Metabolomic profile in patients with systemic sclerosis versus healthy subjects and its association with disease phenotypes

Introducción: La esclerosis sistémica (ES) es una enfermedad autoinmune crónica con una etiología poco clara. Se caracterizada por un curso impredecible, alta morbilidad y un mayor riesgo de mortalidad. Según estudios recientes, la identificación de rutas metabólicas alteradas puede ser crucial para...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2023
Institución:
Universidad del Rosario
Repositorio:
Repositorio EdocUR - U. Rosario
Idioma:
eng
OAI Identifier:
oai:repository.urosario.edu.co:10336/43019
Acceso en línea:
https://repository.urosario.edu.co/handle/10336/43019
Palabra clave:
Esclerosis sistémica
Metabolómica
Vías metabólicas
Aminoácidos
Systemic sclerosis
Metabolomics
Metabolic pathways
Amino acids
Rights
License
Attribution-NonCommercial-ShareAlike 4.0 International
id EDOCUR2_1591a49dbe5c1d8011d4db517cca9d4f
oai_identifier_str oai:repository.urosario.edu.co:10336/43019
network_acronym_str EDOCUR2
network_name_str Repositorio EdocUR - U. Rosario
repository_id_str
dc.title.none.fl_str_mv Metabolomic profile in patients with systemic sclerosis versus healthy subjects and its association with disease phenotypes
dc.title.TranslatedTitle.none.fl_str_mv Perfil metabolómico en pacientes con esclerosis sistémica versus sujetos sanos y su asociación con los fenotipos de la enfermedad
title Metabolomic profile in patients with systemic sclerosis versus healthy subjects and its association with disease phenotypes
spellingShingle Metabolomic profile in patients with systemic sclerosis versus healthy subjects and its association with disease phenotypes
Esclerosis sistémica
Metabolómica
Vías metabólicas
Aminoácidos
Systemic sclerosis
Metabolomics
Metabolic pathways
Amino acids
title_short Metabolomic profile in patients with systemic sclerosis versus healthy subjects and its association with disease phenotypes
title_full Metabolomic profile in patients with systemic sclerosis versus healthy subjects and its association with disease phenotypes
title_fullStr Metabolomic profile in patients with systemic sclerosis versus healthy subjects and its association with disease phenotypes
title_full_unstemmed Metabolomic profile in patients with systemic sclerosis versus healthy subjects and its association with disease phenotypes
title_sort Metabolomic profile in patients with systemic sclerosis versus healthy subjects and its association with disease phenotypes
dc.contributor.advisor.none.fl_str_mv Rodríguez Velandia, Yhojan Alexis
Monsalve Carmona, Diana Marcela
dc.contributor.gruplac.none.fl_str_mv Centro de Estudio de Enfermedades Autoinmunes - CREA
dc.subject.none.fl_str_mv Esclerosis sistémica
Metabolómica
Vías metabólicas
Aminoácidos
topic Esclerosis sistémica
Metabolómica
Vías metabólicas
Aminoácidos
Systemic sclerosis
Metabolomics
Metabolic pathways
Amino acids
dc.subject.keyword.none.fl_str_mv Systemic sclerosis
Metabolomics
Metabolic pathways
Amino acids
description Introducción: La esclerosis sistémica (ES) es una enfermedad autoinmune crónica con una etiología poco clara. Se caracterizada por un curso impredecible, alta morbilidad y un mayor riesgo de mortalidad. Según estudios recientes, la identificación de rutas metabólicas alteradas puede ser crucial para comprender la fisiopatología de la enfermedad. Por lo tanto, la metabolómica podría desempeñar un papel importante en una mejor comprensión de estos mecanismos patogénicos, así como una posible herramienta para identificar fenotipos de la enfermedad. Objetivo: Evaluar las diferencias en el perfil metabolómico de los metabolitos derivados de aminoácidos medidos en muestras de suero de pacientes con ES en comparación con sujetos sanos y su asociación con los diferentes