Una propuesta de neurona artificial: la Unidad Neuro-Vascular Artificial (UNVA)
Las neuronas artificiales son un modelo computacional simplificado de cómo funcionan las neuronas biológicas presentes en el cerebro. Sin embargo, los modelos de las primeras neuronas artificiales se fundamentaron únicamente en el procesamiento de información proveniente de señales eléctricas, y no...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2022
- Institución:
- Universidad del Rosario
- Repositorio:
- Repositorio EdocUR - U. Rosario
- Idioma:
- spa
- OAI Identifier:
- oai:repository.urosario.edu.co:10336/33792
- Acceso en línea:
- https://doi.org/10.48713/10336_33792
https://repository.urosario.edu.co/handle/10336/33792
- Palabra clave:
- Neurona
Acoplamiento neurovascular
Neurona Artificial
Perceptrón
Descenso del gradiente
Tasa de aprendizaje
Estabilidad
Sistema dinámico
Unidad Neuro-Vascular Artificial
Medicina experimental
Neuron
Neurovascular coupling
Artificial neuron
Perceptron
Gradient descent
Learning rate
Stability
Dynamic system
Artificial Neuro-Vascular Unit
- Rights
- License
- Atribución-NoComercial-CompartirIgual 2.5 Colombia
id |
EDOCUR2_28235283ae6e12ee20d9aa0aff4a52c4 |
---|---|
oai_identifier_str |
oai:repository.urosario.edu.co:10336/33792 |
network_acronym_str |
EDOCUR2 |
network_name_str |
Repositorio EdocUR - U. Rosario |
repository_id_str |
|
dc.title.es.fl_str_mv |
Una propuesta de neurona artificial: la Unidad Neuro-Vascular Artificial (UNVA) |
dc.title.TranslatedTitle.es.fl_str_mv |
A proposal of artificial neuron: the Artificial Neuro-Vascular Unit (ANVU) |
title |
Una propuesta de neurona artificial: la Unidad Neuro-Vascular Artificial (UNVA) |
spellingShingle |
Una propuesta de neurona artificial: la Unidad Neuro-Vascular Artificial (UNVA) Neurona Acoplamiento neurovascular Neurona Artificial Perceptrón Descenso del gradiente Tasa de aprendizaje Estabilidad Sistema dinámico Unidad Neuro-Vascular Artificial Medicina experimental Neuron Neurovascular coupling Artificial neuron Perceptron Gradient descent Learning rate Stability Dynamic system Artificial Neuro-Vascular Unit |
title_short |
Una propuesta de neurona artificial: la Unidad Neuro-Vascular Artificial (UNVA) |
title_full |
Una propuesta de neurona artificial: la Unidad Neuro-Vascular Artificial (UNVA) |
title_fullStr |
Una propuesta de neurona artificial: la Unidad Neuro-Vascular Artificial (UNVA) |
title_full_unstemmed |
Una propuesta de neurona artificial: la Unidad Neuro-Vascular Artificial (UNVA) |
title_sort |
Una propuesta de neurona artificial: la Unidad Neuro-Vascular Artificial (UNVA) |
dc.contributor.advisor.none.fl_str_mv |
Caicedo Dorado, Alexander |
dc.subject.es.fl_str_mv |
Neurona Acoplamiento neurovascular Neurona Artificial Perceptrón Descenso del gradiente Tasa de aprendizaje Estabilidad Sistema dinámico Unidad Neuro-Vascular Artificial |
topic |
Neurona Acoplamiento neurovascular Neurona Artificial Perceptrón Descenso del gradiente Tasa de aprendizaje Estabilidad Sistema dinámico Unidad Neuro-Vascular Artificial Medicina experimental Neuron Neurovascular coupling Artificial neuron Perceptron Gradient descent Learning rate Stability Dynamic system Artificial Neuro-Vascular Unit |
dc.subject.ddc.es.fl_str_mv |
Medicina experimental |
dc.subject.keyword.es.fl_str_mv |
Neuron Neurovascular coupling Artificial neuron Perceptron Gradient descent Learning rate Stability Dynamic system Artificial Neuro-Vascular Unit |
description |
Las neuronas artificiales son un modelo computacional simplificado de cómo funcionan las neuronas biológicas presentes en el cerebro. Sin embargo, los modelos de las primeras neuronas artificiales se fundamentaron únicamente en el procesamiento de información proveniente de señales eléctricas, y no tuvieron en cuenta los cambios vasculares necesarios que permiten entregar nutrientes a las neuronas para que funcionen correctamente, en particular durante su activación eléctrica. Por lo tanto, en esta tesis se propone un nuevo modelo computacional que considera tanto el comportamiento eléctrico como el vascular. Para diseñar la nueva arquitectura, se revisaron las condiciones de estabilidad del descenso del gradiente. Este análisis nos permite definir cotas superiores para la tasa de aprendizaje. Una vez propuesta la arquitectura se evaluó su comportamiento comparado con algoritmos más tradicionales como la regresión lineal. |
