A two-state neuronal model with alternating exponential excitation

We develop a stochastic neural model based on point excitatory inputs. The nerve cell depolarisation is determined by a two-state point process corresponding the two states of the cell. The model presumes state-dependent excitatory stimuli amplitudes and decay rates of membrane potential. The state...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2019
Institución:
Universidad del Rosario
Repositorio:
Repositorio EdocUR - U. Rosario
Idioma:
eng
OAI Identifier:
oai:repository.urosario.edu.co:10336/22559
Acceso en línea:
https://doi.org/10.3934/mbe.2019171
https://repository.urosario.edu.co/handle/10336/22559
Palabra clave:
Decay (organic)
Depolarization
Excited states
Laplace transforms
Neurons
Stochastic systems
Time switches
Asymptotical behaviour
First passage time
Laplace transform techniques
Membrane potentials
Neural activity
Neural modeling
Neuronal model
State-dependent
Stochastic models
Article
Depolarization
Excitation
Laplace transform
Membrane potential
Nerve cell
Probability
Stochastic model
Asymptotical behaviour
Firing probability
First passage time
Jump-telegraph process
Neural activity
Rights
License
Abierto (Texto Completo)
id EDOCUR2_2555ce19f17f5afd189dceee2b2a4da3
oai_identifier_str oai:repository.urosario.edu.co:10336/22559
network_acronym_str EDOCUR2
network_name_str Repositorio EdocUR - U. Rosario
repository_id_str
spelling 3203526002020-05-25T23:56:55Z2020-05-25T23:56:55Z2019We develop a stochastic neural model based on point excitatory inputs. The nerve cell depolarisation is determined by a two-state point process corresponding the two states of the cell. The model presumes state-dependent excitatory stimuli amplitudes and decay rates of membrane potential. The state switches at each stimulus time. We analyse the neural firing time distribution and the mean firing time. The limit of the firing time at a definitive scaling condition is also obtained. The results are based on an analysis of the first crossing time of the depolarisation process through the firing threshold. The Laplace transform technique is widely used. © 2019 the author.application/pdfhttps://doi.org/10.3934/mbe.20191711547106315510018https://repository.urosario.edu.co/handle/10336/22559engAmerican Institute of Mathematical Sciences3434No. 53411Mathematical Biosciences and EngineeringVol. 16Mathematical Biosciences and Engineering, ISSN:15471063, 15510018, Vol.16, No.5 (2019); pp. 3411-3434https://www.scopus.com/inward/record.uri?eid=2-s2.0-85064904101&doi=10.3934%2fmbe.2019171&partnerID=40&md5=c614b4f6e4aec6249e214460fc6a4b36Abierto (Texto Completo)http://purl.org/coar/access_right/c_abf2instname:Universidad del Rosarioreponame:Repositorio Institucional EdocURDecay (organic)DepolarizationExcited statesLaplace transformsNeuronsStochastic systemsTime switchesAsymptotical behaviourFirst passage timeLaplace transform techniquesMembrane potentialsNeural activityNeural modelingNeuronal modelState-dependentStochastic modelsArticleDepolarizationExcitationLaplace transformMembrane potentialNerve cellProbabilityStochastic modelAsymptotical behaviourFiring probabilityFirst passage timeJump-telegraph processNeural activityA two-state neuronal model with alternating exponential excitationarticleArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501Ratanov, NikitaORIGINALmbe-16-05-171.pdfapplication/pdf773905https://repository.urosario.edu.co/bitstreams/9726210e-6212-45c0-9650-fee7992f119d/download2135440c10bd68a782267230a9e2c7fdMD51TEXTmbe-16-05-171.pdf.txtmbe-16-05-171.pdf.txtExtracted texttext/plain44736https://repository.urosario.edu.co/bitstreams/0e944235-4df6-405b-9a00-76fce2e3f58f/downloadc3a9e69b5a84a26344dbb7ed6ef67684MD52THUMBNAILmbe-16-05-171.pdf.jpgmbe-16-05-171.pdf.jpgGenerated Thumbnailimage/jpeg4839https://repository.urosario.edu.co/bitstreams/be1b4125-6232-4567-ad85-f09a2e09133c/downloadb396189633125419754cd830d07b81b0MD5310336/22559oai:repository.urosario.edu.co:10336/225592021-06-10 23:07:11.783https://repository.urosario.edu.coRepositorio institucional EdocURedocur@urosario.edu.co
dc.title.spa.fl_str_mv A two-state neuronal model with alternating exponential excitation
title A two-state neuronal model with alternating exponential excitation
spellingShingle A two-state neuronal model with alternating exponential excitation
Decay (organic)
Depolarization
Excited states
Laplace transforms
Neurons
Stochastic systems
Time switches
Asymptotical behaviour
First passage time
Laplace transform techniques
Membrane potentials
Neural activity
Neural modeling
Neuronal model
