Th1 and Th2 immune response to P30 and ROP18 peptides in human toxoplasmosis
We determined the specific lymphocyte proliferative response and cytokine profile production regarding Toxoplasma P30 (2017 from virulent and non-virulent strain) and ROP18 protein-derived peptides (from clonal lineages I, II and III) in 19 patients having ocular toxoplasmosis, five suffering chroni...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2014
- Institución:
- Universidad del Rosario
- Repositorio:
- Repositorio EdocUR - U. Rosario
- Idioma:
- eng
- OAI Identifier:
- oai:repository.urosario.edu.co:10336/22571
- Acceso en línea:
- https://doi.org/10.1007/s00430-014-0339-0
https://repository.urosario.edu.co/handle/10336/22571
- Palabra clave:
- CD3 antigen
CD4 antigen
CD8 antigen
Gamma interferon
Interleukin 10
Protein p30
ROP18 protein
Tumor necrosis factor alpha
Unclassified drug
Virulence factor
Cytokine
Leukocyte antigen
Parasite antigen
Protein serine threonine kinase
Protozoal protein
Adult
Antigen specificity
Article
Asymptomatic disease
Carboxy terminal sequence
CD4+ T lymphocyte
CD8+ T lymphocyte
Child
Clinical article
Controlled study
Cytokine production
Ex vivo study
Female
Human
Human cell
Immune response
Immunostimulation
Male
Nonhuman
Parasite virulence
Th1 cell
Th2 cell
Toxoplasmosis
Adolescent
Cell proliferation
Chemistry
Flow cytometry
Immunology
Middle aged
Mononuclear cell
Secretion (process)
T lymphocyte subpopulation
Th1 cell
Th2 cell
Toxoplasmosis
Young adult
Adolescent
Adult
CD4-Positive T-Lymphocytes
CD8-Positive T-Lymphocytes
Cell Proliferation
Child
Cytokines
Female
Flow Cytometry
Humans
Male
Middle Aged
Protein-Serine-Threonine Kinases
Protozoan Proteins
T-Lymphocyte Subsets
Th1 Cells
Th2 Cells
Toxoplasmosis
Young Adult
IL10
Interferon gamma
P30 protein
Peptides
ROP18
Th1
Th2
Toxoplasma
Vaccine
Protozoan
Toxoplasma
CD
Mononuclear
Toxoplasma gondii
ROP18 protein
SAG1 antigen
Antigens
Antigens
Leukocytes
- Rights
- License
- Abierto (Texto Completo)
id |
EDOCUR2_16fc8a0287b1bb8f8fd7e510df68af1e |
---|---|
oai_identifier_str |
oai:repository.urosario.edu.co:10336/22571 |
network_acronym_str |
EDOCUR2 |
network_name_str |
Repositorio EdocUR - U. Rosario |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Th1 and Th2 immune response to P30 and ROP18 peptides in human toxoplasmosis |
title |
Th1 and Th2 immune response to P30 and ROP18 peptides in human toxoplasmosis |
spellingShingle |
Th1 and Th2 immune response to P30 and ROP18 peptides in human toxoplasmosis CD3 antigen CD4 antigen CD8 antigen Gamma interferon Interleukin 10 Protein p30 ROP18 protein Tumor necrosis factor alpha Unclassified drug Virulence factor Cytokine Leukocyte antigen Parasite antigen Protein serine threonine kinase Protozoal protein Adult Antigen specificity Article Asymptomatic disease Carboxy terminal sequence CD4+ T lymphocyte CD8+ T lymphocyte Child Clinical article Controlled study Cytokine production Ex vivo study Female Human Human cell Immune response Immunostimulation Male Nonhuman Parasite virulence Th1 cell Th2 cell Toxoplasmosis Adolescent Cell proliferation Chemistry Flow cytometry Immunology Middle aged Mononuclear cell Secretion (process) T lymphocyte subpopulation Th1 cell Th2 cell Toxoplasmosis Young adult Adolescent Adult CD4-Positive T-Lymphocytes CD8-Positive T-Lymphocytes Cell Proliferation Child Cytokines Female Flow Cytometry Humans Male Middle Aged Protein-Serine-Threonine Kinases Protozoan Proteins T-Lymphocyte Subsets Th1 Cells Th2 Cells Toxoplasmosis Young Adult IL10 Interferon gamma P30 protein Peptides ROP18 Th1 Th2 Toxoplasma Vaccine Protozoan Toxoplasma CD Mononuclear Toxoplasma gondii ROP18 protein SAG1 antigen Antigens Antigens Leukocytes |
title_short |
