Descripción de comunidades bacterianas en afluentes del río Bogotá usando un enfoque metagenómico

La actividad antropogénica ha generado un impacto negativo en los ambientes acuáticos y en los organismos que viven en él. Para esto se determinó la calidad del agua de las muestras tomadas en los cuatro afluentes del río Bogotá implementando estrategias tradicionales con pruebas fisicoquímicas y mi...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2022
Institución:
Universidad del Rosario
Repositorio:
Repositorio EdocUR - U. Rosario
Idioma:
spa
OAI Identifier:
oai:repository.urosario.edu.co:10336/34291
Acceso en línea:
https://doi.org/10.48713/10336_34291_
https://repository.urosario.edu.co/handle/10336/34291
Palabra clave:
Calidad agua
Metagenómica
Marcadores moleculares
Contaminación
Actividad antropogénica
Ambientes acuáticos
Río Bogotá
Pruebas fisicoquímicas
Pruebas microbiológicas
Ciencias naturales & matemáticas
Water quality
Metagenomics
Molecular markers
Pollution
Microbiological analysis
Physicochemical analysis
Aquatic environments
Rights
License
Abierto (Texto Completo)
id EDOCUR2_2bf385efb08afb986e5204eb20071bae
oai_identifier_str oai:repository.urosario.edu.co:10336/34291
network_acronym_str EDOCUR2
network_name_str Repositorio EdocUR - U. Rosario
repository_id_str
dc.title.es.fl_str_mv Descripción de comunidades bacterianas en afluentes del río Bogotá usando un enfoque metagenómico
dc.title.TranslatedTitle.es.fl_str_mv Description of bacterial communities in tributaries of the Bogotá River using a metagenomic approach
title Descripción de comunidades bacterianas en afluentes del río Bogotá usando un enfoque metagenómico
spellingShingle Descripción de comunidades bacterianas en afluentes del río Bogotá usando un enfoque metagenómico
Calidad agua
Metagenómica
Marcadores moleculares
Contaminación
Actividad antropogénica
Ambientes acuáticos
Río Bogotá
Pruebas fisicoquímicas
Pruebas microbiológicas
Ciencias naturales & matemáticas
Water quality
Metagenomics
Molecular markers
Pollution
Microbiological analysis
Physicochemical analysis
Aquatic environments
title_short Descripción de comunidades bacterianas en afluentes del río Bogotá usando un enfoque metagenómico
title_full Descripción de comunidades bacterianas en afluentes del río Bogotá usando un enfoque metagenómico
title_fullStr Descripción de comunidades bacterianas en afluentes del río Bogotá usando un enfoque metagenómico
title_full_unstemmed Descripción de comunidades bacterianas en afluentes del río Bogotá usando un enfoque metagenómico
title_sort Descripción de comunidades bacterianas en afluentes del río Bogotá usando un enfoque metagenómico
dc.contributor.advisor.none.fl_str_mv Muñoz, Marina
Ramírez, Juan David
dc.contributor.gruplac.es.fl_str_mv Grupo de Investigaciones Microbiológicas UR (GIMUR)
dc.contributor.none.fl_str_mv Castañeda, Sergio
Vega, Laura
Herrera, Giovanny
dc.subject.es.fl_str_mv Calidad agua
Metagenómica
Marcadores moleculares
Contaminación
Actividad antropogénica
Ambientes acuáticos
Río Bogotá
Pruebas fisicoquímicas
Pruebas microbiológicas
topic Calidad agua
Metagenómica
Marcadores moleculares
Contaminación
Actividad antropogénica
Ambientes acuáticos
Río Bogotá
Pruebas fisicoquímicas
Pruebas microbiológicas
Ciencias naturales & matemáticas
Water quality
Metagenomics
Molecular markers
Pollution
Microbiological analysis
Physicochemical analysis
Aquatic environments
dc.subject.ddc.es.fl_str_mv Ciencias naturales & matemáticas
dc.subject.keyword.es.fl_str_mv Water quality
Metagenomics
Molecular markers
Pollution
Microbiological analysis
Physicochemical analysis
Aquatic environments
description La actividad antropogénica ha generado un impacto negativo en los ambientes acuáticos y en los organismos que viven en él. Para esto se determinó la calidad del agua de las muestras tomadas en los cuatro afluentes del río Bogotá implementando estrategias tradicionales con pruebas fisicoquímicas y microbiológicas. También, se determinó la composición de las comunidades microbianas presentes por medio de análisis metagenómicos y con estos resultados, se describió la presencia de marcadores moleculares de interés en salud circundantes. Nuestros resultados muestran como la comunidad bacteriana domina en las muestras, adicional, la descripción de los marcadores de resistencia a antibióticos y factores de virulencia da un acercamiento de cómo el agua está sirviendo como medio para la propagación de estos. Finalmente, este estudio permite generar información relevante acerca del estado actual de los puntos muestreados y marca un punto de inicio para continuar con próximas investigaciones.
publishDate 2022
dc.date.accessioned.none.fl_str_mv 2022-06-03T07:41:48Z
dc.date.available.none.fl_str_mv 2022-06-03T07:41:48Z
dc.date.created.none.fl_str_mv 2022-05-20
dc.type.es.fl_str_mv bachelorThesis
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.document.es.fl_str_mv Artículo
dc.type.spa.es.fl_str_mv Tesis
dc.identifier.doi.none.fl_str_mv https://doi.org/10.48713/10336_34291_
dc.identifier.uri.none.fl_str_mv https://repository.urosario.edu.co/handle/10336/34291
url https://doi.org/10.48713/10336_34291_
https://repository.urosario.edu.co/handle/10336/34291
dc.language.iso.es.fl_str_mv spa
language spa
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.acceso.es.fl_str_mv Abierto (Texto Completo)
rights_invalid_str_mv Abierto (Texto Completo)
http://purl.org/coar/access_right/c_abf2
dc.format.extent.es.fl_str_mv 31 pp
dc.format.mimetype.es.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad del Rosario
dc.publisher.department.none.fl_str_mv Facultad de Ciencias Naturales
dc.publisher.program.none.fl_str_mv Biología
publisher.none.fl_str_mv Universidad del Rosario
institution Universidad del Rosario
dc.source.bibliographicCitation.es.fl_str_mv Adeyemi, F. M., Wahab, A. A., Oyelami, C. A., Oyedara, O. O., Titilawo, M. A., Adebunmi, A. A., & Awoniyi, I. O. (2022). Hydrology survey and water quality assessment of water sources in three selected towns in Osun State, Southwest Nigeria. International Journal of Energy and Water Resources, 1-14.
Ajenifuja, O. A., & Oni, O. (2022). Susceptibility pattern of enteric bacteria isolated during rainy season in some areas of Ado-Ekiti to macrolide antibiotics. Microbes and Infectious Diseases, 3(1), 149-159.
Alatraktchi, F. A. A. (2022). Rapid measurement of the waterborne pathogen Pseudomonas aeruginosa in different spiked water sources using electrochemical sensing: towards on-site applications. Measurement, 111124.