publishDate |
2022 |
dc.date.accessioned.none.fl_str_mv |
2022-03-01T15:46:54Z |
dc.date.available.none.fl_str_mv |
2022-03-01T15:46:54Z |
dc.date.created.none.fl_str_mv |
2022-02-23 |
dc.type.eng.fl_str_mv |
bachelorThesis |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.document.es.fl_str_mv |
Trabajo de grado |
dc.type.spa.spa.fl_str_mv |
Trabajo de grado |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.48713/10336_33792 |
dc.identifier.uri.none.fl_str_mv |
https://repository.urosario.edu.co/handle/10336/33792 |
url |
https://doi.org/10.48713/10336_33792 https://repository.urosario.edu.co/handle/10336/33792 |
dc.language.iso.es.fl_str_mv |
spa |
language |
spa |
dc.rights.*.fl_str_mv |
Atribución-NoComercial-CompartirIgual 2.5 Colombia |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.acceso.es.fl_str_mv |
Abierto (Texto Completo) |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-sa/2.5/co/ |
rights_invalid_str_mv |
Atribución-NoComercial-CompartirIgual 2.5 Colombia Abierto (Texto Completo) http://creativecommons.org/licenses/by-nc-sa/2.5/co/ http://purl.org/coar/access_right/c_abf2 |
dc.format.extent.es.fl_str_mv |
80 pp |
dc.format.mimetype.es.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidad del Rosario |
dc.publisher.department.none.fl_str_mv |
Escuela de Ingeniería, Ciencia y Tecnología |
dc.publisher.program.none.fl_str_mv |
Programa de Matemáticas Aplicadas y Ciencias de la Computación - MACC |
publisher.none.fl_str_mv |
Universidad del Rosario |
institution |
Universidad del Rosario |
dc.source.bibliographicCitation.none.fl_str_mv |
Shaurya, Manu (2019) McCulloch-Pitts Neuron vs Perceptron model. McCulloch, W; Pitts, W (1943) A Logical Calculus of the Ideas Immanent in Nervous Activity. En: Bulletin of Mathematical Biology. Vol. 52; No. 1, 2; pp. 99-115 Disponible en: http://dx.doi.org/10.1007/BF02478259. Disponible en: 10.1007/BF02478259. Wikipedia,; Red neuronal artificial. 2020/11/20; Consultado en: 2020/11/20. Wikipedia,; Hopfield (RNA). 2020/5/13; Consultado en: 2020/5/13. Pelphrey, Kevin A; Volkmar, Fred R (2013) Blood-Oxygen-Level-Dependent (BOLD) Signal. En: Encyclopedia of Autism Spectrum Disorders. pp. 465-466 New York, NY: Springer New York; 9781441916983; Disponible en: https://doi.org/10.1007/978-1-4419-1698-3_550; http://dx.doi.org/10.1007/978-1-4419-1698-3_550. Disponible en: 10.1007/978-1-4419-1698-3_550. Dunn, J-Oc; Mythen, M G; Grocott, M P (2016) Physiology of oxygen transport. En: BJA Education. Vol. 16; No. 10; pp. 341-348 2058-5349; Disponible en: https://doi.org/10.1093/bjaed/mkw012; http://dx.doi.org/10.1093/bjaed/mkw012. Disponible en: 10.1093/bjaed/mkw012. Manning, John R (1961) Diffusion in a Chemical Concentration Gradient. En: Phys. Rev. Vol. 124; pp. 470-482 : American Physical Society; Disponible en: https://link.aps.org/doi/10.1103/PhysRev.124.470; http://dx.doi.org/10.1103/PhysRev.124.470. Disponible en: 10.1103/PhysRev.124.470. Unit, Mrc Mitochondrial Biology; What are mitochondria. Huneau, Clément; Benali, Habib; Chabriat, Hugues (2015) Investigating Human Neurovascular Coupling Using Functional Neuroimaging:. Vol. 9; pp. 467 1662-453X; Disponible en: https://www.frontiersin.org/article/10.3389/fnins.2015.00467; http://dx.doi.org/10.3389/fnins.2015.00467. Disponible en: 10.3389/fnins.2015.00467. Riera, Jorge J; Wan, Xiaohong; Jimenez, Juan Carlos; Kawashima, Ryuta (2006) Nonlinear local electrovascular coupling. I: A theoretical model. En: Human brain mapping. Vol. 27; No. 11; pp. 896-914 : Wiley Online Library; Zayane, Chadia; Laleg-Kirati, Taous Meriem (2015) A sensitivity analysis of fMRI balloon model. En: Computational and mathematical methods in medicine. Vol. 2015; Hindawi; Schaper, Charles D (2019) Analytic Model of fMRI BOLD Signals for Separable Metrics of Neural and. En: bioRxiv.: Cold Spring Harbor Laboratory; Disponible en: https://www.biorxiv.org/content/early/2019/03/09/573006; http://dx.doi.org/10.1101/573006. Disponible en: 10.1101/573006. Sistema nervioso central. Disponible en: https://www.significados.com/sistema-nervioso-central/. Jasvinder Chawla, Thomas R; Gest, Ashmeet Singh Sahni; Peripheral Nervous System Anatomy. Disponible en: https://emedicine.medscape.com/article/1948687-overview. Omar Islam, Mahan Mathur; Brain Magnetic Resonance Imaging. Disponible en: https://emedicine.medscape.com/article/2105033-overview. Wikipedia contributors (2021) Functional magnetic resonance imaging --- Wikipedia, The Free Encyclopedia. Disponible en: https://en.wikipedia.org/w/index.php?title=Functional_magnetic_resonance_imaging&oldid=1016553270. Wikipedia contributors (2021) List of systems of the human body --- Wikipedia, The Free Encyclopedia. Disponible en: https://en.wikipedia.org/w/index.php?title=List_of_systems_of_the_human_body&oldid=1019327234. Lodish, H; Berk, A; Zipursky, S L; al., Et (2000) Overview of Neuron Structure and Function. Disponible en: https://www.ncbi.nlm.nih.gov/books/NBK21535/. Chambers, David; Huang, Christopher; Matthews, Gareth (2015) Nerve action potential and propagation. En: Basic Physiology for Anaesthetists. pp. 221–227 : Cambridge University Press; Disponible en: http://dx.doi.org/10.1017/CBO9781139226394.051. Disponible en: 10.1017/CBO9781139226394.051. Khanna, Aarushi (2021) Action Potential. Disponible en: https://teachmephysiology.com/nervous-system/synapses/action-potential/. Ogawa, S; Lee, T M; Kay, A R; Tank, D W (1990) Brain magnetic resonance imaging with contrast dependent on blood. En: Proceedings of the National Academy of Sciences. Vol. 87; No. 24; pp. 9868-9872 : National Academy of Sciences; 0027-8424; Disponible en: https://www.pnas.org/content/87/24/9868; http://dx.doi.org/10.1073/pnas.87.24.9868. Disponible en: 10.1073/pnas.87.24.9868. Bachiller, Sara; Jiménez-Ferrer, Itzia; Paulus, Agnes; Yang, Yiyi; Swanberg, Maria; Deierborg, Tomas; Boza-Serrano, Antonio (2018) Microglia in Neurological Diseases: A Road Map to Brain-Disease. En: Frontiers in Cellular Neuroscience. Vol. 12; pp. 488 1662-5102; Disponible en: https://www.frontiersin.org/article/10.3389/fncel.2018.00488; http://dx.doi.org/10.3389/fncel.2018.00488. Disponible en: 10.3389/fncel.2018.00488. Castaño, Daniel Manrique (2017) La unidad neurovascular: el cerebro mucho más que neuronas. Dunn, J; Grider, M H; Phisiology, Adenosine Triphosphate. Disponible en: https://www.ncbi.nlm.nih.gov/books/NBK553175/. Wl, Drow (1960) An adaptive adaline neuron using chemical memistors. : Standford Electronics Lavoratroy Technical Report; Rosenblatt, Frank (1958) The perceptron: a probabilistic model for information storage and. En: Psychological review. Vol. 65; No. 6; pp. 386 : American Psychological Association; Boyd, Stephen; Vandenberghe, Lieven (2004) Convex Optimization. : Cambridge University Press; Disponible en: http://dx.doi.org/10.1017/CBO9780511804441. Disponible en: 10.1017/CBO9780511804441. Jia, Wu; Xiu-Yun, Chen; Hao, Zhang; Li-Dong, Xiong; Hang, Lei; Si-Hao, Deng (2019) Hyperparameter Optimization for Machine Learning Models Based on Bayesian. En: Journal of Electronic Science and Technology. Vol. 17; No. 1; pp. 26-40 1674-862X; Disponible en: https://www.sciencedirect.com/science/article/pii/S1674862X19300047; http://dx.doi.org/10.11989/JEST.1674-862X.80904120. Disponible en: 10.11989/JEST.1674-862X.80904120. Wang, Sun-Chong (2003) Artificial Neural Network. En: Interdisciplinary Computing in Java Programming. pp. 81-100 Boston, MA: Springer US; 9781461503774; Disponible en: https://doi.org/10.1007/978-1-4615-0377-4_5; http://dx.doi.org/10.1007/978-1-4615-0377-4_5. Disponible en: 10.1007/978-1-4615-0377-4_5. Sazli, Murat (2006) A brief review of feed-forward neural networks. En: Communications, Faculty Of Science, University of Ankara. Vol. 50; pp. 11-17 Disponible en: http://dx.doi.org/10.1501/0003168. Disponible en: 10.1501/0003168. Luenberger, D G (1979) Introduction to dynamic systems : theory, models, and applications. : Wiley; Baldi, Pierre (1995) Gradient descent learning algorithm overview: A general dynamical systems. En: IEEE Transactions on neural networks. Vol. 6; No. 1; pp. 182-195 : IEEE; Johnson, Richard Arnold; Wichern, Dean W; Others, (2014) Applied multivariate statistical analysis. Vol. 6; Pearson London, UK:; Fernando, Jason (2021) R-Squared. Disponible en: https://www.investopedia.com/terms/r/r-squared.asp. Fisher, Ronald A (1936) The use of multiple measurements in taxonomic problems. En: Annals of eugenics. Vol. 7; No. 2; pp. 179-188 : Wiley Online Library; Finance, Yahoo; Bitcoin USD (BTC-USD). Disponible en: https://finance.yahoo.com/quote/BTC-USD/history?p=BTC-USD. Kok, Joost N; Boers, Egbert J; Kosters, Walter A; Van der Putten, Peter; Poel, Mannes (2009) Artificial intelligence: definition, trends, techniques, and cases. En: Artificial intelligence. Vol. 1; pp. 270-299 : Eolss Publishers; Turing, A M (1950) I.