Th1 and Th2 immune response to P30 and ROP18 peptides in human toxoplasmosis |
title_full |
Th1 and Th2 immune response to P30 and ROP18 peptides in human toxoplasmosis |
title_fullStr |
Th1 and Th2 immune response to P30 and ROP18 peptides in human toxoplasmosis |
title_full_unstemmed |
Th1 and Th2 immune response to P30 and ROP18 peptides in human toxoplasmosis |
title_sort |
Th1 and Th2 immune response to P30 and ROP18 peptides in human toxoplasmosis |
dc.subject.keyword.spa.fl_str_mv |
CD3 antigen CD4 antigen CD8 antigen Gamma interferon Interleukin 10 Protein p30 ROP18 protein Tumor necrosis factor alpha Unclassified drug Virulence factor Cytokine Leukocyte antigen Parasite antigen Protein serine threonine kinase Protozoal protein Adult Antigen specificity Article Asymptomatic disease Carboxy terminal sequence CD4+ T lymphocyte CD8+ T lymphocyte Child Clinical article Controlled study Cytokine production Ex vivo study Female Human Human cell Immune response Immunostimulation Male Nonhuman Parasite virulence Th1 cell Th2 cell Toxoplasmosis Adolescent Cell proliferation Chemistry Flow cytometry Immunology Middle aged Mononuclear cell Secretion (process) T lymphocyte subpopulation Th1 cell Th2 cell Toxoplasmosis Young adult Adolescent Adult CD4-Positive T-Lymphocytes CD8-Positive T-Lymphocytes Cell Proliferation Child Cytokines Female Flow Cytometry Humans Male Middle Aged Protein-Serine-Threonine Kinases Protozoan Proteins T-Lymphocyte Subsets Th1 Cells Th2 Cells Toxoplasmosis Young Adult IL10 Interferon gamma P30 protein Peptides ROP18 Th1 Th2 Toxoplasma Vaccine |
topic |
CD3 antigen CD4 antigen CD8 antigen Gamma interferon Interleukin 10 Protein p30 ROP18 protein Tumor necrosis factor alpha Unclassified drug Virulence factor Cytokine Leukocyte antigen Parasite antigen Protein serine threonine kinase Protozoal protein Adult Antigen specificity Article Asymptomatic disease Carboxy terminal sequence CD4+ T lymphocyte CD8+ T lymphocyte Child Clinical article Controlled study Cytokine production Ex vivo study Female Human Human cell Immune response Immunostimulation Male Nonhuman Parasite virulence Th1 cell Th2 cell Toxoplasmosis Adolescent Cell proliferation Chemistry Flow cytometry Immunology Middle aged Mononuclear cell Secretion (process) T lymphocyte subpopulation Th1 cell Th2 cell Toxoplasmosis Young adult Adolescent Adult CD4-Positive T-Lymphocytes CD8-Positive T-Lymphocytes Cell Proliferation Child Cytokines Female Flow Cytometry Humans Male Middle Aged Protein-Serine-Threonine Kinases Protozoan Proteins T-Lymphocyte Subsets Th1 Cells Th2 Cells Toxoplasmosis Young Adult IL10 Interferon gamma P30 protein Peptides ROP18 Th1 Th2 Toxoplasma Vaccine Protozoan Toxoplasma CD Mononuclear Toxoplasma gondii ROP18 protein SAG1 antigen Antigens Antigens Leukocytes |
dc.subject.keyword.eng.fl_str_mv |
Protozoan Toxoplasma CD Mononuclear Toxoplasma gondii ROP18 protein SAG1 antigen Antigens Antigens Leukocytes |
description |
We determined the specific lymphocyte proliferative response and cytokine profile production regarding Toxoplasma P30 (2017 from virulent and non-virulent strain) and ROP18 protein-derived peptides (from clonal lineages I, II and III) in 19 patients having ocular toxoplasmosis, five suffering chronic asymptomatic infection, nine with congenital toxoplasmosis and eight Toxoplasma negative people. A Beckman Coulter FC500 flow cytometer was used for determining antigen-specific T cells (CD3+ CD4+ or CD3+ CD8+ cells) in peripheral blood culture. IFN ? and IL10 levels were determined in culture supernatants. Specific CD4+ and CD8+ T cell response to total antigen and P30- and ROP18-derived peptides was observed in infected people. Ocular toxoplasmosis patients