A two-state neuronal model with alternating exponential excitation
We develop a stochastic neural model based on point excitatory inputs. The nerve cell depolarisation is determined by a two-state point process corresponding the two states of the cell. The model presumes state-dependent excitatory stimuli amplitudes and decay rates of membrane potential. The state...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2019
- Institución:
- Universidad del Rosario
- Repositorio:
- Repositorio EdocUR - U. Rosario
- Idioma:
- eng
- OAI Identifier:
- oai:repository.urosario.edu.co:10336/22559
- Acceso en línea:
- https://doi.org/10.3934/mbe.2019171
https://repository.urosario.edu.co/handle/10336/22559
- Palabra clave:
- Decay (organic)
Depolarization
Excited states
Laplace transforms
Neurons
Stochastic systems
Time switches
Asymptotical behaviour
First passage time
Laplace transform techniques
Membrane potentials
Neural activity
Neural modeling
Neuronal model
State-dependent
Stochastic models
Article
Depolarization
Excitation
Laplace transform
Membrane potential
Nerve cell
Probability
Stochastic model
Asymptotical behaviour
Firing probability
First passage time
Jump-telegraph process
Neural activity
- Rights
- License
- Abierto (Texto Completo)
id |
EDOCUR2_2555ce19f17f5afd189dceee2b2a4da3 |
---|---|
oai_identifier_str |
oai:repository.urosario.edu.co:10336/22559 |
network_acronym_str |
EDOCUR2 |
network_name_str |
Repositorio EdocUR - U. Rosario |
repository_id_str |
|
spelling |
3203526002020-05-25T23:56:55Z2020-05-25T23:56:55Z2019We develop a stochastic neural model based on point excitatory inputs. The nerve cell depolarisation is determined by a two-state point process corresponding the two states of the cell. The model presumes state-dependent excitatory stimuli amplitudes and decay rates of membrane potential. The state switches at each stimulus time. We analyse the neural firing time distribution and the mean firing time. The limit of the firing time at a definitive scaling condition is also obtained. The results are based on an analysis of the first crossing time of the depolarisation process through the firing threshold. The Laplace transform technique is widely used. © 2019 the author.application/pdfhttps://doi.org/10.3934/mbe.20191711547106315510018https://repository.urosario.edu.co/handle/10336/22559engAmerican Institute of Mathematical Sciences3434No. 53411Mathematical Biosciences and EngineeringVol. 16Mathematical Biosciences and Engineering, ISSN:15471063, 15510018, Vol.16, No.5 (2019); pp. 3411-3434https://www.scopus.com/inward/record.uri?eid=2-s2.0-85064904101&doi=10.3934%2fmbe.2019171&partnerID=40&md5=c614b4f6e4aec6249e214460fc6a4b36Abierto (Texto Completo)http://purl.org/coar/access_right/c_abf2instname:Universidad del Rosarioreponame:Repositorio Institucional EdocURDecay (organic)DepolarizationExcited statesLaplace transformsNeuronsStochastic systemsTime switchesAsymptotical behaviourFirst passage timeLaplace transform techniquesMembrane potentialsNeural activityNeural modelingNeuronal modelState-dependentStochastic modelsArticleDepolarizationExcitationLaplace transformMembrane potentialNerve cellProbabilityStochastic modelAsymptotical behaviourFiring probabilityFirst passage timeJump-telegraph processNeural activityA two-state neuronal model with alternating exponential excitationarticleArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501Ratanov, NikitaORIGINALmbe-16-05-171.pdfapplication/pdf773905https://repository.urosario.edu.co/bitstreams/9726210e-6212-45c0-9650-fee7992f119d/download2135440c10bd68a782267230a9e2c7fdMD51TEXTmbe-16-05-171.pdf.txtmbe-16-05-171.pdf.txtExtracted texttext/plain44736https://repository.urosario.edu.co/bitstreams/0e944235-4df6-405b-9a00-76fce2e3f58f/downloadc3a9e69b5a84a26344dbb7ed6ef67684MD52THUMBNAILmbe-16-05-171.pdf.jpgmbe-16-05-171.pdf.jpgGenerated Thumbnailimage/jpeg4839https://repository.urosario.edu.co/bitstreams/be1b4125-6232-4567-ad85-f09a2e09133c/downloadb396189633125419754cd830d07b81b0MD5310336/22559oai:repository.urosario.edu.co:10336/225592021-06-10 23:07:11.783https://repository.urosario.edu.coRepositorio institucional EdocURedocur@urosario.edu.co |
dc.title.spa.fl_str_mv |
A two-state neuronal model with alternating exponential excitation |
title |
A two-state neuronal model with alternating exponential excitation |
spellingShingle |
A two-state neuronal model with alternating exponential excitation Decay (organic) Depolarization Excited states Laplace transforms Neurons Stochastic systems Time switches Asymptotical behaviour First passage time Laplace transform techniques Membrane potentials Neural activity Neural modeling Neuronal model State-dependent Stochastic models Article Depolarization Excitation Laplace transform Membrane potential Nerve cell Probability Stochastic model Asymptotical behaviour Firing probability First passage time Jump-telegraph process Neural activity |