—COMPUTING MACHINERY AND INTELLIGENCE. En: Mind. Vol. LIX; No. 236; pp. 433-460 0026-4423; Disponible en: https://doi.org/10.1093/mind/LIX.236.433; http://dx.doi.org/10.1093/mind/LIX.236.433. Disponible en: 10.1093/mind/LIX.236.433. Sofroniew, Michael V; Vinters, Harry V (2010) Astrocytes: biology and pathology. En: Acta neuropathologica. Vol. 119; No. 1; pp. 7-35 : Springer; Pauling, Linus; Coryell, Charles D (1936) The Magnetic Properties and Structure of Hemoglobin, Oxyhemoglobin and. En: Proceedings of the National Academy of Sciences. Vol. 22; No. 4; pp. 210-216 : National Academy of Sciences; 0027-8424; Disponible en: https://www.pnas.org/content/22/4/210; http://dx.doi.org/10.1073/pnas.22.4.210. Disponible en: 10.1073/pnas.22.4.210. Simon, Roger P; Greenberg, David A; Aminoff, Michael J (2015) Deficiencias motoras. En: Neurología clínica, 7e. New York, NY: McGraw-Hill Education; Disponible en: accessmedicina.mhmedical.com/content.aspx?aid=1119993943. Amenta, F; Zaccheo, D; Collier, W L (1991) Neurotransmitters, neuroreceptors and aging. En: Mechanisms of Ageing and Development. Vol. 61; No. 3; pp. 249-273 0047-6374; Disponible en: https://www.sciencedirect.com/science/article/pii/0047637491900599; http://dx.doi.org/10.1016/0047-6374(91)90059-9. Disponible en: 10.1016/0047-6374(91)90059-9. Leung, Lai-Wo Stan; Yim, Chi-Yiu Conrad (1991) Intrinsic membrane potential oscillations in hippocampal neurons in vitro. En: Brain research. Vol. 553; No. 2; pp. 261-274 : Elsevier; Hormuzdi, Sheriar G; .Filippov, Mikhail A; Mitropoulou, G; Monyer, H; Bruzzone, R (2004) Electrical synapses: a dynamic signaling system that shapes the activity. En: Biochimica et Biophysica Acta (BBA). Vol. 1662; No. 1; pp. 113-137 0005-2736; Disponible en: https://www.sciencedirect.com/science/article/pii/S0005273604000410; http://dx.doi.org/10.1016/j.bbamem.2003.10.023. Disponible en: 10.1016/j.bbamem.2003.10.023. Newman, Tim (2017) All about the central nervous system. En: MedicalNewsToday. Disponible en: https://www.medicalnewstoday.com/articles/307076. Chawla, Jasvinder; Singh Sahni, Ashmeet (2016) Peripheral Nervous System Anatomy. En: Medscape. Disponible en: https://emedicine.medscape.com/article/1948687-overview. Wikipedia, (2021) Respiración celular --- Wikipedia, La enciclopedia libre. Disponible en: https://es.wikipedia.org/w/index.php?title=Respiraci%C3%B3n_celular&oldid=139277796. Chen, Xiaowei; Kar, Samarjit; Ralescu, Dan A (2012) Cross-entropy measure of uncertain variables. En: Information Sciences. Vol. 201; pp. 53-60 : Elsevier; Friston, Karl J; Mechelli, Andrea; Turner, Robert; Price, Cathy J (2000) Nonlinear responses in fMRI: the Balloon model, Volterra kernels, and. En: NeuroImage. Vol. 12; No. 4; pp. 466-477 : Elsevier; Hyndman, Rob J; Athanasopoulos, George (2018) Forecasting: principles and practice. : OTexts; |
dc.source.instname.none.fl_str_mv |
instname:Universidad del Rosario |
dc.source.reponame.none.fl_str_mv |
reponame:Repositorio Institucional EdocUR |
bitstream.url.fl_str_mv |
https://repository.urosario.edu.co/bitstreams/0146a720-86f5-4d56-9257-e231cc01352b/download https://repository.urosario.edu.co/bitstreams/d693fca4-fa22-4894-a03a-fcca626b43d0/download https://repository.urosario.edu.co/bitstreams/c957dd2c-488d-4405-9537-46f135b16c93/download https://repository.urosario.edu.co/bitstreams/883497ba-77e8-46be-b54b-89510939ab2d/download https://repository.urosario.edu.co/bitstreams/6ee8b0bf-755d-48bb-864b-4ea17c0bb8a8/download https://repository.urosario.edu.co/bitstreams/15154041-f551-4004-af8b-281866f065da/download |
bitstream.checksum.fl_str_mv |