fenotipos de la enfermedad. Metodología: Se realizó un estudio de casos y controles. Se midió la concentración sérica de metabolitos derivados de aminoácidos de pacientes con ES (n=38) en comparación con un grupo de control (n=38). Las diferencias de metabolitos se analizaron mediante cromatografía de gases acoplada a espectrometría de masas con analizador de tiempo de vuelo (GC/MS-QTOF). Resultados: El análisis de muestras de suero de 13 metabolitos derivados de aminoácidos reveló una regulación negativa significativa de N-etilglicina en pacientes con ES en comparación con controles sanos (p= 0,048). Asimismo, un cambio >1 de L-cisteína, DL-isoleucina, Sarcosina, L-prolina, L-leucina, L-valina, Hidroxi-L-prolina, Ala-ala, L-alanina y L-serina mostró una tendencia a la baja en pacientes con ES en comparación con sujetos sanos; sin embargo este cambio no fue estadísticamente significativo. Además, nuestros resultados demostraron un aumento significativo en los metabolitos Ala-Ala y L-serina (p = 0,032) en la ES difusa y una disminución significativa en DL-isoleucina, L-leucina y L-valina en pacientes con enfermedad pulmonar intersticial. Conclusión: Estos hallazgos arrojan luz sobre los perfiles y vías metabólicas alteradas de los individuos con ES, que pueden ofrecer dianas terapéuticas novedosas y diagnósticos dirigidos a la enfermedad.
publishDate 2023
dc.date.created.none.fl_str_mv 2023-12-31
dc.date.accessioned.none.fl_str_mv 2024-07-15T16:45:25Z
dc.date.available.none.fl_str_mv 2024-07-15T16:45:25Z
dc.type.none.fl_str_mv bachelorThesis
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.document.none.fl_str_mv Trabajo de grado
dc.type.spa.none.fl_str_mv Trabajo de grado
dc.identifier.uri.none.fl_str_mv https://repository.urosario.edu.co/handle/10336/43019
url https://repository.urosario.edu.co/handle/10336/43019
dc.language.iso.none.fl_str_mv eng
language eng
dc.rights.*.fl_str_mv Attribution-NonCommercial-ShareAlike 4.0 International
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.acceso.none.fl_str_mv Abierto (Texto Completo)
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
rights_invalid_str_mv Attribution-NonCommercial-ShareAlike 4.0 International
Abierto (Texto Completo)
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://purl.org/coar/access_right/c_abf2
dc.format.extent.none.fl_str_mv 89 pp
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad del Rosario
Universidad CES. Facultad de Medicina
dc.publisher.department.none.fl_str_mv Escuela de Medicina y Ciencias de la Salud
dc.publisher.program.none.fl_str_mv Especialización en Epidemiología
publisher.none.fl_str_mv Universidad del Rosario
Universidad CES. Facultad de Medicina
institution Universidad del Rosario
dc.source.bibliographicCitation.none.fl_str_mv Smith V, Scirè CA, Talarico R, Airo P, Alexander T, Allanore Y, et al. Systemic sclerosis: state of the art on clinical practice guidelines. RMD Open [Internet]. 2019;4(Suppl 1):e000782–e000782. Available from: http://rmdopen.bmj.com/content/4/Suppl_1/e000782.abstract
Elhai M, Meune C, Avouac J, Kahan A, Allanore Y. Trends in mortality in patients with systemic sclerosis over 40 years: a systematic review and meta-analysis of cohort studies. Rheumatology. 2012;51(6):1017–26.
Rubio-Rivas M, Royo C, Simeón CP, Corbella X, Fonollosa V. Mortality and survival in systemic sclerosis: Systematic review and meta-analysis. Semin Arthritis Rheum. 2014 Oct;44(2):208–19.
Elhai M, Meune C, Boubaya M, Avouac J, Hachulla E, Balbir-Gurman A, et al. Mapping and predicting mortality from systemic sclerosis. Ann Rheum Dis. 2017 Nov;76(11):1897–905.
Hao Y, Hudson M, Baron M, Carreira P, Stevens W, Rabusa C, et al. Early Mortality in a Multinational Systemic Sclerosis Inception Cohort. Arthritis & Rheumatology. 2017 May 6;69(5):1067–77.
