An offline demand estimation method for multi-threaded applications
Parameterizing performance models for multi-threaded enterprise applications requires finding the service rates offered by worker threads to the incoming requests. Statistical inference on monitoring data is here helpful to reduce the overheads of application profiling and to infer missing informati...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2014
- Institución:
- Universidad del Rosario
- Repositorio:
- Repositorio EdocUR - U. Rosario
- Idioma:
- eng
- OAI Identifier:
- oai:repository.urosario.edu.co:10336/28497
- Acceso en línea:
- https://doi.org/10.1109/MASCOTS.2013.10
https://repository.urosario.edu.co/handle/10336/28497
- Palabra clave:
- Servers
Computational modeling
Time factors
Instruction sets
Maximum likelihood estimation
Estimation error
- Rights
- License
- Restringido (Acceso a grupos específicos)
id |
EDOCUR2_31bb5982312907c1c24c45bd1749aaf2 |
---|---|
oai_identifier_str |
oai:repository.urosario.edu.co:10336/28497 |
network_acronym_str |
EDOCUR2 |
network_name_str |
Repositorio EdocUR - U. Rosario |
repository_id_str |
|
spelling |
8003520260066da4f5d-b45c-4a8c-aeda-54c9b5b169b7693f31c7-5e59-4d88-b96a-2175836ec1b02020-08-28T15:49:14Z2020-08-28T15:49:14Z2014-02-03Parameterizing performance models for multi-threaded enterprise applications requires finding the service rates offered by worker threads to the incoming requests. Statistical inference on monitoring data is here helpful to reduce the overheads of application profiling and to infer missing information. While linear regression of utilization data is often used to estimate service rates, it suffers erratic performance and also ignores a large part of application monitoring data, e.g., response times. Yet inference from other metrics, such as response times or queue-length samples, is complicated by the dependence on scheduling policies. To address these issues, we propose novel scheduling-aware estimation approaches for multi-threaded applications based on linear regression and maximum likelihood estimators. The proposed methods estimate demands from samples of the number of requests in execution in the worker threads at the admission instant of a new request. Validation results are presented on simulated and real application datasets for systems with multi-class requests, class switching, and admission control.application/pdfhttps://doi.org/10.1109/MASCOTS.2013.10EISBN: 978-0-7695-5102-9https://repository.urosario.edu.co/handle/10336/28497engIEEE30212013 IEEE 21st International Symposium on Modelling, Analysis and Simulation of Computer and Telecommunication SystemsIEEE 21st International Symposium on Modelling, Analysis and Simulation of Computer and Telecommunication Systems, EISBN: 978-0-7695-5102-9 (2013); pp. 21-30https://ieeexplore.ieee.org/document/6730745Restringido (Acceso a grupos específicos)http://purl.org/coar/access_right/c_16ec2013 IEEE 21st International Symposium on Modelling, Analysis and Simulation of Computer and Telecommunication Systemsinstname:Universidad del Rosarioreponame:Repositorio Institucional EdocURServersComputational modelingTime factorsInstruction setsMaximum likelihood estimationEstimation errorAn offline demand estimation method for multi-threaded applicationsUn método de estimación de la demanda fuera de línea para aplicaciones multiprocesobookPartParte de librohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_3248Pérez, Juan F.Pacheco-Sanchez, SergioCasale, Giuliano10336/28497oai:repository.urosario.edu.co:10336/284972021-09-23 12:31:44.953https://repository.urosario.edu.coRepositorio institucional EdocURedocur@urosario.edu.co |
dc.title.spa.fl_str_mv |
An offline demand estimation method for multi-threaded applications |
dc.title.TranslatedTitle.spa.fl_str_mv |
Un método de estimación de la demanda fuera de línea para aplicaciones multiproceso |
title |
An offline demand estimation method for multi-threaded applications |
spellingShingle |
An offline demand estimation method for multi-threaded applications Servers Computational modeling Time factors Instruction sets Maximum likelihood estimation Estimation error |
title_short |
An offline demand estimation method for multi-threaded applications |
title_full |
An offline demand estimation method for multi-threaded applications |
title_fullStr |
An offline demand estimation method for multi-threaded applications |
title_full_unstemmed |
An offline demand estimation method for multi-threaded applications |
title_sort |
An offline demand estimation method for multi-threaded applications |
dc.subject.keyword.spa.fl_str_mv |
Servers Computational modeling Time factors Instruction sets Maximum likelihood estimation Estimation error |
topic |
Servers Computational modeling Time factors Instruction sets Maximum likelihood estimation Estimation error |
description |
Parameterizing performance models for multi-threaded enterprise applications requires finding the service rates offered by worker threads to the incoming requests. Statistical inference on monitoring data is here helpful to reduce the overheads of application profiling and to infer missing information. While linear regression of utilization data is often used to estimate service rates, it suffers erratic performance and also ignores a large part of application monitoring data, e.g., response times. Yet inference from other metrics, such as response times or queue-length samples, is complicated by the dependence on scheduling policies. To address these issues, we propose novel scheduling-aware estimation approaches for multi-threaded applications based on linear regression and maximum likelihood estimators. The proposed methods estimate demands from samples of the number of requests in execution in the worker threads at the admission instant of a new request. Validation results are presented on simulated and real application datasets for systems with multi-class requests, class switching, and admission control. |
publishDate |
2014 |
dc.date.created.spa.fl_str_mv |
2014-02-03 |
dc.date.accessioned.none.fl_str_mv |
2020-08-28T15:49:14Z |
dc.date.available.none.fl_str_mv |
2020-08-28T15:49:14Z |
dc.type.eng.fl_str_mv |
bookPart |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_3248 |
dc.type.spa.spa.fl_str_mv |
Parte de libro |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.1109/MASCOTS.2013.10 |
dc.identifier.issn.none.fl_str_mv |
EISBN: 978-0-7695-5102-9 |
dc.identifier.uri.none.fl_str_mv |
https://repository.urosario.edu.co/handle/10336/28497 |
url |
https://doi.org/10.1109/MASCOTS.2013.10 https://repository.urosario.edu.co/handle/10336/28497 |
identifier_str_mv |
EISBN: 978-0-7695-5102-9 |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.relation.citationEndPage.none.fl_str_mv |
30 |
dc.relation.citationStartPage.none.fl_str_mv |
21 |
dc.relation.citationTitle.none.fl_str_mv |
2013 IEEE 21st International Symposium on Modelling, Analysis and Simulation of Computer and Telecommunication Systems |
dc.relation.ispartof.spa.fl_str_mv |
IEEE 21st International Symposium on Modelling, Analysis and Simulation of Computer and Telecommunication Systems, EISBN: 978-0-7695-5102-9 (2013); pp. 21-30 |
dc.relation.uri.spa.fl_str_mv |
https://ieeexplore.ieee.org/document/6730745 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_16ec |
dc.rights.acceso.spa.fl_str_mv |
Restringido (Acceso a grupos específicos) |
rights_invalid_str_mv |
Restringido (Acceso a grupos específicos) http://purl.org/coar/access_right/c_16ec |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
IEEE |
dc.source.spa.fl_str_mv |
2013 IEEE 21st International Symposium on Modelling, Analysis and Simulation of Computer and Telecommunication Systems |
institution |
Universidad del Rosario |
dc.source.instname.none.fl_str_mv |
instname:Universidad del Rosario |
dc.source.reponame.none.fl_str_mv |
reponame:Repositorio Institucional EdocUR |
repository.name.fl_str_mv |
Repositorio institucional EdocUR |
repository.mail.fl_str_mv |
edocur@urosario.edu.co |
_version_ |
1814167742426644480 |