fab9d9ed61d64f6ac005dee3306ae77e 1487462a1490a8fc01f5999ce7b3b9cc 33dac8e49838fbe207db7f2080be68e8 7593e21406242206a2fddcdd3f390741 c157f1595547aaa56aac6b5fb0dc7258 ef5a0c67bb16287e08c076d154cbefda |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio institucional EdocUR |
repository.mail.fl_str_mv |
edocur@urosario.edu.co |
_version_ |
1814167513228902400 |
spelling |
Caicedo Dorado, Alexander14139512600Ruiz Ortiz, Juan CamiloProfesional en Matemáticas Aplicadas y Ciencias de la ComputaciónPregradoFull timeba69b607-6ab0-4849-9226-fe75975c9e0b6002022-03-01T15:46:54Z2022-03-01T15:46:54Z2022-02-23Las neuronas artificiales son un modelo computacional simplificado de cómo funcionan las neuronas biológicas presentes en el cerebro. Sin embargo, los modelos de las primeras neuronas artificiales se fundamentaron únicamente en el procesamiento de información proveniente de señales eléctricas, y no tuvieron en cuenta los cambios vasculares necesarios que permiten entregar nutrientes a las neuronas para que funcionen correctamente, en particular durante su activación eléctrica. Por lo tanto, en esta tesis se propone un nuevo modelo computacional que considera tanto el comportamiento eléctrico como el vascular. Para diseñar la nueva arquitectura, se revisaron las condiciones de estabilidad del descenso del gradiente. Este análisis nos permite definir cotas superiores para la tasa de aprendizaje. Una vez propuesta la arquitectura se evaluó su comportamiento comparado con algoritmos más tradicionales como la regresión lineal.Artificial neurons are a simplified computational model of biological neurons which are present in the brain. However, the first artificial neuron models were based only on the information processing that comes from electric signals and did not include vascular changes that allow the supply of nutrients to the neurons for their correct functioning, particularly during their electric activation. Therefore, in this thesis, a new computational model is proposed that considers the electric and vascular behavior. To design this new architecture, the stability conditions of gradient descent were reviewed. This analysis allowed us to declare upper bounds for the learning rate. Once the architecture was proposed, its behavior was compared with more traditional algorithms like linear regression.80 ppapplication/pdfhttps://doi.org/10.48713/10336_33792 https://repository.urosario.edu.co/handle/10336/33792spaUniversidad del RosarioEscuela de Ingeniería, Ciencia y TecnologíaPrograma de Matemáticas Aplicadas y Ciencias de la Computación - MACCAtribución-NoComercial-CompartirIgual 2.5 ColombiaAbierto (Texto Completo)http://creativecommons.org/licenses/by-nc-sa/2.5/co/http://purl.org/coar/access_right/c_abf2Shaurya, Manu (2019) McCulloch-Pitts Neuron vs Perceptron model. McCulloch, W; Pitts, W (1943) A Logical Calculus of the Ideas Immanent in Nervous Activity. En: Bulletin of Mathematical Biology. Vol. 52; No. 1, 2; pp. 99-115 Disponible en: http://dx.doi.org/10.1007/BF02478259. Disponible en: 10.1007/BF02478259.Wikipedia,; Red neuronal artificial. 2020/11/20; Consultado en: 2020/11/20.Wikipedia,; Hopfield (RNA). 2020/5/13; Consultado en: 2020/5/13.Pelphrey, Kevin A; Volkmar, Fred R (2013) Blood-Oxygen-Level-Dependent (BOLD) Signal. En: Encyclopedia of Autism Spectrum Disorders. pp. 465-466 New York, NY: Springer New York; 9781441916983; Disponible en: https://doi.org/10.1007/978-1-4419-1698-3_550; http://dx.doi.org/10.1007/978-1-4419-1698-3_550. Disponible en: 10.1007/978-1-4419-1698-3_550.Dunn, J-Oc; Mythen, M G; Grocott, M P (2016) Physiology of oxygen transport. En: BJA Education. Vol. 16; No. 10; pp. 341-348 2058-5349; Disponible en: https://doi.org/10.1093/bjaed/mkw012; http://dx.doi.org/10.1093/bjaed/mkw012. Disponible en: 10.1093/bjaed/mkw012.Manning, John R (1961) Diffusion in a Chemical Concentration Gradient. En: Phys. Rev. Vol. 124; pp. 470-482 : American Physical Society; Disponible en: https://link.aps.org/doi/10.1103/PhysRev.124.470; http://dx.doi.org/10.1103/PhysRev.124.470. Disponible en: 10.1103/PhysRev.124.470.Unit, Mrc Mitochondrial Biology; What are mitochondria. Huneau, Clément; Benali, Habib; Chabriat, Hugues (2015) Investigating Human Neurovascular Coupling Using Functional