Kang GW, Jung KH, Lee YS, Kim HJ, Yoon DY, Lee SH, et al. Incidence, prevalence, mortality and causes of death in systemic sclerosis in Korea: a nationwide population‐based study. British Journal of Dermatology. 2018;178(1).
Tyndall AJ, Bannert B, Vonk M, Airo P, Cozzi F, Carreira PE, et al. Causes and risk factors for death in systemic sclerosis: a study from the EULAR Scleroderma Trials and Research (EUSTAR) database. Ann Rheum Dis. 2010 Oct 1;69(10):1809–15.
Bairkdar M, Rossides M, Westerlind H, Hesselstrand R, Arkema E V, Holmqvist M. Incidence and prevalence of systemic sclerosis globally: a comprehensive systematic review and meta-analysis. Rheumatology. 2021 Jul 1;60(7):3121–33.
Fan Y, Bender S, Shi W, Zoz D. Incidence and prevalence of systemic sclerosis and systemic sclerosis with interstitial lung disease in the United States. J Manag Care Spec Pharm. 2020 Dec;26(12):1539–47
Kuwana M, Saito A, Sakamoto W, Raabe C, Saito K. Incidence Rate and Prevalence of Systemic Sclerosis and Systemic Sclerosis-Associated Interstitial Lung Disease in Japan: Analysis Using Japanese Claims Databases. Adv Ther. 2022 May 22;39(5):2222–35.
Fernández-Ávila DG, Bernal-Macías S, Gutiérrez JM, Rincón DN, Rosselli D. Prevalence of systemic sclerosis in Colombia: Data from the National Health Registry 2012–2016. J Scleroderma Relat Disord. 2020;5(2):137–42.
Firestein GS. Kelley & Firestein’s Textbook of Rheumatology. 11th ed. Philadelphia, PA: Elsevier; 2020. 1473-1498.e4 p.
Denton CP, Khanna D. Systemic sclerosis. The Lancet. 2017 Oct;390(10103):1685–99.
Allanore Y, Simms R, Distler O, Trojanowska M, Pope J, Denton CP, et al. Systemic sclerosis. Nat Rev Dis Primers [Internet]. 2015;1(1):15002. Available from: https://doi.org/10.1038/nrdp.2015.2
Resolución 5265 de 2018, 27 de noviembre, Por la cual se actualiza el listado de enfermedades huérfanas y se dictan otras disposiciones (Diario Oficial No. 50.791, de 28 de noviembre de 2018). .
Manchester M, Anand A. Metabolomics: Strategies to Define the Role of Metabolism in Virus Infection and Pathogenesis. Adv Virus Res. 2017;98:57–81.
Amaro A, Petretto A, Angelini G, Pfeffer U. Advancements in Omics Sciences. Translational Medicine: Tools and Techniques. 2016;67–108.
Guijas C, Montenegro-Burke JR, Warth B, Spilker ME, Siuzdak G. Metabolomics activity screening for identifying metabolites that modulate phenotype. Nat Biotechnol. 2018;36(4):316–20.
Ellis DI, Dunn WB, Griffin JL, Allwood JW, Goodacre R. Metabolic fingerprinting as a diagnostic tool. Pharmacogenomics. 2007 Sep;8(9):1243–66.
Pattanaik D, Brown M, Postlethwaite BC, Postlethwaite AE. Pathogenesis of Systemic Sclerosis. Front Immunol. 2015 Jun 8;6.
Barnes J, Mayes MD. Epidemiology of systemic sclerosis. Curr Opin Rheumatol. 2012 Mar;24(2):165–70.
Bergamasco A, Hartmann N, Wallace L, Verpillat P. Epidemiology of systemic sclerosis and systemic sclerosis-associated interstitial lung disease. Clin Epidemiol. 2019 Apr;Volume 11:257–73.
Hughes M, Pauling JD, Armstrong-James L, Denton CP, Galdas P, Flurey C. Gender-related differences in systemic sclerosis. Autoimmun Rev. 2020 Apr;19(4):102494.