had a preferential Th2 response after antigenic stimulation. Non-virulent peptide 2017 was able to shift response toward Th1 in congenitally infected children and virulent peptide 2017 induced a Th2 response in chronically infected, asymptomatic people. An immune response in human toxoplasmosis after ex vivo antigenic stimulation was Th1- or Th2-skewed, depending on a patient’s clinical condition. Colombian ocular toxoplasmosis patients’ immune response was Th2-skewed, regardless of the nature of antigen stimulus. © 2014, Springer-Verlag Berlin Heidelberg. |
publishDate |
2014 |
dc.date.created.spa.fl_str_mv |
2014 |
dc.date.accessioned.none.fl_str_mv |
2020-05-25T23:56:57Z |
dc.date.available.none.fl_str_mv |
2020-05-25T23:56:57Z |
dc.type.eng.fl_str_mv |
article |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.spa.spa.fl_str_mv |
Artículo |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.1007/s00430-014-0339-0 |
dc.identifier.issn.none.fl_str_mv |
14321831 03008584 |
dc.identifier.uri.none.fl_str_mv |
https://repository.urosario.edu.co/handle/10336/22571 |
url |
https://doi.org/10.1007/s00430-014-0339-0 https://repository.urosario.edu.co/handle/10336/22571 |
identifier_str_mv |
14321831 03008584 |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.relation.citationEndPage.none.fl_str_mv |
322 |
dc.relation.citationIssue.none.fl_str_mv |
No. 5 |
dc.relation.citationStartPage.none.fl_str_mv |
315 |
dc.relation.citationTitle.none.fl_str_mv |
Medical Microbiology and Immunology |
dc.relation.citationVolume.none.fl_str_mv |
Vol. 203 |
dc.relation.ispartof.spa.fl_str_mv |
Medical Microbiology and Immunology, ISSN:14321831, 03008584, Vol.203, No.5 (2014); pp. 315-322 |
dc.relation.uri.spa.fl_str_mv |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84919477257&doi=10.1007%2fs00430-014-0339-0&partnerID=40&md5=4b6c72c20def77684d4ff6b2fb732f31 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.acceso.spa.fl_str_mv |
Abierto (Texto Completo) |
rights_invalid_str_mv |
Abierto (Texto Completo) http://purl.org/coar/access_right/c_abf2 |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Springer Verlag |
institution |
Universidad del Rosario |
dc.source.instname.spa.fl_str_mv |
instname:Universidad del Rosario |
dc.source.reponame.spa.fl_str_mv |
reponame:Repositorio Institucional EdocUR |
bitstream.url.fl_str_mv |
https://repository.urosario.edu.co/bitstreams/0946f903-8b90-410e-87ef-691733a2348c/download https://repository.urosario.edu.co/bitstreams/f80718fe-9a68-402f-8d5b-0ed15674c3b3/download https://repository.urosario.edu.co/bitstreams/19cdf233-d9a5-49c8-9d21-da20fb538855/download |
bitstream.checksum.fl_str_mv |
aaf9e647a355ed43f23d9c9ef6b24ce7 8297aa213d3c9896a1c0c823da1d0693 fa608c1f61adf035dbf072e3504a40d1 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio institucional EdocUR |
repository.mail.fl_str_mv |
edocur@urosario.edu.co |
_version_ |
1814167574930259968 |
spelling |
a92dd30e-6b14-475b-9019-af4ecb1e37b201cb24af-9e52-4530-b0ba-58c1ad4dbc2beae864ff-3bb7-4d21-bb67-fa279d73a7fe5170135560070bb29e3-42d1-4e74-99fd-de83a3c415458f776c1e-0499-4177-84fc-562088cd14a8796530656002020-05-25T23:56:57Z2020-05-25T23:56:57Z2014We determined the specific lymphocyte proliferative response and cytokine profile production regarding Toxoplasma P30 (2017 from virulent and non-virulent strain) and ROP18 protein-derived peptides (from clonal lineages I, II and III) in 19 patients having ocular toxoplasmosis, five suffering chronic asymptomatic infection, nine with congenital toxoplasmosis and eight Toxoplasma negative people. A Beckman Coulter FC500 flow cytometer was used for determining antigen-specific T cells (CD3+ CD4+ or CD3+ CD8+ cells) in peripheral blood culture. IFN ? and IL10 levels were determined in culture supernatants. Specific CD4+ and CD8+ T cell response to total antigen and P30- and ROP18-derived peptides was observed in infected people. Ocular toxoplasmosis patients had a preferential Th2 response after antigenic stimulation. Non-virulent peptide 2017 was able to shift response toward Th1 in congenitally infected children and virulent peptide 2017 induced a Th2 response in chronically infected, asymptomatic people. An immune response in human toxoplasmosis after ex vivo antigenic stimulation was Th1- or Th2-skewed, depending on a patient’s clinical condition. Colombian ocular toxoplasmosis patients’ immune response was Th2-skewed, regardless of the nature of antigen stimulus. © 2014, Springer-Verlag Berlin Heidelberg.application/pdfhttps://doi.org/10.1007/s00430-014-0339-01432183103008584https://repository.urosario.edu.co/handle/10336/22571engSpringer Verlag322No. 5315Medical Microbiology and ImmunologyVol. 203Medical Microbiology and Immunology, ISSN:14321831, 03008584, Vol.203, No.5 (2014); pp. 315-322https://www.scopus.com/inward/record.uri?eid=2-s2.0-84919477257&doi=10.1007%2fs00430-014-0339-0&partnerID=40&md5=4b6c72c20def77684d4ff6b2fb732f31Abierto (Texto Completo)http://purl.org/coar/access_right/c_abf2instname:Universidad del Rosarioreponame:Repositorio Institucional EdocURCD3 antigenCD4 antigenCD8 antigenGamma interferonInterleukin 10Protein p30ROP18 proteinTumor necrosis factor alphaUnclassified drugVirulence factorCytokineLeukocyte antigenParasite antigenProtein serine threonine kinaseProtozoal proteinAdultAntigen specificityArticleAsymptomatic diseaseCarboxy terminal sequenceCD4+ T lymphocyteCD8+ T lymphocyteChildClinical articleControlled studyCytokine productionEx vivo studyFemaleHumanHuman cellImmune responseImmunostimulationMaleNonhumanParasite virulenceTh1 cellTh2 cellToxoplasmosisAdolescentCell proliferationChemistryFlow cytometryImmunologyMiddle agedMononuclear cellSecretion (process)T lymphocyte subpopulationTh1 cellTh2 cellToxoplasmosisYoung adultAdolescentAdultCD4-Positive T-LymphocytesCD8-Positive T-LymphocytesCell ProliferationChildCytokinesFemaleFlow CytometryHumansMaleMiddle AgedProtein-Serine-Threonine KinasesProtozoan ProteinsT-Lymphocyte SubsetsTh1 CellsTh2 CellsToxoplasmosisYoung AdultIL10Interferon gammaP30 proteinPeptidesROP18Th1Th2ToxoplasmaVaccineProtozoanToxoplasmaCDMononuclearToxoplasma gondiiROP18 proteinSAG1 antigenAntigensAntigensLeukocytesTh1 and Th2 immune response to P30 and ROP18 peptides in human toxoplasmosisarticleArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501Torres-Morales, ElizabethTaborda, LauraCardona, Nestorde-la-Torre, AlejandraSepulveda-Arias, Juan CarlosGomez-Marin, Jorge EnriquePatarroyo, Manuel A.ORIGINALTorres-Morales2014_Article_Th1AndTh2ImmuneResponseToP30An.pdfapplication/pdf692848https://repository.urosario.edu.co/bitstreams/0946f903-8b90-410e-87ef-691733a2348c/downloadaaf9e647a355ed43f23d9c9ef6b24ce7MD51TEXTTorres-Morales2014_Article_Th1AndTh2ImmuneResponseToP30An.pdf.txtTorres-Morales2014_Article_Th1AndTh2ImmuneResponseToP30An.pdf.txtExtracted texttext/plain31621https://repository.urosario.edu.co/bitstreams/f80718fe-9a68-402f-8d5b-0ed15674c3b3/download8297aa213d3c9896a1c0c823da1d0693MD52THUMBNAILTorres-Morales2014_Article_Th1AndTh2ImmuneResponseToP30An.pdf.jpgTorres-Morales2014_Article_Th1AndTh2ImmuneResponseToP30An.pdf.jpgGenerated Thumbnailimage/jpeg4659https://repository.urosario.edu.co/bitstreams/19cdf233-d9a5-49c8-9d21-da20fb538855/downloadfa608c1f61adf035dbf072e3504a40d1MD5310336/22571oai:repository.urosario.edu.co:10336/225712022-05-02 07:37:15.941733https://repository.urosario.edu.coRepositorio institucional EdocURedocur@urosario.edu.co |