title_short |
A two-state neuronal model with alternating exponential excitation |
title_full |
A two-state neuronal model with alternating exponential excitation |
title_fullStr |
A two-state neuronal model with alternating exponential excitation |
title_full_unstemmed |
A two-state neuronal model with alternating exponential excitation |
title_sort |
A two-state neuronal model with alternating exponential excitation |
dc.subject.keyword.spa.fl_str_mv |
Decay (organic) Depolarization Excited states Laplace transforms Neurons Stochastic systems Time switches Asymptotical behaviour First passage time Laplace transform techniques Membrane potentials Neural activity Neural modeling Neuronal model State-dependent Stochastic models Article Depolarization Excitation Laplace transform Membrane potential Nerve cell Probability Stochastic model Asymptotical behaviour Firing probability First passage time Jump-telegraph process Neural activity |
topic |
Decay (organic) Depolarization Excited states Laplace transforms Neurons Stochastic systems Time switches Asymptotical behaviour First passage time Laplace transform techniques Membrane potentials Neural activity Neural modeling Neuronal model State-dependent Stochastic models Article Depolarization Excitation Laplace transform Membrane potential Nerve cell Probability Stochastic model Asymptotical behaviour Firing probability First passage time Jump-telegraph process Neural activity |
description |
We develop a stochastic neural model based on point excitatory inputs. The nerve cell depolarisation is determined by a two-state point process corresponding the two states of the cell. The model presumes state-dependent excitatory stimuli amplitudes and decay rates of membrane potential. The state switches at each stimulus time. We analyse the neural firing time distribution and the mean firing time. The limit of the firing time at a definitive scaling condition is also obtained. The results are based on an analysis of the first crossing time of the depolarisation process through the firing threshold. The Laplace transform technique is widely used. © 2019 the author. |
publishDate |
2019 |
dc.date.created.spa.fl_str_mv |
2019 |
dc.date.accessioned.none.fl_str_mv |
2020-05-25T23:56:55Z |
dc.date.available.none.fl_str_mv |
2020-05-25T23:56:55Z |
dc.type.eng.fl_str_mv |
article |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.spa.spa.fl_str_mv |
Artículo |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.3934/mbe.2019171 |
dc.identifier.issn.none.fl_str_mv |
15471063 15510018 |
dc.identifier.uri.none.fl_str_mv |
https://repository.urosario.edu.co/handle/10336/22559 |
url |
https://doi.org/10.3934/mbe.2019171 https://repository.urosario.edu.co/handle/10336/22559 |
identifier_str_mv |
15471063 15510018 |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.relation.citationEndPage.none.fl_str_mv |
3434 |
dc.relation.citationIssue.none.fl_str_mv |
No. 5 |
dc.relation.citationStartPage.none.fl_str_mv |
3411 |
dc.relation.citationTitle.none.fl_str_mv |
Mathematical Biosciences and Engineering |
dc.relation.citationVolume.none.fl_str_mv |
Vol. 16 |
dc.relation.ispartof.spa.fl_str_mv |
Mathematical Biosciences and Engineering, ISSN:15471063, 15510018, Vol.16, No.5 (2019); pp. 3411-3434 |
dc.relation.uri.spa.fl_str_mv |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85064904101&doi=10.3934%2fmbe.2019171&partnerID=40&md5=c614b4f6e4aec6249e214460fc6a4b36 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.acceso.spa.fl_str_mv |
Abierto (Texto Completo) |
rights_invalid_str_mv |
Abierto (Texto Completo) http://purl.org/coar/access_right/c_abf2 |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
American Institute of Mathematical Sciences |
institution |
Universidad del Rosario |
dc.source.instname.spa.fl_str_mv |
instname:Universidad del Rosario |
dc.source.reponame.spa.fl_str_mv |
reponame:Repositorio Institucional EdocUR |
bitstream.url.fl_str_mv |
https://repository.urosario.edu.co/bitstreams/9726210e-6212-45c0-9650-fee7992f119d/download https://repository.urosario.edu.co/bitstreams/0e944235-4df6-405b-9a00-76fce2e3f58f/download https://repository.urosario.edu.co/bitstreams/be1b4125-6232-4567-ad85-f09a2e09133c/download |
bitstream.checksum.fl_str_mv |
2135440c10bd68a782267230a9e2c7fd c3a9e69b5a84a26344dbb7ed6ef67684 b396189633125419754cd830d07b81b0 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio institucional EdocUR |
repository.mail.fl_str_mv |
edocur@urosario.edu.co |
_version_ |
1814167739988705280 |