Alcock, B. P., Raphenya, A. R., Lau, T. T., Tsang, K. K., Bouchard, M., Edalatmand, A., ... & McArthur, A. G. (2020). CARD 2020: antibiotic resistome surveillance with the comprehensive antibiotic resistance database. Nucleic acids research, 48(D1), D517-D525.
Alqahtani, A., Shah, M. I., Aldrees, A., & Javed, M. F. (2022). Comparative Assessment of Individual and Ensemble Machine Learning Models for Efficient Analysis of River Water Quality. Sustainability, 14(3), 1183
Anjur, N., Sabran, S. F., Daud, H. M., & Othman, N. Z. (2021). An update on the ornamental fish industry in Malaysia: Aeromonas hydrophila-associated disease and its treatment control. Veterinary World, 14(5), 1143.
Azam, M. W., & Khan, A. U. (2019). Updates on the pathogenicity status of Pseudomonas aeruginosa. Drug discovery today, 24(1), 350-359.
Beghini, F., McIver, L. J., Blanco-Míguez, A., Dubois, L., Asnicar, F., Maharjan, S., ... & Segata, N. (2021). Integrating taxonomic, functional, and strain-level profiling of diverse microbial communities with bioBakery 3. Elife, 10, e65088.
Bowers, R. M., Kyrpides, N. C., Stepanauskas, R., Harmon-Smith, M., Doud, D., Reddy, T. B. K., ... & Woyke, T. (2017). Minimum information about a single amplified genome (MISAG) and a metagenome-assembled genome (MIMAG) of bacteria and archaea. Nature biotechnology, 35(8), 725-731.
Breitwieser, F. P., & Salzberg, S. L. (2020). Pavian: interactive analysis of metagenomics data for microbiome studies and pathogen identification. Bioinformatics, 36(4), 1303-1304.
Chaumeil, P. A., Mussig, A. J., Hugenholtz, P., & Parks, D. H. (2020). GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy Database.
Chen, X., He, Z., Zhao, J., Liao, M., Xue, Y., Zhou, J., ... & Sun, C. (2022). Metagenomic Analysis of Bacterial Communities and Antibiotic Resistance Genes in Penaeus monodon Biofloc-Based Aquaculture Environments. Frontiers in Marine Science.
Chen, L., Zheng, D., Liu, B., Yang, J., & Jin, Q. (2016). VFDB 2016: hierarchical and refined dataset for big data analysis—10 years on. Nucleic acids research, 44(D1), D694-D697.
Dai, J., Meng, X., Zhang, Y., & Huang, Y. (2020). Effects of modification and magnetization of rice straw derived biochar on adsorption of tetracycline from water. Bioresource Technology, 311, 123455.
Díaz-Martínez, J. A., & Granada-Torres, C. A. (2018). Effect of anthropic activities on the physicochemical and microbiological characteristics of the Bogotá River along the municipality of Villapinzón-Cundinamarca. Revista de la Facultad de Medicina, 66(1), 45-52.
Fernández, M. F. C., Casallas, D. M. D., & Marín, C. E. M. (2015). Análisis de la Calidad del Agua del Río Bogotá Dura nte el Periodo 2008–2015 a Par tir de Herra mientas de Minería de Datos. Publicaciones e Investigación, 9, 37-50.
Fierro Ortiz, E., & Caballero Rodríguez, L. E. (2015). evaluación de la calidad del agua del humedal de santa maría del lago mediante el uso de índices biológicos y fisicoquímicos para su implementación en otros humedales.
Finneran, K. T., Johnsen, C. V., & Lovley, D. R. (2003). Rhodoferax ferrireducens sp. nov., a psychrotolerant, facultatively anaerobic bacterium that oxidizes acetate with the reduction of Fe (III). International Journal of Systematic and Evolutionary Microbiology, 53(3), 669-673.
Gorde, S. P., & Jadhav, M. V. (2013). Assessment of water quality parameters: a review. J Eng Res Appl, 3(6), 2029-2035.
Gualdrón Durán, L. E. (2016). Evaluación de la calidad de agua de ríos de Colombia usando parámetros fisicoquímicos y biológicos.
Grigoryan, A. A., Bondici, V. F., Kryachko, Y., Khan, N. H., Lawrence, J. R., Wolfaardt, G. M., ... & Korber, D. R. (2022). Draft Genome Sequence of Polaromonas eurypsychrophila AER18D-145, Isolated from a Uranium Tailings Management Facility in Northern Saskatchewan, Canada. Microbiology Resource Announcements, e00013-22.
Gronewold, A. D., & Wolpert, R. L. (2008). Modeling the relationship between most probable number (MPN) and colony-forming unit (CFU) estimates of fecal coliform concentration. Water research, 42(13), 3327-3334
Han, X., Wang, F., Zhang, D., Feng, T., & Zhang, L. (2021). Nitrate-assisted biodegradation of polycyclic aromatic hydrocarbons (PAHs) in the water-level-fluctuation zone of the three Gorges Reservoir, China: Insights from in situ microbial interaction analyses and a microcosmic experiment. Environmental Pollution, 268, 115693.
Henao‐Herreño, L. X., López‐Tamayo, A. M., Ramos‐Bonilla, J. P., Haas, C. N., & Husserl, J. (2017). Risk of illness with Salmonella due to consumption of raw unwashed
Hernández-De Lira, I., David Huber, M. P. L. E., Terán, J. S. M., & Balagurusamy, N. (2014). Metagenómica: concepto y aplicaciones en el mundo microbiano. FRONTERAS EN MICROBIOLOGIA APLICADA, 154.
Ho, J. Y., Jong, M. C., Acharya, K., Liew, S. S. X., Smith, D. R., Noor, Z. Z., ... & Eswaran, J. (2021). Multidrug-resistant bacteria and microbial communities in a river estuary with fragmented suburban waste management. Journal of hazardous materials, 405, 124687.
Hoslett, J., Ghazal, H., Katsou, E., & Jouhara, H. (2021). The removal of tetracycline from water using biochar produced from agricultural discarded material. Science of The Total Environment, 751, 141755.
Huang, L., Ye, J., Xiang, H., Jiang, J., Wang, Y., & Li, Y. (2020). Enhanced nitrogen removal from low C/N wastewater using biodegradable and inert carriers: Performance and microbial shift. Bioresource Technology, 300, 122658.
Illumina. (2015). Shotgun Metagenomic Sequencing.
Janelidze, N., Jaiani, E., Didebulidze, E., Kusradze, I., Kotorashvili, A., Chalidze, K., ... & Tediashvili, M. (2022). Phenotypic and Genetic Characterization of Aeromonas hydrophila Phage AhMtk13a and Evaluation of Its Therapeutic Potential on Simulated Aeromonas Infection in Danio rerio. Viruses, 14(2), 412.