State-dependent
Stochastic models
Article
Depolarization
Excitation
Laplace transform
Membrane potential
Nerve cell
Probability
Stochastic model
Asymptotical behaviour
Firing probability
First passage time
Jump-telegraph process
Neural activity
title_short A two-state neuronal model with alternating exponential excitation
title_full A two-state neuronal model with alternating exponential excitation
title_fullStr A two-state neuronal model with alternating exponential excitation
title_full_unstemmed A two-state neuronal model with alternating exponential excitation
title_sort A two-state neuronal model with alternating exponential excitation
dc.subject.keyword.spa.fl_str_mv Decay (organic)
Depolarization
Excited states
Laplace transforms
Neurons
Stochastic systems
Time switches
Asymptotical behaviour
First passage time
Laplace transform techniques
Membrane potentials
Neural activity
Neural modeling
Neuronal model
State-dependent
Stochastic models
Article
Depolarization
Excitation
Laplace transform
Membrane potential
Nerve cell
Probability
Stochastic model
Asymptotical behaviour
Firing probability
First passage time
Jump-telegraph process
Neural activity
topic Decay (organic)
Depolarization
Excited states
Laplace transforms
Neurons
Stochastic systems
Time switches
Asymptotical behaviour
First passage time
Laplace transform techniques
Membrane potentials
Neural activity
Neural modeling
Neuronal model
State-dependent
Stochastic models
Article
Depolarization
Excitation
Laplace transform
Membrane potential
Nerve cell
Probability
Stochastic model
Asymptotical behaviour
Firing probability
First passage time
Jump-telegraph process
Neural activity
description We develop a stochastic neural model based on point excitatory inputs. The nerve cell depolarisation is determined by a two-state point process corresponding the two states of the cell. The model presumes state-dependent excitatory stimuli amplitudes and decay rates of membrane potential. The state switches at each stimulus time. We analyse the neural firing time distribution and the mean firing time. The limit of the firing time at a definitive scaling condition is also obtained. The results are based on an analysis of the first crossing time of the depolarisation process through the firing threshold. The Laplace transform technique is widely used. © 2019 the author.
publishDate 2019
dc.date.created.spa.fl_str_mv 2019
dc.date.accessioned.none.fl_str_mv 2020-05-25T23:56:55Z
dc.date.available.none.fl_str_mv 2020-05-25T23:56:55Z
dc.type.eng.fl_str_mv article
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.spa.spa.fl_str_mv Artículo
dc.identifier.doi.none.fl_str_mv https://doi.org/10.3934/mbe.2019171
dc.identifier.issn.none.fl_str_mv 15471063
15510018
dc.identifier.uri.none.fl_str_mv https://repository.urosario.edu.co/handle/10336/22559
url https://doi.org/10.3934/mbe.2019171
https://repository.urosario.edu.co/handle/10336/22559
identifier_str_mv 15471063
15510018
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.citationEndPage.none.fl_str_mv 3434
dc.relation.citationIssue.none.fl_str_mv No. 5
dc.relation.citationStartPage.none.fl_str_mv 3411
dc.relation.citationTitle.none.fl_str_mv Mathematical Biosciences and Engineering
dc.relation.citationVolume.none.fl_str_mv Vol. 16
dc.relation.ispartof.spa.fl_str_mv Mathematical Biosciences and Engineering, ISSN:15471063, 15510018, Vol.16, No.5 (2019); pp. 3411-3434
dc.relation.uri.spa.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-85064904101&doi=10.3934%2fmbe.2019171&partnerID=40&md5=c614b4f6e4aec6249e214460fc6a4b36
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.acceso.spa.fl_str_mv Abierto (Texto Completo)
rights_invalid_str_mv Abierto (Texto Completo)
http://purl.org/coar/access_right/c_abf2
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv American Institute of Mathematical Sciences
institution Universidad del Rosario
dc.source.instname.spa.fl_str_mv instname:Universidad del Rosario
dc.source.reponame.spa.fl_str_mv reponame:Repositorio Institucional EdocUR
bitstream.url.fl_str_mv https://repository.urosario.edu.co/bitstreams/9726210e-6212-45c0-9650-fee7992f119d/download
https://repository.urosario.edu.co/bitstreams/0e944235-4df6-405b-9a00-76fce2e3f58f/download
https://repository.urosario.edu.co/bitstreams/be1b4125-6232-4567-ad85-f09a2e09133c/download
bitstream.checksum.fl_str_mv 2135440c10bd68a782267230a9e2c7fd
c3a9e69b5a84a26344dbb7ed6ef67684
b396189633125419754cd830d07b81b0
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio institucional EdocUR
repository.mail.fl_str_mv edocur@urosario.edu.co
_version_ 1814167739988705280