Neuroimaging:. Vol. 9; pp. 467 1662-453X; Disponible en: https://www.frontiersin.org/article/10.3389/fnins.2015.00467; http://dx.doi.org/10.3389/fnins.2015.00467. Disponible en: 10.3389/fnins.2015.00467.Riera, Jorge J; Wan, Xiaohong; Jimenez, Juan Carlos; Kawashima, Ryuta (2006) Nonlinear local electrovascular coupling. I: A theoretical model. En: Human brain mapping. Vol. 27; No. 11; pp. 896-914 : Wiley Online Library;Zayane, Chadia; Laleg-Kirati, Taous Meriem (2015) A sensitivity analysis of fMRI balloon model. En: Computational and mathematical methods in medicine. Vol. 2015; Hindawi;Schaper, Charles D (2019) Analytic Model of fMRI BOLD Signals for Separable Metrics of Neural and. En: bioRxiv.: Cold Spring Harbor Laboratory; Disponible en: https://www.biorxiv.org/content/early/2019/03/09/573006; http://dx.doi.org/10.1101/573006. Disponible en: 10.1101/573006. Sistema nervioso central. Disponible en: https://www.significados.com/sistema-nervioso-central/.Jasvinder Chawla, Thomas R; Gest, Ashmeet Singh Sahni; Peripheral Nervous System Anatomy. Disponible en: https://emedicine.medscape.com/article/1948687-overview.Omar Islam, Mahan Mathur; Brain Magnetic Resonance Imaging. Disponible en: https://emedicine.medscape.com/article/2105033-overview.Wikipedia contributors (2021) Functional magnetic resonance imaging --- Wikipedia, The Free Encyclopedia. Disponible en: https://en.wikipedia.org/w/index.php?title=Functional_magnetic_resonance_imaging&oldid=1016553270.Wikipedia contributors (2021) List of systems of the human body --- Wikipedia, The Free Encyclopedia. Disponible en: https://en.wikipedia.org/w/index.php?title=List_of_systems_of_the_human_body&oldid=1019327234.Lodish, H; Berk, A; Zipursky, S L; al., Et (2000) Overview of Neuron Structure and Function. Disponible en: https://www.ncbi.nlm.nih.gov/books/NBK21535/.Chambers, David; Huang, Christopher; Matthews, Gareth (2015) Nerve action potential and propagation. En: Basic Physiology for Anaesthetists. pp. 221–227 : Cambridge University Press; Disponible en: http://dx.doi.org/10.1017/CBO9781139226394.051. Disponible en: 10.1017/CBO9781139226394.051.Khanna, Aarushi (2021) Action Potential. Disponible en: https://teachmephysiology.com/nervous-system/synapses/action-potential/.Ogawa, S; Lee, T M; Kay, A R; Tank, D W (1990) Brain magnetic resonance imaging with contrast dependent on blood. En: Proceedings of the National Academy of Sciences. Vol. 87; No. 24; pp. 9868-9872 : National Academy of Sciences; 0027-8424; Disponible en: https://www.pnas.org/content/87/24/9868; http://dx.doi.org/10.1073/pnas.87.24.9868. Disponible en: 10.1073/pnas.87.24.9868.Bachiller, Sara; Jiménez-Ferrer, Itzia; Paulus, Agnes; Yang, Yiyi; Swanberg, Maria; Deierborg, Tomas; Boza-Serrano, Antonio (2018) Microglia in Neurological Diseases: A Road Map to Brain-Disease. En: Frontiers in Cellular Neuroscience. Vol. 12; pp. 488 1662-5102; Disponible en: https://www.frontiersin.org/article/10.3389/fncel.2018.00488; http://dx.doi.org/10.3389/fncel.2018.00488. Disponible en: 10.3389/fncel.2018.00488.Castaño, Daniel Manrique (2017) La unidad neurovascular: el cerebro mucho más que neuronas. Dunn, J; Grider, M H; Phisiology, Adenosine Triphosphate. Disponible en: https://www.ncbi.nlm.nih.gov/books/NBK553175/.Wl, Drow (1960) An adaptive adaline neuron using chemical memistors. : Standford Electronics Lavoratroy Technical Report;Rosenblatt, Frank (1958) The perceptron: a probabilistic model for information storage and. En: Psychological review. Vol. 65; No. 6; pp. 386 : American Psychological Association;Boyd, Stephen; Vandenberghe, Lieven (2004) Convex Optimization. : Cambridge University Press; Disponible en: http://dx.doi.org/10.1017/CBO9780511804441. Disponible en: 10.1017/CBO9780511804441.Jia, Wu; Xiu-Yun, Chen; Hao, Zhang; Li-Dong, Xiong; Hang, Lei; Si-Hao, Deng (2019) Hyperparameter Optimization for Machine Learning Models Based on Bayesian. En: Journal of Electronic Science and Technology. Vol. 17; No. 1; pp. 26-40 1674-862X; Disponible en: https://www.sciencedirect.com/science/article/pii/S1674862X19300047; http://dx.doi.org/10.11989/JEST.1674-862X.80904120. Disponible en: 10.11989/JEST.1674-862X.80904120.Wang, Sun-Chong (2003) Artificial Neural