Jia., Guan, Y., Li, X., Fan, X., Zhu, Z., Xing, H., & Wang, Z. (2021). Phenotype profiles and adaptive preference of Acinetobacter johnsonii isolated from Ba River with different environmental backgrounds. Environmental research, 196, 110913
Jia, J., Liu, M., Feng, L., & Wang, Z. (2022). Comparative genomic analysis reveals the evolution and environmental adaptation of Acinetobacter johnsonii. Gene, 808, 145985.
Joseph, S. M., Battaglia, T., Maritz, J. M., Carlton, J. M., & Blaser, M. J. (2019). Longitudinal comparison of bacterial diversity and antibiotic resistance genes in New York City sewage. MSystems, 4(4), e00327-19.
Kaiser, R. A., Taing, L., & Bhatia, H. (2022). Antimicrobial Resistance and Environmental Health: A Water Stewardship Framework for Global and National Action. Antibiotics, 11(1), 63.
Kim, D., Song, L., Breitwieser, F. P., & Salzberg, S. L. (2016). Centrifuge: rapid and sensitive classification of metagenomic sequences. Genome research, 26(12), 1721-1729.
Kotsiri, Z., Vidic, J., & Vantarakis, A. (2022). Applications of biosensors for bacteria and virus detection in food and water–A systematic review. journal of environmental sciences, 111, 367-379.
Khadraoui, N., Essid, R., Jallouli, S., Damergi, B., Ben Takfa, I., Abid, G., ... & Tabbene, O. (2022). Antibacterial and antibiofilm activity of Peganum harmala seed extract against multidrug-resistant Pseudomonas aeruginosa pathogenic isolates and molecular mechanism of action. Archives of Microbiology, 204(2), 1-12
Lee, J., Beck, K., & Bürgmann, H. (2022). Wastewater bypass is a major temporary point-source of antibiotic resistance genes and multi-resistance risk factors in a Swiss river. Water Research, 208, 117827.
Leonov, V., Leonova, L., Cherepanov, D., Savin, L., Tkalich, A., Petrovskaya, Y., ... & Ananina, I. (2022). The Growth Kinetics of Pathogenic Microorganisms Under Conditions Modelling the Vital Functions of Iron-Oxidizing Bacteria. BioNanoScience, 1-5.
Li, Y., Li, Q., Jiao, S., Liu, C., Yang, L., Huang, G., ... & Brancelj, A. (2022). Water Quality Characteristics and Source Analysis of Pollutants in the Maotiao River Basin (SW China). Water, 14(3), 301.
Liu, S., Wang, P., Wang, C., Wang, X., & Chen, J. (2021). Anthropogenic disturbances on antibiotic resistome along the Yarlung Tsangpo River on the Tibetan Plateau: Ecological dissemination mechanisms of antibiotic resistance genes to bacterial pathogens. Water Research, 202, 117447.
Mao, G., Liang, J., Wang, Q., Zhao, C., Bai, Y., Liu, R., ... & Qu, J. (2021). Epilithic biofilm as a reservoir for functional virulence factors in wastewater-dominant rivers after WWTP upgrade. Journal of Environmental Sciences, 101, 27-35.
Meneses-Campo, Y., Castro-Rebolledo, M. I., & Jaramillo-Londoño, Á. M. (2019). Comparison of Water Quality Between Two Andean Rivers by Using the BMWP/COL. and ABI. Indices. Acta Biológica Colombiana, 24(2), 299-310.
Moshi, H. A., Shilla, D. A., Kimirei, I. A., O’Reilly, C., Clymans, W., Bishop, I., & Loiselle, S. A. (2022). Community monitoring of coliform pollution in Lake Tanganyika. Plos one, 17(1), e0262881.
Moreno-Mesonero, L., Ferrús, M. A., & Moreno, Y. (2020). Determination of the bacterial microbiome of free-living amoebae isolated from wastewater by 16S rRNA amplicon-based sequencing. Environmental Research, 190, 109987.
Müller, E., Hotzel, H., Ahlers, C., Hänel, I., Tomaso, H., & Abdel-Glil, M. Y. (2020). Genomic analysis and antimicrobial resistance of Aliarcobacter cryaerophilus strains from German water poultry. Frontiers in Microbiology, 1549
Neamat-Allah, A. N., Mahmoud, E. A., & Mahsoub, Y. (2021). Effects of dietary white mulberry leaves on hemato-biochemical alterations, immunosuppression and oxidative stress induced by Aeromonas hydrophila in Oreochromis niloticus. Fish & Shellfish Immunology, 108, 147-156.
Ngobeni, R., Gilchrist, C., & Samie, A. (2022). Prevalence and Distribution of Cryptosporidium spp. and Giardia lamblia in Rural and Urban Communities of South Africa. Turkiye Parazitolojii Dergisi, 46(1), 14-19.
Parida, P. K., Behera, B. K., Dehury, B., Rout, A. K., Sarkar, D. J., Rai, A., ... & Mohapatra, T. (2022). Impact of Anthropogenic Activity on Community Structure and Function of Microbiomes in Polluted Stretches of River Yamuna at New Delhi, India: Insights From Shotgun Metagenomics.
Posada-Perlaza, C. E., Ramírez-Rojas, A., Porras, P., Adu-Oppong, B., Botero-Coy, A. M., Hernández, F., ... & Zambrano, M. M. (2019). Bogotá River anthropogenic contamination alters microbial communities and promotes spread of antibiotic resistance genes. Scientific reports, 9(1), 1-13.
Omer, N. H. (2019). Water quality parameters. Water quality-science, assessments and policy, 18.
Riesenfeld, C. S., Schloss, P. D., & Handelsman, J. (2004). Metagenomics: genomic analysis of microbial communities. Annu. Rev. Genet., 38, 525-552.
Rodríguez Forero, A., González Mantilla, J.F. & Suárez Martínez, R. (2009) Accumulation of Lead, Chromium, and Cadmium in Muscle of capitán (Eremophilus mutisii), a Catfish from the Bogota River Basin. Arch Environ Contam Toxicol 57, 359–365 https://doi.org/10.1007/s00244-008-9279-2
Roman, V. L., Merlin, C., Baron, S., Larvor, E., Le Devendec, L., Virta, M. P., & Bellanger, X. (2021). Abundance and environmental host range of the SXT/R391 ICEs in aquatic environmental communities. Environmental Pollution, 288, 117673.
Ruiz-Moreno, H. A., López-Tamayo, A. M., Caro-Quintero, A., Husserl, J., & Barrios, A. F. G. (2019). Metagenome level metabolic network reconstruction analysis reveals the microbiome in the Bogotá River is functionally close to the microbiome in produced water. Ecological Modelling, 399, 1-12.
Salinero, K. K., Keller, K., Feil, W. S., Feil, H., Trong, S., Di Bartolo, G., & Lapidus, A. (2009). Metabolic analysis of the soil microbe Dechloromonas aromatica str. RCB: indications of a surprisingly complex life-style and cryptic anaerobic pathways for aromatic degradation. BMC genomics, 10(1), 1-23.
Sazykin, I. S., Seliverstova, E. Y., Khmelevtsova, L. E., Azhogina, T. N., Kudeevskaya, E. M., Khammami, M. I., ... & Sazykina, M. A. (2019). Occurrence of antibiotic resistance genes in sewages of Rostov-on-Don and lower Don River. Теоретическая и прикладная экология, (4), 76-82.
