Estudio de la red de coautores del proyecto Alianza EFI usando aprendizaje automático con grafos

El presente trabajo muestra el uso de técnicas de aprendizaje automático basado en grafos para analizar la red de coautoría entre autores afiliados al Proyecto Alianza EFI. El documento se divide en tres capítulos: el primero ofrece una visión general completa del contexto global y local de la Intel...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2022
Institución:
Universidad del Rosario
Repositorio:
Repositorio EdocUR - U. Rosario
Idioma:
eng
OAI Identifier:
oai:repository.urosario.edu.co:10336/40957
Acceso en línea:
https://doi.org/10.48713/10336_40957
https://repository.urosario.edu.co/handle/10336/40957
Palabra clave:
Machine learning
Deep learning
Graphs
Graph machine learning
Machine learning
Deep learning
Graphs
Graph machine learning
Rights
License
Attribution-NoDerivatives 4.0 International
Description
Summary:El presente trabajo muestra el uso de técnicas de aprendizaje automático basado en grafos para analizar la red de coautoría entre autores afiliados al Proyecto Alianza EFI. El documento se divide en tres capítulos: el primero ofrece una visión general completa del contexto global y local de la Inteligencia Artificial (IA) de manera que justifica la importancia de trabajar con temas de IA en el mundo actual. El segundo capítulo está dedicado a construir el marco teórico para trabajar con grafos y aprendizaje automático. El capítulo final muestra los resultados de la implementación del aprendizaje automático basado en grafos para tareas predictivas a nivel de nodos, enlaces y comunidades. Específicamente, este capítulo revela que el proyecto Alianza EFI involucra contribuciones de 390 autores únicos, asociados con 112 instituciones distintas, lo que resulta en 274 productos únicos. También demuestra que la Universidad del Rosario desempeña un papel central en las colaboraciones institucionales, en contraste con las demás instituciones dentro de la alianza. Finalmente, después de aplicar técnicas de aprendizaje automático basado en grafos, se observó que estas estrategias permiten a la alianza identificar nuevos temas de investigación para los autores, establecer nuevas conexiones entre autores aislados y descubrir nuevas comunidades de intereses de investigación.