Network. En: Interdisciplinary Computing in Java Programming. pp. 81-100 Boston, MA: Springer US; 9781461503774; Disponible en: https://doi.org/10.1007/978-1-4615-0377-4_5; http://dx.doi.org/10.1007/978-1-4615-0377-4_5. Disponible en: 10.1007/978-1-4615-0377-4_5.Sazli, Murat (2006) A brief review of feed-forward neural networks. En: Communications, Faculty Of Science, University of Ankara. Vol. 50; pp. 11-17 Disponible en: http://dx.doi.org/10.1501/0003168. Disponible en: 10.1501/0003168.Luenberger, D G (1979) Introduction to dynamic systems : theory, models, and applications. : Wiley;Baldi, Pierre (1995) Gradient descent learning algorithm overview: A general dynamical systems. En: IEEE Transactions on neural networks. Vol. 6; No. 1; pp. 182-195 : IEEE;Johnson, Richard Arnold; Wichern, Dean W; Others, (2014) Applied multivariate statistical analysis. Vol. 6; Pearson London, UK:;Fernando, Jason (2021) R-Squared. Disponible en: https://www.investopedia.com/terms/r/r-squared.asp.Fisher, Ronald A (1936) The use of multiple measurements in taxonomic problems. En: Annals of eugenics. Vol. 7; No. 2; pp. 179-188 : Wiley Online Library;Finance, Yahoo; Bitcoin USD (BTC-USD). Disponible en: https://finance.yahoo.com/quote/BTC-USD/history?p=BTC-USD.Kok, Joost N; Boers, Egbert J; Kosters, Walter A; Van der Putten, Peter; Poel, Mannes (2009) Artificial intelligence: definition, trends, techniques, and cases. En: Artificial intelligence. Vol. 1; pp. 270-299 : Eolss Publishers;Turing, A M (1950) I.—COMPUTING MACHINERY AND INTELLIGENCE. En: Mind. Vol. LIX; No. 236; pp. 433-460 0026-4423; Disponible en: https://doi.org/10.1093/mind/LIX.236.433; http://dx.doi.org/10.1093/mind/LIX.236.433. Disponible en: 10.1093/mind/LIX.236.433.Sofroniew, Michael V; Vinters, Harry V (2010) Astrocytes: biology and pathology. En: Acta neuropathologica. Vol. 119; No. 1; pp. 7-35 : Springer;Pauling, Linus; Coryell, Charles D (1936) The Magnetic Properties and Structure of Hemoglobin, Oxyhemoglobin and. En: Proceedings of the National Academy of Sciences. Vol. 22; No. 4; pp. 210-216 : National Academy of Sciences; 0027-8424; Disponible en: https://www.pnas.org/content/22/4/210; http://dx.doi.org/10.1073/pnas.22.4.210. Disponible en: 10.1073/pnas.22.4.210.Simon, Roger P; Greenberg, David A; Aminoff, Michael J (2015) Deficiencias motoras. En: Neurología clínica, 7e. New York, NY: McGraw-Hill Education; Disponible en: accessmedicina.mhmedical.com/content.aspx?aid=1119993943.Amenta, F; Zaccheo, D; Collier, W L (1991) Neurotransmitters, neuroreceptors and aging. En: Mechanisms of Ageing and Development. Vol. 61; No. 3; pp. 249-273 0047-6374; Disponible en: https://www.sciencedirect.com/science/article/pii/0047637491900599; http://dx.doi.org/10.1016/0047-6374(91)90059-9. Disponible en: 10.1016/0047-6374(91)90059-9.Leung, Lai-Wo Stan; Yim, Chi-Yiu Conrad (1991) Intrinsic membrane potential oscillations in hippocampal neurons in vitro. En: Brain research. Vol. 553; No. 2; pp. 261-274 : Elsevier;Hormuzdi, Sheriar G; .Filippov, Mikhail A; Mitropoulou, G; Monyer, H; Bruzzone, R (2004) Electrical synapses: a dynamic signaling system that shapes the activity. En: Biochimica et Biophysica Acta (BBA). Vol. 1662; No. 1; pp. 113-137 0005-2736; Disponible en: https://www.sciencedirect.com/science/article/pii/S0005273604000410; http://dx.doi.org/10.1016/j.bbamem.2003.10.023. Disponible en: 10.1016/j.bbamem.2003.10.023.Newman, Tim (2017) All about the central nervous system. En: MedicalNewsToday. Disponible en: https://www.medicalnewstoday.com/articles/307076.Chawla, Jasvinder; Singh Sahni, Ashmeet (2016) Peripheral Nervous System Anatomy. En: Medscape. Disponible en: https://emedicine.medscape.com/article/1948687-overview.Wikipedia, (2021) Respiración celular --- Wikipedia, La enciclopedia libre. Disponible en: https://es.wikipedia.org/w/index.php?title=Respiraci%C3%B3n_celular&oldid=139277796.Chen, Xiaowei; Kar, Samarjit; Ralescu, Dan A (2012) Cross-entropy measure of uncertain variables. En: Information Sciences. Vol. 201; pp. 53-60 : Elsevier;Friston, Karl J; Mechelli, Andrea; Turner, Robert; Price, Cathy J (2000) Nonlinear responses in fMRI: the Balloon model, Volterra kernels, and. En: NeuroImage. Vol. 12; No. 4; pp. 466-477 : Elsevier;Hyndman, Rob J; Athanasopoulos, George (2018) Forecasting: principles and practice. : OTexts;instname:Universidad del Rosarioreponame:Repositorio Institucional EdocURNeuronaAcoplamiento neurovascularNeurona ArtificialPerceptrónDescenso del gradienteTasa de aprendizajeEstabilidadSistema dinámicoUnidad Neuro-Vascular ArtificialMedicina experimental619600NeuronNeurovascular couplingArtificial neuronPerceptronGradient descentLearning rateStabilityDynamic systemArtificial Neuro-Vascular UnitUna propuesta de neurona artificial: la Unidad Neuro-Vascular Artificial (UNVA)A proposal of artificial neuron: the Artificial Neuro-Vascular Unit (ANVU)bachelorThesisTrabajo de gradoTrabajo de gradohttp://purl.org/coar/resource_type/c_7a1fLICENSElicense.txtlicense.txttext/plain1475https://repository.urosario.edu.co/bitstreams/0146a720-86f5-4d56-9257-e231cc01352b/downloadfab9d9ed61d64f6ac005dee3306ae77eMD53CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81037https://repository.urosario.edu.co/bitstreams/d693fca4-fa22-4894-a03a-fcca626b43d0/download1487462a1490a8fc01f5999ce7b3b9ccMD54TEXTTesis_JuanCamiloRuiz_plantilla_UR.pdf.txtTesis_JuanCamiloRuiz_plantilla_UR.pdf.txtExtracted texttext/plain123102https://repository.urosario.edu.co/bitstreams/c957dd2c-488d-4405-9537-46f135b16c93/download33dac8e49838fbe207db7f2080be68e8MD55THUMBNAILTesis_JuanCamiloRuiz_plantilla_UR.pdf.jpgTesis_JuanCamiloRuiz_plantilla_UR.pdf.jpgGenerated Thumbnailimage/jpeg3191https://repository.urosario.edu.co/bitstreams/883497ba-77e8-46be-b54b-89510939ab2d/download7593e21406242206a2fddcdd3f390741MD56ORIGINALTesis_JuanCamiloRuiz_plantilla_UR.pdfTesis_JuanCamiloRuiz_plantilla_UR.pdfTesisapplication/pdf3570317https://repository.urosario.edu.co/bitstreams/6ee8b0bf-755d-48bb-864b-4ea17c0bb8a8/downloadc157f1595547aaa56aac6b5fb0dc7258MD51referencias_JuanCamiloRuiz.risreferencias_JuanCamiloRuiz.risReferencias en formato .risapplication/octet-stream13388https://repository.urosario.edu.co/bitstreams/15154041-f551-4004-af8b-281866f065da/downloadef5a0c67bb16287e08c076d154cbefdaMD5210336/33792oai:repository.urosario.edu.co:10336/337922022-03-08 11:20:58.002http://creativecommons.org/licenses/by-nc-sa/2.5/co/Atribución-NoComercial-CompartirIgual 2.5 Colombiahttps://repository.urosario.edu.coRepositorio institucional EdocURedocur@urosario.edu.coRUwoTE9TKSBBVVRPUihFUyksIG1hbmlmaWVzdGEobWFuaWZlc3RhbW9zKSBxdWUgbGEgb2JyYSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIHJlYWxpesOzIHNpbiB2aW9sYXIgbyB1c3VycGFyIGRlcmVjaG9zIGRlIGF1dG9yIGRlIHRlcmNlcm9zLCBwb3IgbG8gdGFudG8gbGEgb2JyYSBlcyBkZSBleGNsdXNpdmEgYXV0b3LDrWEgeSB0aWVuZSBsYSB0aXR1bGFyaWRhZCBzb2JyZSBsYSBtaXNtYS4gCgpQQVJHUkFGTzogRW4gY2FzbyBkZSBwcmVzZW50YXJzZSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybyBlbiBjdWFudG8gYSBsb3MgZGVyZWNob3MgZGUgYXV0b3Igc29icmUgbGEgb2JyYSBlbiBjdWVzdGnDs24sIEVMIEFVVE9SLCBhc3VtaXLDoSB0b2RhIGxhIHJlc3BvbnNhYmlsaWRhZCwgeSBzYWxkcsOhIGVuIGRlZmVuc2EgZGUgbG9zIGRlcmVjaG9zIGFxdcOtIGF1dG9yaXphZG9zOyBwYXJhIHRvZG9zIGxvcyBlZmVjdG9zIGxhIHVuaXZlcnNpZGFkIGFjdMO6YSBjb21vIHVuIHRlcmNlcm8gZGUgYnVlbmEgZmUuIAoKRUwgQVVUT1IsIGF1dG9yaXphIGEgTEEgVU5JVkVSU0lEQUQgREVMIFJPU0FSSU8sICBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgTGV5IDQ0IGRlIDE5OTMsIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbm9ybWFzIGdlbmVyYWxlcyBzb2JyZSBsYSBtYXRlcmlhLCAgdXRpbGljZSB5IHVzZSBsYSBvYnJhIG9iamV0byBkZSBsYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuLgoKLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0KClBPTElUSUNBIERFIFRSQVRBTUlFTlRPIERFIERBVE9TIFBFUlNPTkFMRVMuIERlY2xhcm8gcXVlIGF1dG9yaXpvIHByZXZpYSB5IGRlIGZvcm1hIGluZm9ybWFkYSBlbCB0cmF0YW1pZW50byBkZSBtaXMgZGF0b3MgcGVyc29uYWxlcyBwb3IgcGFydGUgZGUgTEEgVU5JVkVSU0lEQUQgREVMIFJPU0FSSU8gIHBhcmEgZmluZXMgYWNhZMOpbWljb3MgeSBlbiBhcGxpY2FjacOzbiBkZSBjb252ZW5pb3MgY29uIHRlcmNlcm9zIG8gc2VydmljaW9zIGNvbmV4b3MgY29uIGFjdGl2aWRhZGVzIHByb3BpYXMgZGUgbGEgYWNhZGVtaWEsIGNvbiBlc3RyaWN0byBjdW1wbGltaWVudG8gZGUgbG9zIHByaW5jaXBpb3MgZGUgbGV5LiBQYXJhIGVsIGNvcnJlY3RvIGVqZXJjaWNpbyBkZSBtaSBkZXJlY2hvIGRlIGhhYmVhcyBkYXRhICBjdWVudG8gY29uIGxhIGN1ZW50YSBkZSBjb3JyZW8gaGFiZWFzZGF0YUB1cm9zYXJpby5lZHUuY28sIGRvbmRlIHByZXZpYSBpZGVudGlmaWNhY2nDs24gIHBvZHLDqSBzb2xpY2l0YXIgbGEgY29uc3VsdGEsIGNvcnJlY2Npw7NuIHkgc3VwcmVzacOzbiBkZSBtaXMgZGF0b3MuCgo= |