Secretaría Distrital de Planeación de Bogotá. (2014). Aproximación a las implicaciones del fallo del consejo de estado sobre el Río Bogotá. Recuperado de: http://www.sdp.gov.co/sites/default/files/aproximacion_a_las_implicaciones_del_fallo_del_consejo_de_estado_sobre_el_rio_bogota.pdf
Sun, J., Jin, L., He, T., Wei, Z., Liu, X., Zhu, L., & Li, X. (2020). Antibiotic resistance genes (ARGs) in agricultural soils from the Yangtze River Delta, China. Science of The Total Environment, 740, 140001.
Staley, C., & Sadowsky, M. J. (2016). Application of metagenomics to assess microbial communities in water and other environmental matrices. Journal of the Marine Biological Association of the United Kingdom, 96(1), 121-129.
Shehu, D., & Alias, Z. (2018). Dechlorination of polychlorobiphenyl (PCB) degradation metabolites by a recombinant glutathione transferase from Acidovorax sp. KKS102. FEBS Open Bio.
Thulasinathan, B., Jayabalan, T., Arumugam, N., Kulanthaisamy, M. R., Kim, W., Kumar, P., ... & Alagarsamy, A. (2022). Wastewater substrates in microbial fuel cell systems for carbon-neutral bioelectricity generation: An overview. Fuel, 317, 123369.
van Bel, N., van der Wielen, P., Wullings, B., van Rijn, J., van der Mark, E., Ketelaars, H., & Hijnen, W. (2020). Aeromonas Species from Nonchlorinated Distribution Systems and Their Competitive Planktonic Growth in Drinking Water. Applied and Environmental Microbiology, 87(5), e02867-20.
Vasconcellos, F. D. S., Iganci, J. R. V., & Ribeiro, G. A. (2022). Qualidade microbiológica da água do rio São Lourenço, São Lourenço do Sul, Rio Grande do Sul. Arquivos do Instituto Biológico, 73, 177-181.
Vaillancourt, M., Limsuwannarot, S. P., Bresee, C., Poopalarajah, R., & Jorth, P. (2021). Pseudomonas aeruginosa mexR and mexEF Antibiotic Efflux Pump Variants Exhibit Increased Virulence. Antibiotics, 10(10), 1164.
Vega, L., Jaimes, J., Morales, D., Martínez, D., Cruz-Saavedra, L., Muñoz, M., & Ramírez, J. D. (2021). Microbial Communities’ Characterization in Urban Recreational Surface Waters Using Next Generation Sequencing. Microbial Ecology, 1-17.
Wood, D. E., Lu, J., & Langmead, B. (2019). Improved metagenomic analysis with Kraken 2. Genome biology, 20(1), 1-13.
Wang, Q., Xu, Y., Liu, L., Li, L. Y., Lin, H., Wu, X. Y., ... & Luo, Y. (2021). The prevalence of ampicillin-resistant opportunistic pathogenic bacteria undergoing selective stress of heavy metal pollutants in the Xiangjiang River, China. Environmental Pollution, 268, 115362.
Xu, H., Gao, Q., & Yuan, B. (2022). Analysis and identification of pollution sources of comprehensive river water quality: Evidence from two river basins in China. Ecological Indicators, 135, 108561
Yang, X., Yan, L., Yang, Y., Zhou, H., Cao, Y., Wang, S., ... & Qiu, Z. (2022). The Occurrence and Distribution Pattern of Antibiotic Resistance Genes and Bacterial Community in the Ili River. Frontiers in Environmental Science, 212.
Yuan, Q., Sui, M., Qin, C., Zhang, H., Sun, Y., Luo, S., & Zhao, J. (2022). Migration, Transformation and Removal of Macrolide Antibiotics in The Environment: A Review. Environmental Science and Pollution Research, 1-18.
Zhang, C., Zhao, Z., Dong, S., & Zhou, D. (2021). Simultaneous elimination of amoxicillin and antibiotic resistance genes in activated sludge process: contributions of easy-to-biodegrade food. Science of the Total Environment, 764, 142907.
Zhao, H., Guan, X., Zhang, F., Huang, Y., Xia, D., Hu, L., ... & He, C. (2022). Rational design of a bismuth oxyiodide (Bi/BiO1-xI) catalyst for synergistic photothermal and photocatalytic inactivation of pathogenic bacteria in water. Journal of Materials Science & Technology, 100, 110-119.
Zhang, L., Ma, L., Yang, Q., Liu, Y., Ai, X., & Dong, J. (2022). Sanguinarine Protects Channel Catfish against Aeromonas hydrophila Infection by Inhibiting Aerolysin and Biofilm Formation. Pathogens, 11(3), 323.
Zhao, X. L., Qi, Z., Huang, H., Tu, J., Song, X. J., Qi, K. Z., & Shao, Y. (2022). Coexistence of antibiotic resistance genes, fecal bacteria, and potential pathogens in anthropogenically impacted water. Environmental Science and Pollution Research, 1-14.
