An offline demand estimation method for multi-threaded applications

Parameterizing performance models for multi-threaded enterprise applications requires finding the service rates offered by worker threads to the incoming requests. Statistical inference on monitoring data is here helpful to reduce the overheads of application profiling and to infer missing informati...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2014
Institución:
Universidad del Rosario
Repositorio:
Repositorio EdocUR - U. Rosario
Idioma:
eng
OAI Identifier:
oai:repository.urosario.edu.co:10336/28497
Acceso en línea:
https://doi.org/10.1109/MASCOTS.2013.10
https://repository.urosario.edu.co/handle/10336/28497
Palabra clave:
Servers
Computational modeling
Time factors
Instruction sets
Maximum likelihood estimation
Estimation error
Rights
License
Restringido (Acceso a grupos específicos)
id EDOCUR2_31bb5982312907c1c24c45bd1749aaf2
oai_identifier_str oai:repository.urosario.edu.co:10336/28497
network_acronym_str EDOCUR2
network_name_str Repositorio EdocUR - U. Rosario
repository_id_str
spelling 8003520260066da4f5d-b45c-4a8c-aeda-54c9b5b169b7693f31c7-5e59-4d88-b96a-2175836ec1b02020-08-28T15:49:14Z2020-08-28T15:49:14Z2014-02-03Parameterizing performance models for multi-threaded enterprise applications requires finding the service rates offered by worker threads to the incoming requests. Statistical inference on monitoring data is here helpful to reduce the overheads of application profiling and to infer missing information. While linear regression of utilization data is often used to estimate service rates, it suffers erratic performance and also ignores a large part of application monitoring data, e.g., response times. Yet inference from other metrics, such as response times or queue-length samples, is complicated by the dependence on scheduling policies. To address these issues, we propose novel scheduling-aware estimation approaches for multi-threaded applications based on linear regression and maximum likelihood estimators. The proposed methods estimate demands from samples of the number of requests in execution in the worker threads at the admission instant of a new request. Validation results are presented on simulated and real application datasets for systems with multi-class requests, class switching, and admission control.application/pdfhttps://doi.org/10.1109/MASCOTS.2013.10EISBN: 978-0-7695-5102-9https://repository.urosario.edu.co/handle/10336/28497engIEEE30212013 IEEE 21st International Symposium on Modelling, Analysis and Simulation of Computer and Telecommunication SystemsIEEE 21st International Symposium on Modelling, Analysis and Simulation of Computer and Telecommunication Systems, EISBN: 978-0-7695-5102-9 (2013); pp. 21-30https://ieeexplore.ieee.org/document/6730745Restringido (Acceso a grupos específicos)http://purl.org/coar/access_right/c_16ec2013 IEEE 21st International Symposium on Modelling, Analysis and Simulation of Computer and Telecommunication Systemsinstname:Universidad del Rosarioreponame:Repositorio Institucional EdocURServersComputational modelingTime factorsInstruction setsMaximum likelihood estimationEstimation errorAn offline demand estimation method for multi-threaded applicationsUn método de estimación de la demanda fuera de línea para aplicaciones multiprocesobookPartParte de librohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_3248Pérez, Juan F.Pacheco-Sanchez, SergioCasale, Giuliano10336/28497oai:repository.urosario.edu.co:10336/284972021-09-23 12:31:44.953https://repository.urosario.edu.coRepositorio institucional EdocURedocur@urosario.edu.co
dc.title.spa.fl_str_mv An offline demand estimation method for multi-threaded applications
dc.title.TranslatedTitle.spa.fl_str_mv Un método de estimación de la demanda fuera de línea para aplicaciones multiproceso
title An offline demand estimation method for multi-threaded applications
spellingShingle An offline demand estimation method for multi-threaded applications
Servers
Computational modeling
Time factors
Instruction sets
Maximum likelihood estimation
Estimation error
title_short An offline demand estimation method for multi-threaded applications
title_full An offline demand estimation method for multi-threaded applications
title_fullStr An offline demand estimation method for multi-threaded applications
title_full_unstemmed An offline demand estimation method for multi-threaded applications
title_sort An offline demand estimation method for multi-threaded applications
dc.subject.keyword.spa.fl_str_mv Servers
Computational modeling
Time factors
Instruction sets
Maximum likelihood estimation
Estimation error
topic Servers
Computational modeling
Time factors
Instruction sets
Maximum likelihood estimation
Estimation error
description Parameterizing performance models for multi-threaded enterprise applications requires finding the service rates offered by worker threads to the incoming requests. Statistical inference on monitoring data is here helpful to reduce the overheads of application profiling and to infer missing information. While linear regression of utilization data is often used to estimate service rates, it suffers erratic performance and also ignores a large part of application monitoring data, e.g., response times. Yet inference from other metrics, such as response times or queue-length samples, is complicated by the dependence on scheduling policies. To address these issues, we propose novel scheduling-aware estimation approaches for multi-threaded applications based on linear regression and maximum likelihood estimators. The proposed methods estimate demands from samples of the number of requests in execution in the worker threads at the admission instant of a new request. Validation results are presented on simulated and real application datasets for systems with multi-class requests, class switching, and admission control.
publishDate 2014
dc.date.created.spa.fl_str_mv 2014-02-03
dc.date.accessioned.none.fl_str_mv 2020-08-28T15:49:14Z
dc.date.available.none.fl_str_mv 2020-08-28T15:49:14Z
dc.type.eng.fl_str_mv bookPart
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_3248
dc.type.spa.spa.fl_str_mv Parte de libro
dc.identifier.doi.none.fl_str_mv https://doi.org/10.1109/MASCOTS.2013.10
dc.identifier.issn.none.fl_str_mv EISBN: 978-0-7695-5102-9
dc.identifier.uri.none.fl_str_mv https://repository.urosario.edu.co/handle/10336/28497
url https://doi.org/10.1109/MASCOTS.2013.10
https://repository.urosario.edu.co/handle/10336/28497
identifier_str_mv EISBN: 978-0-7695-5102-9
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.citationEndPage.none.fl_str_mv 30
dc.relation.citationStartPage.none.fl_str_mv 21
dc.relation.citationTitle.none.fl_str_mv 2013 IEEE 21st International Symposium on Modelling, Analysis and Simulation of Computer and Telecommunication Systems
dc.relation.ispartof.spa.fl_str_mv IEEE 21st International Symposium on Modelling, Analysis and Simulation of Computer and Telecommunication Systems, EISBN: 978-0-7695-5102-9 (2013); pp. 21-30
dc.relation.uri.spa.fl_str_mv https://ieeexplore.ieee.org/document/6730745
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
dc.rights.acceso.spa.fl_str_mv Restringido (Acceso a grupos específicos)
rights_invalid_str_mv Restringido (Acceso a grupos específicos)
http://purl.org/coar/access_right/c_16ec
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv IEEE
dc.source.spa.fl_str_mv 2013 IEEE 21st International Symposium on Modelling, Analysis and Simulation of Computer and Telecommunication Systems
institution Universidad del Rosario
dc.source.instname.none.fl_str_mv instname:Universidad del Rosario
dc.source.reponame.none.fl_str_mv reponame:Repositorio Institucional EdocUR
repository.name.fl_str_mv Repositorio institucional EdocUR
repository.mail.fl_str_mv edocur@urosario.edu.co
_version_ 1814167742426644480