Weighted LS-SVM for function estimation applied to artifact removal in bio-signal processing

Weighted LS-SVM is normally used for function estimation from highly corrupted data in order to decrease the impact of outliers. However, this method is limited in size and big time series should be segmented in smaller groups. Therefore, border discontinuities represent a problem in the final estim...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2010
Institución:
Universidad del Rosario
Repositorio:
Repositorio EdocUR - U. Rosario
Idioma:
eng
OAI Identifier:
oai:repository.urosario.edu.co:10336/28431
Acceso en línea:
https//doi.org 10.1109/IEMBS.2010.5627628
https://repository.urosario.edu.co/handle/10336/28431
Palabra clave:
Joints
Support vector machines
Estimation
Kernel
Biomedical measurements
Training
Robustness
Rights
License
Restringido (Acceso a grupos específicos)
id EDOCUR2_286a1535d37794ce053033e4e3c1a968
oai_identifier_str oai:repository.urosario.edu.co:10336/28431
network_acronym_str EDOCUR2
network_name_str Repositorio EdocUR - U. Rosario
repository_id_str
spelling 141395126002f369e77-f72e-49a8-a811-bbe96b4f4fac-12020-08-28T15:48:11Z2020-08-28T15:48:11Z2010-08-31Weighted LS-SVM is normally used for function estimation from highly corrupted data in order to decrease the impact of outliers. However, this method is limited in size and big time series should be segmented in smaller groups. Therefore, border discontinuities represent a problem in the final estimated function. Several methods such as committee networks or multilayer networks of LS-SVMs are used to address this problem, but these methods require extra training and hence the computational cost is increased. In this paper a technique that includes an extra weight vector in the formulation of the cost function for the LS-SVM problem is proposed as an alternative solution. The method is then applied to the removal of some artifacts in biomedical signals.application/pdfhttps//doi.org 10.1109/IEMBS.2010.5627628ISSN: 1558-4615EISSN: 1094-687Xhttps://repository.urosario.edu.co/handle/10336/28431engEngineering in Medicine and Biology SocietyIEEE Engineering in Medicine and Biology SocietyIEEE Engineering in Medicine and Biology Society, ISSN: 1558-4615; EISSN: 1094-687X (2010)https://ieeexplore.ieee.org/abstract/document/5627628Restringido (Acceso a grupos específicos)http://purl.org/coar/access_right/c_16ecIEEE Engineering in Medicine and Biology Societyinstname:Universidad del Rosarioreponame:Repositorio Institucional EdocURJointsSupport vector machinesEstimationKernelBiomedical measurementsTrainingRobustnessWeighted LS-SVM for function estimation applied to artifact removal in bio-signal processingLS-SVM ponderado para la estimación de funciones aplicada a la eliminación de artefactos en el procesamiento de señales biológicasarticleArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501Caicedo Dorado, AlexanderVan Huffel, Sabina10336/28431oai:repository.urosario.edu.co:10336/284312021-06-03 00:49:48.152https://repository.urosario.edu.coRepositorio institucional EdocURedocur@urosario.edu.co
dc.title.spa.fl_str_mv Weighted LS-SVM for function estimation applied to artifact removal in bio-signal processing
dc.title.TranslatedTitle.spa.fl_str_mv LS-SVM ponderado para la estimación de funciones aplicada a la eliminación de artefactos en el procesamiento de señales biológicas
title Weighted LS-SVM for function estimation applied to artifact removal in bio-signal processing
spellingShingle Weighted LS-SVM for function estimation applied to artifact removal in bio-signal processing
Joints
Support vector machines
Estimation
Kernel
Biomedical measurements
Training
Robustness
title_short Weighted LS-SVM for function estimation applied to artifact removal in bio-signal processing
title_full Weighted LS-SVM for function estimation applied to artifact removal in bio-signal processing
title_fullStr Weighted LS-SVM for function estimation applied to artifact removal in bio-signal processing
title_full_unstemmed Weighted LS-SVM for function estimation applied to artifact removal in bio-signal processing
title_sort Weighted LS-SVM for function estimation applied to artifact removal in bio-signal processing
dc.subject.keyword.spa.fl_str_mv Joints
Support vector machines
Estimation
Kernel
Biomedical measurements
Training
Robustness
topic Joints
Support vector machines
Estimation
Kernel
Biomedical measurements
Training
Robustness
description Weighted LS-SVM is normally used for function estimation from highly corrupted data in order to decrease the impact of outliers. However, this method is limited in size and big time series should be segmented in smaller groups. Therefore, border discontinuities represent a problem in the final estimated function. Several methods such as committee networks or multilayer networks of LS-SVMs are used to address this problem, but these methods require extra training and hence the computational cost is increased. In this paper a technique that includes an extra weight vector in the formulation of the cost function for the LS-SVM problem is proposed as an alternative solution. The method is then applied to the removal of some artifacts in biomedical signals.
publishDate 2010
dc.date.created.spa.fl_str_mv 2010-08-31
dc.date.accessioned.none.fl_str_mv 2020-08-28T15:48:11Z
dc.date.available.none.fl_str_mv 2020-08-28T15:48:11Z
dc.type.eng.fl_str_mv article
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.spa.spa.fl_str_mv Artículo
dc.identifier.doi.none.fl_str_mv https//doi.org 10.1109/IEMBS.2010.5627628
dc.identifier.issn.none.fl_str_mv ISSN: 1558-4615
EISSN: 1094-687X
dc.identifier.uri.none.fl_str_mv https://repository.urosario.edu.co/handle/10336/28431
url https//doi.org 10.1109/IEMBS.2010.5627628
https://repository.urosario.edu.co/handle/10336/28431
identifier_str_mv ISSN: 1558-4615
EISSN: 1094-687X
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.citationTitle.none.fl_str_mv IEEE Engineering in Medicine and Biology Society
dc.relation.ispartof.spa.fl_str_mv IEEE Engineering in Medicine and Biology Society, ISSN: 1558-4615; EISSN: 1094-687X (2010)
dc.relation.uri.spa.fl_str_mv https://ieeexplore.ieee.org/abstract/document/5627628
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
dc.rights.acceso.spa.fl_str_mv Restringido (Acceso a grupos específicos)
rights_invalid_str_mv Restringido (Acceso a grupos específicos)
http://purl.org/coar/access_right/c_16ec
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Engineering in Medicine and Biology Society
dc.source.spa.fl_str_mv IEEE Engineering in Medicine and Biology Society
institution Universidad del Rosario
dc.source.instname.none.fl_str_mv instname:Universidad del Rosario
dc.source.reponame.none.fl_str_mv reponame:Repositorio Institucional EdocUR
repository.name.fl_str_mv Repositorio institucional EdocUR
repository.mail.fl_str_mv edocur@urosario.edu.co
_version_ 1814167425126498304