Zhang, S., Amanze, C., Sun, C., Zou, K., Fu, S., Deng, Y., ... & Liang, Y. (2021). Evolutionary, genomic, and biogeographic characterization of two novel xenobiotics-degrading strains affiliated with Dechloromonas. Heliyon, 7(6), e07181
dc.source.instname.none.fl_str_mv instname:Universidad del Rosario
dc.source.reponame.none.fl_str_mv reponame:Repositorio Institucional EdocUR
bitstream.url.fl_str_mv https://repository.urosario.edu.co/bitstreams/7c1e0d71-9183-4601-84c6-78274b3b21bc/download
https://repository.urosario.edu.co/bitstreams/1f58d72e-4100-42b8-aea7-b974ef644182/download
https://repository.urosario.edu.co/bitstreams/9290cc38-6053-4473-a4d0-3684d7d2cdcd/download
https://repository.urosario.edu.co/bitstreams/b4b146cb-fc14-41a4-b563-11a78da53ff4/download
bitstream.checksum.fl_str_mv 0a1e2ae850881b527fe9269f344b56f7
65897b7663e5d74a9db33b260c87d085
01b2c0df9b1eba11fb16baf166ff2088
fab9d9ed61d64f6ac005dee3306ae77e
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio institucional EdocUR
repository.mail.fl_str_mv edocur@urosario.edu.co
_version_ 1814167647880740864
spelling Castañeda, SergioVega, LauraHerrera, Giovanny07f5f951-ff31-4b0f-94f0-7492d0a86f05600Muñoz, Marina453006a5-2ec3-4faf-8e32-a9d7075d519d600Ramírez, Juan David1011716118600Grupo de Investigaciones Microbiológicas UR (GIMUR)Urrea Messa, Vanessa del PilarBiólogoPregradoFull time1a1bee0c-4845-4e53-a9a4-f04ac3ceca136002022-06-03T07:41:48Z2022-06-03T07:41:48Z2022-05-20La actividad antropogénica ha generado un impacto negativo en los ambientes acuáticos y en los organismos que viven en él. Para esto se determinó la calidad del agua de las muestras tomadas en los cuatro afluentes del río Bogotá implementando estrategias tradicionales con pruebas fisicoquímicas y microbiológicas. También, se determinó la composición de las comunidades microbianas presentes por medio de análisis metagenómicos y con estos resultados, se describió la presencia de marcadores moleculares de interés en salud circundantes. Nuestros resultados muestran como la comunidad bacteriana domina en las muestras, adicional, la descripción de los marcadores de resistencia a antibióticos y factores de virulencia da un acercamiento de cómo el agua está sirviendo como medio para la propagación de estos. Finalmente, este estudio permite generar información relevante acerca del estado actual de los puntos muestreados y marca un punto de inicio para continuar con próximas investigaciones.Anthropogenic activity has generated a negative impact on aquatic environments and on the organisms that live in them. Therefore, the water quality of the samples taken in the four tributaries of the Bogotá River will be determined by implementing traditional strategies with physicochemical and microbiological analyses. Likewise, the composition of the microbial communities present were described using metagenomic analysis and with these results the presence of molecular markers of interest. Our results showed how the bacterial community dominates in the samples, in addition, the description of the antibiotic resistance markers and virulence factors gives an approximation to how the water is serving as a medium for its propagation. Finally, this study allows generating relevant information on the current status of the sampled points and marking a starting point to continue with future research.Centro de Investigaciones en Microbiología y Biotegnología de la Universidad del Rosario - CIMBIURFondo para el Financiamiento de Proyectos de Grado. Facultad de Ciencias Naturales. Universidad del Rosario31 ppapplication/pdfBogotá, Colombiahttps://doi.org/10.48713/10336_34291_https://repository.urosario.edu.co/handle/10336/34291spaUniversidad del RosarioFacultad de Ciencias NaturalesBiologíaAbierto (Texto Completo)EL AUTOR, manifiesta que la obra objeto de la presente autorización es original y la realizó sin violar o usurpar derechos de autor de terceros, por lo tanto la obra es de exclusiva autoría y tiene la titularidad sobre la misma.http://purl.org/coar/access_right/c_abf2Adeyemi, F. M., Wahab, A. A., Oyelami, C. A., Oyedara, O. O., Titilawo, M. A., Adebunmi, A. A., & Awoniyi, I. O. (2022). Hydrology survey and water quality assessment of water sources in three selected towns in Osun State, Southwest Nigeria. International Journal of Energy and Water Resources, 1-14.Ajenifuja, O. A., & Oni, O. (2022). Susceptibility pattern of enteric bacteria isolated during rainy season in some areas of Ado-Ekiti to macrolide antibiotics. Microbes and Infectious Diseases, 3(1), 149-159.Alatraktchi, F. A. A. (2022). Rapid measurement of the waterborne pathogen Pseudomonas aeruginosa in different spiked water sources using electrochemical sensing: towards on-site applications. Measurement, 111124.Alcock, B. P., Raphenya, A. R., Lau, T. T., Tsang, K. K., Bouchard, M., Edalatmand, A., ... & McArthur, A. G. (2020). CARD 2020: antibiotic resistome surveillance with the comprehensive antibiotic resistance database. Nucleic acids research, 48(D1), D517-D525.Alqahtani, A., Shah, M. I., Aldrees, A., & Javed, M. F. (2022). Comparative Assessment of Individual and Ensemble Machine Learning Models for Efficient Analysis of River Water Quality. Sustainability, 14(3), 1183Anjur, N., Sabran, S. F., Daud, H. M., & Othman, N. Z. (2021). An update on the ornamental fish industry in Malaysia: Aeromonas hydrophila-associated disease and its treatment control. Veterinary World, 14(5), 1143.Azam, M. W., & Khan, A. U. (2019). Updates on the pathogenicity status of Pseudomonas aeruginosa. Drug discovery today, 24(1), 350-359.Beghini, F., McIver, L. J., Blanco-Míguez, A., Dubois, L., Asnicar, F., Maharjan, S., ... & Segata, N. (2021). Integrating taxonomic, functional, and strain-level profiling of diverse microbial communities with bioBakery 3. Elife, 10, e65088.Bowers, R. M., Kyrpides, N. C., Stepanauskas, R., Harmon-Smith, M., Doud, D., Reddy, T. B. K., ... & Woyke, T. (2017). Minimum information about a single amplified genome (MISAG) and a metagenome-assembled genome (MIMAG) of bacteria and archaea. Nature biotechnology, 35(8), 725-731.Breitwieser, F. P., & Salzberg, S. L. (2020). Pavian: interactive