Abbot S, Bossingham D, Proudman S, de Costa C, Ho-Huynh A. Risk factors for the development of systemic sclerosis: a systematic review of the literature. Rheumatol Adv Pract [Internet]. 2018;2(2):1–12. Available from: https://academic.oup.com/rheumap/article/2/2/rky041/5126834
Coral-Alvarado P, Pardo AL, Castaño-Rodriguez N, Rojas-Villarraga A, Anaya JM. Systemic sclerosis: A world wide global analysis. Clin Rheumatol. 2009 Jul 11;28(7):757–65.
Jerjen R, Nikpour M, Krieg T, Denton CP, Saracino AM. Systemic sclerosis in adults. Part I: Clinical features and pathogenesis. J Am Acad Dermatol. 2022 Nov;87(5):937–54.
Thoreau B, Chaigne B, Renaud A, Mouthon L. Pathophysiology of systemic sclerosis. Presse Med. 2021 Apr;50(1):104087.
Hua-Huy T, Dinh-Xuan AT. Cellular and molecular mechanisms in the pathophysiology of systemic sclerosis. Pathologie Biologie. 2015 Apr;63(2):61–8.
Rubio-Rivas M, Moreno R, Corbella X. Occupational and environmental scleroderma. Systematic review and meta-analysis. Clin Rheumatol. 2017 Mar 14;36(3):569–82.
Moroncini G, Mori S, Tonnini C, Gabrielli A. Role of viral infections in the etiopathogenesis of systemic sclerosis. Clin Exp Rheumatol. 2013;31(2 Suppl 76):3–7.
Chairta P, Nicolaou P, Christodoulou K. Genomic and genetic studies of systemic sclerosis: A systematic review. Hum Immunol. 2017 Feb;78(2):153–65.
Orvain C, Assassi S, Avouac J, Allanore Y. Systemic sclerosis pathogenesis: contribution of recent advances in genetics. Curr Opin Rheumatol. 2020 Nov;32(6):505–14.
Asano Y. Systemic sclerosis. J Dermatol [Internet]. 2018 Feb 1 [cited 2023 Mar 1];45(2):128–38. Available from: https://pubmed.ncbi.nlm.nih.gov/29226387/
Truchetet ME, Brembilla NC, Chizzolini C. Current Concepts on the Pathogenesis of Systemic Sclerosis. Clin Rev Allergy Immunol. 2021 Sep 6;64(3):262–83.
Brown M, O’Reilly S. The immunopathogenesis of fibrosis in systemic sclerosis. Clin Exp Immunol. 2019 Feb 18;195(3):310–21.
Ihn H. Autocrine TGF-β signaling in the pathogenesis of systemic sclerosis. J Dermatol Sci. 2008 Feb;49(2):103–13.
Ferreli C, Gasparini G, Parodi A, Cozzani E, Rongioletti F, Atzori L. Cutaneous Manifestations of Scleroderma and Scleroderma-Like Disorders: a Comprehensive Review. Clin Rev Allergy Immunol. 2017 Dec 16;53(3):306–36.
Jinnin M. Mechanisms of skin fibrosis in systemic sclerosis. J Dermatol. 2010 Jan;37(1):11–25.
Bolognia J, Schaffer J, Duncan K, Ko C. Systemic Sclerosis and Sclerodermoid Disorders. In: Dermatology Essentials. 2nd ed. Elsevier Inc; 2022. p. 326–37
Khanna D, Furst DE, Clements PJ, Allanore Y, Baron M, Czirjak L, et al. Standardization of the Modified Rodnan Skin Score for Use in Clinical Trials of Systemic Sclerosis. J Scleroderma Relat Disord. 2017 Jan 2;2(1):11–8.
Chandra A, Sil A, Hati A, Shah KA. Salt and pepper appearance in systemic sclerosis. QJM: An International Journal of Medicine. 2022 Jan 21;115(1):41–2.
Herrick AL. Systemic sclerosis: clinical features and management. Medicine. 2018;46(2):131–9.
Haque A, Hughes M. Raynaud’s phenomenon. Clinical Medicine. 2020 Nov 16;20(6):580–7.
