-2023.pdf.jpgBig-data-caso-vinicola-Rodriguez-Coronado-Carlos-Enrique-Anexo-2023.pdf.jpgGenerated Thumbnailimage/jpeg4153https://repository.urosario.edu.co/bitstreams/da8fb935-14b9-4aef-a9ad-0042e0b8254a/downloadc6661f1c03ba8d8e9a1b4d3d43b495d2MD51110336/41004oai:repository.urosario.edu.co:10336/410042023-09-27 03:00:45.61http://creativecommons.org/licenses/by/4.0/Attribution 4.0 Internationalhttps://repository.urosario.edu.coRepositorio institucional EdocURedocur@urosario.edu.coRUwoTE9TKSBBVVRPUihFUyksIG1hbmlmaWVzdGEobWFuaWZlc3RhbW9zKSBxdWUgbGEgb2JyYSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIHJlYWxpesOzIHNpbiB2aW9sYXIgbyB1c3VycGFyIGRlcmVjaG9zIGRlIGF1dG9yIGRlIHRlcmNlcm9zLCBwb3IgbG8gdGFudG8gbGEgb2JyYSBlcyBkZSBleGNsdXNpdmEgYXV0b3LDrWEgeSB0aWVuZSBsYSB0aXR1bGFyaWRhZCBzb2JyZSBsYSBtaXNtYS4KPGJyLz4KUEFSQUdSQUZPOiBFbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbiwgRUwgQVVUT1IsIGFzdW1pcsOhIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkLCB5IHNhbGRyw6EgZW4gZGVmZW5zYSBkZSBsb3MgZGVyZWNob3MgYXF1w60gYXV0b3JpemFkb3M7IHBhcmEgdG9kb3MgbG9zIGVmZWN0b3MgbGEgdW5pdmVyc2lkYWQgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4KPGhyLz4KRUwgQVVUT1IsIGF1dG9yaXphIGEgTEEgVU5JVkVSU0lEQUQgREVMIFJPU0FSSU8sICBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgTGV5IDQ0IGRlIDE5OTMsIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbm9ybWFzIGdlbmVyYWxlcyBzb2JyZSBsYSBtYXRlcmlhLCAgdXRpbGljZSB5IHVzZSBsYSBvYnJhIG9iamV0byBkZSBsYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuLgoKLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0KClBPTElUSUNBIERFIFRSQVRBTUlFTlRPIERFIERBVE9TIFBFUlNPTkFMRVMuIERlY2xhcm8gcXVlIGF1dG9yaXpvIHByZXZpYSB5IGRlIGZvcm1hIGluZm9ybWFkYSBlbCB0cmF0YW1pZW50byBkZSBtaXMgZGF0b3MgcGVyc29uYWxlcyBwb3IgcGFydGUgZGUgTEEgVU5JVkVSU0lEQUQgREVMIFJPU0FSSU8gIHBhcmEgZmluZXMgYWNhZMOpbWljb3MgeSBlbiBhcGxpY2FjacOzbiBkZSBjb252ZW5pb3MgY29uIHRlcmNlcm9zIG8gc2VydmljaW9zIGNvbmV4b3MgY29uIGFjdGl2aWRhZGVzIHByb3BpYXMgZGUgbGEgYWNhZGVtaWEsIGNvbiBlc3RyaWN0byBjdW1wbGltaWVudG8gZGUgbG9zIHByaW5jaXBpb3MgZGUgbGV5LiBQYXJhIGVsIGNvcnJlY3RvIGVqZXJjaWNpbyBkZSBtaSBkZXJlY2hvIGRlIGhhYmVhcyBkYXRhICBjdWVudG8gY29uIGxhIGN1ZW50YSBkZSBjb3JyZW8gaGFiZWFzZGF0YUB1cm9zYXJpby5lZHUuY28sIGRvbmRlIHByZXZpYSBpZGVudGlmaWNhY2nDs24gIHBvZHLDqSBzb2xpY2l0YXIgbGEgY29uc3VsdGEsIGNvcnJlY2Npw7NuIHkgc3VwcmVzacOzbiBkZSBtaXMgZGF0b3MuCg== |