analysis of metagenomics data for microbiome studies and pathogen identification. Bioinformatics, 36(4), 1303-1304.Chaumeil, P. A., Mussig, A. J., Hugenholtz, P., & Parks, D. H. (2020). GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy Database.Chen, X., He, Z., Zhao, J., Liao, M., Xue, Y., Zhou, J., ... & Sun, C. (2022). Metagenomic Analysis of Bacterial Communities and Antibiotic Resistance Genes in Penaeus monodon Biofloc-Based Aquaculture Environments. Frontiers in Marine Science.Chen, L., Zheng, D., Liu, B., Yang, J., & Jin, Q. (2016). VFDB 2016: hierarchical and refined dataset for big data analysis—10 years on. Nucleic acids research, 44(D1), D694-D697.Dai, J., Meng, X., Zhang, Y., & Huang, Y. (2020). Effects of modification and magnetization of rice straw derived biochar on adsorption of tetracycline from water. Bioresource Technology, 311, 123455.Díaz-Martínez, J. A., & Granada-Torres, C. A. (2018). Effect of anthropic activities on the physicochemical and microbiological characteristics of the Bogotá River along the municipality of Villapinzón-Cundinamarca. Revista de la Facultad de Medicina, 66(1), 45-52.Fernández, M. F. C., Casallas, D. M. D., & Marín, C. E. M. (2015). Análisis de la Calidad del Agua del Río Bogotá Dura nte el Periodo 2008–2015 a Par tir de Herra mientas de Minería de Datos. Publicaciones e Investigación, 9, 37-50.Fierro Ortiz, E., & Caballero Rodríguez, L. E. (2015). evaluación de la calidad del agua del humedal de santa maría del lago mediante el uso de índices biológicos y fisicoquímicos para su implementación en otros humedales.Finneran, K. T., Johnsen, C. V., & Lovley, D. R. (2003). Rhodoferax ferrireducens sp. nov., a psychrotolerant, facultatively anaerobic bacterium that oxidizes acetate with the reduction of Fe (III). International Journal of Systematic and Evolutionary Microbiology, 53(3), 669-673.Gorde, S. P., & Jadhav, M. V. (2013). Assessment of water quality parameters: a review. J Eng Res Appl, 3(6), 2029-2035.Gualdrón Durán, L. E. (2016). Evaluación de la calidad de agua de ríos de Colombia usando parámetros fisicoquímicos y biológicos.Grigoryan, A. A., Bondici, V. F., Kryachko, Y., Khan, N. H., Lawrence, J. R., Wolfaardt, G. M., ... & Korber, D. R. (2022). Draft Genome Sequence of Polaromonas eurypsychrophila AER18D-145, Isolated from a Uranium Tailings Management Facility in Northern Saskatchewan, Canada. Microbiology Resource Announcements, e00013-22.Gronewold, A. D., & Wolpert, R. L. (2008). Modeling the relationship between most probable number (MPN) and colony-forming unit (CFU) estimates of fecal coliform concentration. Water research, 42(13), 3327-3334Han, X., Wang, F., Zhang, D., Feng, T., & Zhang, L. (2021). Nitrate-assisted biodegradation of polycyclic aromatic hydrocarbons (PAHs) in the water-level-fluctuation zone of the three Gorges Reservoir, China: Insights from in situ microbial interaction analyses and a microcosmic experiment. Environmental Pollution, 268, 115693.Henao‐Herreño, L. X., López‐Tamayo, A. M., Ramos‐Bonilla, J. P., Haas, C. N., & Husserl, J. (2017). Risk of illness with Salmonella due to consumption of raw unwashedHernández-De Lira, I., David Huber, M. P. L. E., Terán, J. S. M., & Balagurusamy, N. (2014). Metagenómica: concepto y aplicaciones en el mundo microbiano. FRONTERAS EN MICROBIOLOGIA APLICADA, 154.Ho, J. Y., Jong, M. C., Acharya, K., Liew, S. S. X., Smith, D. R., Noor, Z. Z., ... & Eswaran, J. (2021). Multidrug-resistant bacteria and microbial communities in a river estuary with fragmented suburban waste management. Journal of hazardous materials, 405, 124687.Hoslett, J., Ghazal, H., Katsou, E., & Jouhara, H. (2021). The removal of tetracycline from water using biochar produced from agricultural discarded material. Science of The Total Environment, 751, 141755.Huang, L., Ye, J., Xiang, H., Jiang, J., Wang, Y., & Li, Y. (2020). Enhanced nitrogen removal from low C/N wastewater using biodegradable and inert carriers: Performance and microbial shift. Bioresource Technology, 300, 122658.Illumina. (2015). Shotgun Metagenomic Sequencing.Janelidze, N., Jaiani, E., Didebulidze, E., Kusradze, I., Kotorashvili, A., Chalidze, K., ... & Tediashvili, M. (2022). Phenotypic and Genetic Characterization of Aeromonas hydrophila Phage AhMtk13a and Evaluation of Its Therapeutic Potential on Simulated Aeromonas Infection in Danio rerio. Viruses, 14(2), 412.Jia., Guan, Y., Li, X., Fan, X., Zhu, Z., Xing, H., & Wang, Z. (2021). Phenotype profiles and adaptive preference of Acinetobacter johnsonii isolated from Ba River with different environmental backgrounds. Environmental research, 196, 110913Jia, J., Liu, M., Feng, L., & Wang, Z. (2022). Comparative genomic analysis reveals the evolution and environmental adaptation of Acinetobacter johnsonii. Gene, 808, 145985.Joseph, S. M., Battaglia, T., Maritz, J. M., Carlton, J. M., & Blaser, M. J. (2019). Longitudinal comparison of bacterial diversity and antibiotic resistance genes in New York City sewage. MSystems, 4(4), e00327-19.Kaiser, R. A., Taing, L., & Bhatia, H. (2022). Antimicrobial Resistance and Environmental Health: A Water Stewardship Framework for Global and National Action. Antibiotics, 11(1), 63.Kim, D., Song, L., Breitwieser, F. P., & Salzberg, S. L. (2016). Centrifuge: rapid and sensitive classification of metagenomic sequences. Genome research, 26(12), 1721-1729.Kotsiri, Z., Vidic, J., & Vantarakis, A. (2022). Applications of biosensors for bacteria and virus detection in food and water–A systematic review. journal of environmental sciences, 111, 367-379.Khadraoui, N., Essid, R., Jallouli, S., Damergi, B., Ben Takfa, I., Abid, G., ... & Tabbene, O. (2022). Antibacterial and antibiofilm activity of Peganum harmala seed extract against multidrug-resistant Pseudomonas aeruginosa pathogenic isolates and molecular mechanism of action. Archives of Microbiology, 204(2), 1-12Lee, J., Beck, K., & Bürgmann, H. (2022). Wastewater bypass is a major temporary point-source of antibiotic resistance genes and multi-resistance risk factors in a Swiss river. Water Research, 208, 117827.Leonov, V., Leonova, L., Cherepanov, D., Savin, L., Tkalich, A., Petrovskaya, Y., ... & Ananina, I. (2022). The