Temprano KK. A Review of Raynaud’s Disease. Mo Med. 2016;113(2):123–6.
Nassar M, Ghernautan V, Nso N, Nyabera A, Castillo FC, Tu W, et al. Gastrointestinal involvement in systemic sclerosis: An updated review. Medicine. 2022 Nov 11;101(45):e31780.
Shreiner AB, Murray C, Denton C, Khanna D. Gastrointestinal manifestations of systemic sclerosis. J Scleroderma Relat Disord. 2016 Sep 18;1(3):247–56.
Tandaipan JL, Castellví I. Systemic sclerosis and gastrointestinal involvement. Revista Colombiana de Reumatología (English Edition). 2020 Apr;27:44–54.
Perelas A, Silver RM, Arrossi A V, Highland KB. Systemic sclerosis-associated interstitial lung disease. Lancet Respir Med. 2020 Mar;8(3):304–20.
Morrisroe K, Stevens W, Huq M, Prior D, Sahhar J, Ngian GS, et al. Survival and quality of life in incident systemic sclerosis-related pulmonary arterial hypertension. Arthritis Res Ther. 2017 Dec 2;19(1):122
Aurangabadkar GM, Aurangabadkar MY, Choudhary SS, Ali SN, Khan SM, Jadhav US. Pulmonary Manifestations in Rheumatological Diseases. Cureus. 2022 Sep 26;
Lechartier B, Humbert M. Pulmonary arterial hypertension in systemic sclerosis. Presse Med. 2021 Apr;50(1):104062.
Launay D, Sobanski V, Hachulla E, Humbert M. Pulmonary hypertension in systemic sclerosis: different phenotypes. European Respiratory Review. 2017 Sep 30;26(145):170056.
Bruni C, Ross L. Cardiac involvement in systemic sclerosis: Getting to the heart of the matter. Best Pract Res Clin Rheumatol. 2021 Sep;35(3):101668.
Lambova S. Cardiac manifestations in systemic sclerosis. World J Cardiol. 2014;6(9):993.
Medina YF, Medina Torres D. Alteraciones renales en la esclerodermia. Revista Colombiana de Reumatología. 2020 Dec;27:55–61.
Young A, Khanna D. Systemic Sclerosis. JCR Journal of Clinical Rheumatology. 2015 Apr;21(3):149–55.
Desbois AC, Cacoub P. Systemic sclerosis: An update in 2016. Autoimmun Rev. 2016 May;15(5):417–26.
Adigun R, Goyal A, Hariz A. Systemic Sclerosis. StatPearls [Internet]. 2022 May 8 [cited 2023 Mar 29]; Available from: https://www.ncbi.nlm.nih.gov/books/NBK430875/
Boin F, Wigley FM. Clinical features and treatment of scleroderma . In: Firestein GS, Budd RC, Gabriel SE, editors. Kelley’s Textbook of Rheumatology. 9th ed. Philadelphia: Elsevier/Saunders; 2012. p. 1366–403
Kowalska-Kępczyńska A. Systemic Scleroderma—Definition, Clinical Picture and Laboratory Diagnostics. J Clin Med. 2022 Apr 20;11(9):2299
Herrick AL, Assassi S, Denton CP. Skin involvement in early diffuse cutaneous systemic sclerosis: an unmet clinical need. Nat Rev Rheumatol [Internet]. 2022 May 1 [cited 2023 Mar 29];18(5):276–85. Available from: https://pubmed.ncbi.nlm.nih.gov/35292731/
Poormoghim H, Lucas M, Fertig N, Medsger Jr. TA. Systemic sclerosis sine scleroderma: Demographic, clinical, and serologic features and survival in forty-eight patients. Arthritis Rheum. 2000 Feb;43(2):444.
Chong WH, Saha BK, Beegle S. Chronic dyspnea with Raynaud’s phenomenon and elevated ANA: A diagnosis of systemic sclerosis sine scleroderma. Am J Med Sci [Internet]. 2023 Feb 1 [cited 2023 Mar 30];365(2):198–204. Available from: https://pubmed.ncbi.nlm.nih.gov/35276077/
Kucharz E, Kopeć-Mędrek M. Systemic sclerosis sine scleroderma. Advances in Clinical and Experimental Medicine. 2017 Aug 31;26(5):875–80.
Masi AT. Preliminary criteria for the classification of systemic sclerosis (scleroderma). Subcommittee for scleroderma criteria of the American Rheumatism Association Diagnostic and Therapeutic Criteria Committee. Arthritis Rheum [Internet]. 1980 [cited 2023 Mar 28];23(5):581–90. Available from: https://pubmed.ncbi.nlm.nih.gov/7378088/
Carwile LeRoy E, Black C, Fleischmajer R, Jablonska S, Krieg T, Medsger TA, et al. Scleroderma (systemic sclerosis): Classification, subsets and pathogenesis. Journal of Rheumatology [Internet]. 1988;15(2):202–5. Available from: https://www.taylorfrancis.com/chapters/edit/10.3109/9780203214237-95/scleroderma-systemic-sclerosis-classification-subsets-pathogenesis
LeRoy EC, Medsger J. Criteria for the classification of early systemic sclerosis. J Rheumatol. 2001;28.
Van Den Hoogen F, Khanna D, Fransen J, Johnson SR, Baron M, Tyndall A, et al. 2013 classification criteria for systemic sclerosis: an American college of rheumatology/European league against rheumatism collaborative initiative. Ann Rheum Dis [Internet]. 2013;72(11):1747–55. Available from: https://ard.bmj.com/content/72/11/1747
Bukiri H, Volkmann ER. Current advances in the treatment of systemic sclerosis. Curr Opin Pharmacol. 2022 Jun;64:102211.
Herrick AL. Advances in the Treatment of Systemic Sclerosis. Rheumatology. 2022;1(2):61.
Ellis DI, Dunn WB, Griffin JL, Allwood JW, Goodacre R. Metabolic fingerprinting as a diagnostic tool. Pharmacogenomics. 2007 Sep;8(9):1243–66.
Nalbantoglu S. Metabolomics: Basic Principles and Strategies. In: Molecular Medicine. IntechOpen; 2019.
Yu X, Feng G, Zhang Q, Cao J. From Metabolite to Metabolome: Metabolomics Applications in Plasmodium Research. Front Microbiol. 2021 Jan 11;11.
Chen HH, Tseng YJ, Wang SY, Tsai YS, Chang CS, Kuo TC, et al. The metabolome profiling and pathway analysis in metabolic healthy and abnormal obesity. International Journal of Obesity 2015 39:8 [Internet]. 2015 Apr 24 [cited 2022 Oct 4];39(8):1241–8. Available from: https://www.nature.com/articles/ijo201565
Muthubharathi BC, Gowripriya T, Balamurugan K. Metabolomics: small molecules that matter more. Mol Omics [Internet]. 2021 Apr 1 [cited 2022 Oct 4];17(2):210–29. Available from: https://pubmed.ncbi.nlm.nih.gov/33598670/
Guijas C, Montenegro-Burke JR, Warth B, Spilker ME, Siuzdak G. Metabolomics activity screening for identifying metabolites that modulate phenotype. Nat Biotechnol. 2018 Apr 5;36(4):316–20.
Patti GJ, Yanes O, Siuzdak G. Metabolomics: the apogee of the omics trilogy. Nat Rev Mol Cell Biol. 2012 Apr 22;13(4):263–9.
Johnson CH, Ivanisevic J, Siuzdak G. Metabolomics: beyond biomarkers and towards mechanisms. Nat Rev Mol Cell Biol. 2016 Jul 16;17(7):451–9.
Tsoukalas D, Alegakis A, Fragkiadaki P, Papakonstantinou E, Nikitovic D, Karataraki A, et al. Application of metabolomics: Focus on the quantification of organic acids in healthy adults. Int J Mol Med. 2017 Jul;40(1):112–20.
Kang J, Zhu L, Lu J, Zhang X. Application of metabolomics in autoimmune diseases: Insight into biomarkers and pathology. J Neuroimmunol. 2015 Feb 15;279(C):25–32.