Growth Kinetics of Pathogenic Microorganisms Under Conditions Modelling the Vital Functions of Iron-Oxidizing Bacteria. BioNanoScience, 1-5.Li, Y., Li, Q., Jiao, S., Liu, C., Yang, L., Huang, G., ... & Brancelj, A. (2022). Water Quality Characteristics and Source Analysis of Pollutants in the Maotiao River Basin (SW China). Water, 14(3), 301.Liu, S., Wang, P., Wang, C., Wang, X., & Chen, J. (2021). Anthropogenic disturbances on antibiotic resistome along the Yarlung Tsangpo River on the Tibetan Plateau: Ecological dissemination mechanisms of antibiotic resistance genes to bacterial pathogens. Water Research, 202, 117447.Mao, G., Liang, J., Wang, Q., Zhao, C., Bai, Y., Liu, R., ... & Qu, J. (2021). Epilithic biofilm as a reservoir for functional virulence factors in wastewater-dominant rivers after WWTP upgrade. Journal of Environmental Sciences, 101, 27-35.Meneses-Campo, Y., Castro-Rebolledo, M. I., & Jaramillo-Londoño, Á. M. (2019). Comparison of Water Quality Between Two Andean Rivers by Using the BMWP/COL. and ABI. Indices. Acta Biológica Colombiana, 24(2), 299-310.Moshi, H. A., Shilla, D. A., Kimirei, I. A., O’Reilly, C., Clymans, W., Bishop, I., & Loiselle, S. A. (2022). Community monitoring of coliform pollution in Lake Tanganyika. Plos one, 17(1), e0262881.Moreno-Mesonero, L., Ferrús, M. A., & Moreno, Y. (2020). Determination of the bacterial microbiome of free-living amoebae isolated from wastewater by 16S rRNA amplicon-based sequencing. Environmental Research, 190, 109987.Müller, E., Hotzel, H., Ahlers, C., Hänel, I., Tomaso, H., & Abdel-Glil, M. Y. (2020). Genomic analysis and antimicrobial resistance of Aliarcobacter cryaerophilus strains from German water poultry. Frontiers in Microbiology, 1549Neamat-Allah, A. N., Mahmoud, E. A., & Mahsoub, Y. (2021). Effects of dietary white mulberry leaves on hemato-biochemical alterations, immunosuppression and oxidative stress induced by Aeromonas hydrophila in Oreochromis niloticus. Fish & Shellfish Immunology, 108, 147-156.Ngobeni, R., Gilchrist, C., & Samie, A. (2022). Prevalence and Distribution of Cryptosporidium spp. and Giardia lamblia in Rural and Urban Communities of South Africa. Turkiye Parazitolojii Dergisi, 46(1), 14-19.Parida, P. K., Behera, B. K., Dehury, B., Rout, A. K., Sarkar, D. J., Rai, A., ... & Mohapatra, T. (2022). Impact of Anthropogenic Activity on Community Structure and Function of Microbiomes in Polluted Stretches of River Yamuna at New Delhi, India: Insights From Shotgun Metagenomics.Posada-Perlaza, C. E., Ramírez-Rojas, A., Porras, P., Adu-Oppong, B., Botero-Coy, A. M., Hernández, F., ... & Zambrano, M. M. (2019). Bogotá River anthropogenic contamination alters microbial communities and promotes spread of antibiotic resistance genes. Scientific reports, 9(1), 1-13.Omer, N. H. (2019). Water quality parameters. Water quality-science, assessments and policy, 18.Riesenfeld, C. S., Schloss, P. D., & Handelsman, J. (2004). Metagenomics: genomic analysis of microbial communities. Annu. Rev. Genet., 38, 525-552.Rodríguez Forero, A., González Mantilla, J.F. & Suárez Martínez, R. (2009) Accumulation of Lead, Chromium, and Cadmium in Muscle of capitán (Eremophilus mutisii), a Catfish from the Bogota River Basin. Arch Environ Contam Toxicol 57, 359–365 https://doi.org/10.1007/s00244-008-9279-2Roman, V. L., Merlin, C., Baron, S., Larvor, E., Le Devendec, L., Virta, M. P., & Bellanger, X. (2021). Abundance and environmental host range of the SXT/R391 ICEs in aquatic environmental communities. Environmental Pollution, 288, 117673.Ruiz-Moreno, H. A., López-Tamayo, A. M., Caro-Quintero, A., Husserl, J., & Barrios, A. F. G. (2019). Metagenome level metabolic network reconstruction analysis reveals the microbiome in the Bogotá River is functionally close to the microbiome in produced water. Ecological Modelling, 399, 1-12.Salinero, K. K., Keller, K., Feil, W. S., Feil, H., Trong, S., Di Bartolo, G., & Lapidus, A. (2009). Metabolic analysis of the soil microbe Dechloromonas aromatica str. RCB: indications of a surprisingly complex life-style and cryptic anaerobic pathways for aromatic degradation. BMC genomics, 10(1), 1-23.Sazykin, I. S., Seliverstova, E. Y., Khmelevtsova, L. E., Azhogina, T. N., Kudeevskaya, E. M., Khammami, M. I., ... & Sazykina, M. A. (2019). Occurrence of antibiotic resistance genes in sewages of Rostov-on-Don and lower Don River. Теоретическая и прикладная экология, (4), 76-82.Secretaría Distrital de Planeación de Bogotá. (2014). Aproximación a las implicaciones del fallo del consejo de estado sobre el Río Bogotá. Recuperado de: http://www.sdp.gov.co/sites/default/files/aproximacion_a_las_implicaciones_del_fallo_del_consejo_de_estado_sobre_el_rio_bogota.pdfSun, J., Jin, L., He, T., Wei, Z., Liu, X., Zhu, L., & Li, X. (2020). Antibiotic resistance genes (ARGs) in agricultural soils from the Yangtze River Delta, China. Science of The Total Environment, 740, 140001.Staley, C., & Sadowsky, M. J. (2016). Application of metagenomics to assess microbial communities in water and other environmental matrices. Journal of the Marine Biological Association of the United Kingdom, 96(1), 121-129.Shehu, D., & Alias, Z. (2018). Dechlorination of polychlorobiphenyl (PCB) degradation metabolites by a recombinant glutathione transferase from Acidovorax sp. KKS102. FEBS Open Bio.Thulasinathan, B., Jayabalan, T., Arumugam, N., Kulanthaisamy, M. R., Kim, W., Kumar, P., ... & Alagarsamy, A. (2022). Wastewater substrates in microbial fuel cell systems for carbon-neutral bioelectricity generation: An overview. Fuel, 317, 123369.van Bel, N., van der Wielen, P., Wullings, B., van Rijn, J., van der Mark, E., Ketelaars, H., & Hijnen, W. (2020). Aeromonas Species from Nonchlorinated Distribution Systems and Their Competitive Planktonic Growth in Drinking Water. Applied and Environmental Microbiology, 87(5), e02867-20.Vasconcellos, F. D. S., Iganci, J. R. V., & Ribeiro, G. A. (2022). Qualidade microbiológica da água do rio São Lourenço, São Lourenço do Sul, Rio Grande do Sul. Arquivos do Instituto Biológico, 73, 177-181.Vaillancourt, M., Limsuwannarot, S. P., Bresee, C., Poopalarajah, R., & Jorth, P. (2021). Pseudomonas aeruginosa mexR and mexEF Antibiotic Efflux Pump Variants Exhibit Increased Virulence. Antibiotics, 10(10), 1164.Vega, L., Jaimes, J., Morales, D., Martínez, D., Cruz-Saavedra, L., Muñoz, M., & Ramírez, J. D. (2021). Microbial Communities’ Characterization in Urban Recreational Surface Waters Using Next Generation Sequencing. Microbial Ecology, 1-17.Wood, D. E., Lu, J., & Langmead, B. (2019). Improved metagenomic analysis with Kraken 2. Genome biology, 20(1), 1-13.Wang, Q., Xu, Y., Liu, L., Li, L. Y., Lin, H., Wu, X. Y., ... & Luo, Y. (2021). The prevalence of ampicillin-resistant opportunistic pathogenic bacteria undergoing selective stress of heavy metal pollutants in the Xiangjiang River, China. Environmental Pollution, 268, 115362.Xu, H., Gao, Q., & Yuan, B. (2022). Analysis and identification of pollution sources of comprehensive river water quality: Evidence from two river basins in China. Ecological Indicators, 135, 108561Yang, X., Yan, L., Yang, Y., Zhou, H., Cao, Y., Wang, S., ... & Qiu, Z. (2022). The Occurrence and Distribution Pattern of Antibiotic Resistance Genes and Bacterial Community in the Ili River. Frontiers in Environmental Science, 212.Yuan, Q., Sui, M., Qin, C., Zhang, H., Sun, Y., Luo, S., & Zhao, J. (2022). Migration, Transformation and Removal of Macrolide Antibiotics in The Environment: A Review. Environmental Science and Pollution Research, 1-18.Zhang, C., Zhao, Z., Dong, S., & Zhou, D. (2021). Simultaneous elimination of amoxicillin and antibiotic resistance genes in activated sludge process: contributions of easy-to-biodegrade food. Science of the Total Environment, 764, 142907.Zhao, H., Guan, X., Zhang, F., Huang, Y., Xia, D., Hu, L., ... & He, C. (2022). Rational design of a bismuth oxyiodide (Bi/BiO1-xI) catalyst for synergistic photothermal and photocatalytic inactivation of pathogenic bacteria in water. Journal of Materials Science & Technology, 100, 110-119.Zhang, L., Ma, L., Yang, Q., Liu, Y., Ai, X., & Dong, J. (2022). Sanguinarine Protects Channel Catfish against Aeromonas hydrophila Infection by Inhibiting Aerolysin and Biofilm Formation. Pathogens, 11(3), 323.Zhao, X. L., Qi, Z., Huang, H., Tu, J., Song, X. J., Qi, K. Z., & Shao, Y. (2022). Coexistence of antibiotic resistance genes, fecal bacteria, and potential pathogens in anthropogenically impacted water. Environmental Science and Pollution Research, 1-14.Zhang, S., Amanze, C., Sun, C., Zou, K., Fu, S., Deng, Y., ... & Liang, Y. (2021). Evolutionary, genomic, and biogeographic characterization of two novel xenobiotics-degrading strains affiliated with Dechloromonas. Heliyon, 7(6), e07181instname:Universidad del Rosarioreponame:Repositorio Institucional EdocURCalidad aguaMetagenómicaMarcadores molecularesContaminaciónActividad antropogénicaAmbientes acuáticosRío BogotáPruebas fisicoquímicasPruebas microbiológicasCiencias naturales & matemáticas500600Water qualityMetagenomicsMolecular markersPollutionMicrobiological analysisPhysicochemical analysisAquatic environmentsDescripción de comunidades bacterianas en afluentes del río Bogotá usando un enfoque metagenómicoDescription of bacterial communities in tributaries of the Bogotá River using a metagenomic approachbachelorThesisArtículoTesishttp://purl.org/coar/resource_type/c_7a1fTEXTTesis pregrado UR.pdf.txtTesis pregrado UR.pdf.txtExtracted texttext/plain57473https://repository.urosario.edu.co/bitstreams/7c1e0d71-9183-4601-84c6-78274b3b21bc/download0a1e2ae850881b527fe9269f344b56f7MD53THUMBNAILTesis pregrado UR.pdf.jpgTesis pregrado UR.pdf.jpgGenerated Thumbnailimage/jpeg2135https://repository.urosario.edu.co/bitstreams/1f58d72e-4100-42b8-aea7-b974ef644182/download65897b7663e5d74a9db33b260c87d085MD54ORIGINALTesis pregrado UR.pdfTesis pregrado UR.pdfapplication/pdf1005930https://repository.urosario.edu.co/bitstreams/9290cc38-6053-4473-a4d0-3684d7d2cdcd/download01b2c0df9b1eba11fb16baf166ff2088MD51LICENSElicense.txtlicense.txttext/plain1475https://repository.urosario.edu.co/bitstreams/b4b146cb-fc14-41a4-b563-11a78da53ff4/downloadfab9d9ed61d64f6ac005dee3306ae77eMD5210336/34291oai:repository.urosario.edu.co:10336/342912022-06-17 11:19:05.959https://repository.urosario.edu.coRepositorio institucional EdocURedocur@urosario.edu.coRUwoTE9TKSBBVVRPUihFUyksIG1hbmlmaWVzdGEobWFuaWZlc3RhbW9zKSBxdWUgbGEgb2JyYSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIHJlYWxpesOzIHNpbiB2aW9sYXIgbyB1c3VycGFyIGRlcmVjaG9zIGRlIGF1dG9yIGRlIHRlcmNlcm9zLCBwb3IgbG8gdGFudG8gbGEgb2JyYSBlcyBkZSBleGNsdXNpdmEgYXV0b3LDrWEgeSB0aWVuZSBsYSB0aXR1bGFyaWRhZCBzb2JyZSBsYSBtaXNtYS4gCgpQQVJHUkFGTzogRW4gY2FzbyBkZSBwcmVzZW50YXJzZSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybyBlbiBjdWFudG8gYSBsb3MgZGVyZWNob3MgZGUgYXV0b3Igc29icmUgbGEgb2JyYSBlbiBjdWVzdGnDs24sIEVMIEFVVE9SLCBhc3VtaXLDoSB0b2RhIGxhIHJlc3BvbnNhYmlsaWRhZCwgeSBzYWxkcsOhIGVuIGRlZmVuc2EgZGUgbG9zIGRlcmVjaG9zIGFxdcOtIGF1dG9yaXphZG9zOyBwYXJhIHRvZG9zIGxvcyBlZmVjdG9zIGxhIHVuaXZlcnNpZGFkIGFjdMO6YSBjb21vIHVuIHRlcmNlcm8gZGUgYnVlbmEgZmUuIAoKRUwgQVVUT1IsIGF1dG9yaXphIGEgTEEgVU5JVkVSU0lEQUQgREVMIFJPU0FSSU8sICBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgTGV5IDQ0IGRlIDE5OTMsIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbm9ybWFzIGdlbmVyYWxlcyBzb2JyZSBsYSBtYXRlcmlhLCAgdXRpbGljZSB5IHVzZSBsYSBvYnJhIG9iamV0byBkZSBsYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuLgoKLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0KClBPTElUSUNBIERFIFRSQVRBTUlFTlRPIERFIERBVE9TIFBFUlNPTkFMRVMuIERlY2xhcm8gcXVlIGF1dG9yaXpvIHByZXZpYSB5IGRlIGZvcm1hIGluZm9ybWFkYSBlbCB0cmF0YW1pZW50byBkZSBtaXMgZGF0b3MgcGVyc29uYWxlcyBwb3IgcGFydGUgZGUgTEEgVU5JVkVSU0lEQUQgREVMIFJPU0FSSU8gIHBhcmEgZmluZXMgYWNhZMOpbWljb3MgeSBlbiBhcGxpY2FjacOzbiBkZSBjb252ZW5pb3MgY29uIHRlcmNlcm9zIG8gc2VydmljaW9zIGNvbmV4b3MgY29uIGFjdGl2aWRhZGVzIHByb3BpYXMgZGUgbGEgYWNhZGVtaWEsIGNvbiBlc3RyaWN0byBjdW1wbGltaWVudG8gZGUgbG9zIHByaW5jaXBpb3MgZGUgbGV5LiBQYXJhIGVsIGNvcnJlY3RvIGVqZXJjaWNpbyBkZSBtaSBkZXJlY2hvIGRlIGhhYmVhcyBkYXRhICBjdWVudG8gY29uIGxhIGN1ZW50YSBkZSBjb3JyZW8gaGFiZWFzZGF0YUB1cm9zYXJpby5lZHUuY28sIGRvbmRlIHByZXZpYSBpZGVudGlmaWNhY2nDs24gIHBvZHLDqSBzb2xpY2l0YXIgbGEgY29uc3VsdGEsIGNvcnJlY2Npw7NuIHkgc3VwcmVzacOzbiBkZSBtaXMgZGF0b3MuCgo=