Zhu H, Chen W, Liu D, Luo H. The role of metabolism in the pathogenesis of systemic sclerosis. Metabolism [Internet]. 2019 Apr 1 [cited 2022 Oct 6];93:44–51. Available from: https://pubmed.ncbi.nlm.nih.gov/30586574/
Morales-González V, Galeano-Sánchez D, Covaleda-Vargas JE, Rodriguez Y, Monsalve DM, Pardo-Rodriguez D, et al. Metabolic fingerprinting of systemic sclerosis: a systematic review. Front Mol Biosci. 2023 Aug 8;10.
Smolenska Z, Zabielska-Kaczorowska M, Wojteczek A, Kutryb-Zajac B, Zdrojewski Z. Metabolic Pattern of Systemic Sclerosis: Association of Changes in Plasma Concentrations of Amino Acid-Related Compounds With Disease Presentation. Front Mol Biosci. 2020 Oct 15;7.
Szamosi S, Csiki Z, Szomják E, Szolnoki E, Szőke G, Szekanecz Z, et al. Plasma Homocysteine Levels, The Prevalence of Methylenetetrahydrofolate Reductase Gene C677T Polymorphism and Macrovascular Disorders in Systemic Sclerosis: Risk Factors for Accelerated Macrovascular Damage? Clin Rev Allergy Immunol. 2009 Jun 18;36(2–3):145–9.
Motegi S ichiro, Toki S, Yamada K, Uchiyama A, Ishikawa O. Elevated plasma homocysteine level is possibly associated with skin sclerosis in a series of Japanese patients with systemic sclerosis. J Dermatol. 2014 Sep;n/a-n/a.
Bögl T, Mlynek F, Himmelsbach M, Sepp N, Buchberger W, Geroldinger-Simić M. Plasma Metabolomic Profiling Reveals Four Possibly Disrupted Mechanisms in Systemic Sclerosis. Biomedicines 2022, Vol 10, Page 607 [Internet]. 2022 Mar 4 [cited 2022 Oct 6];10(3):607. Available from: https://www.mdpi.com/2227-9059/10/3/607/htm
Fernández-Ochoa Á, Quirantes-Piné R, Borrás-Linares I, Gemperline D, Alarcón Riquelme ME, Beretta L, et al. Urinary and plasma metabolite differences detected by HPLC-ESI-QTOF-MS in systemic sclerosis patients. J Pharm Biomed Anal. 2019 Jan;162:82–90.
Geroldinger-Simić M, Bögl T, Himmelsbach M, Sepp N, Buchberger W. Changes in Plasma Phospholipid Metabolism Are Associated with Clinical Manifestations of Systemic Sclerosis. Diagnostics. 2021 Nov 15;11(11):2116.
Sobolewski P, Maślińska M, Wieczorek M, Łagun Z, Malewska A, Roszkiewicz M, et al. Systemic sclerosis – multidisciplinary disease: clinical features and treatment. Rheumatology. 2019 Sep 24;57(4):221–33.
Zhang A, Sun H, Yan G, Wang P, Wang X. Metabolomics for Biomarker Discovery: Moving to the Clinic. Biomed Res Int. 2015;2015:354671.
Akram M, Asif M, Uzair M, Naveed A, Madni MA, Ali Shah DS, et al. Amino acids: A review article. Journal of Medicinal Plants Research. 2011 Sep 9;5:3997–4000.
The Human Metabolome Database - Metabocard for N-Ethylglycine.
Maab H, Mustafa F, Arshad Ali S. Anti-inflammatory aspects of Lidocaine: a neglected therapeutic stance for COVID-19. Heart & Lung. 2020 Nov;49(6):877–8.
Werdehausen R, Kremer D, Brandenburger T, Schlösser L, Jadasz J, Küry P, et al. Lidocaine Metabolites Inhibit Glycine Transporter 1. Anesthesiology. 2012 Jan 1;116(1):147–58.
Foster E, Wildner H, Tudeau L, Haueter S, Ralvenius WT, Jegen M, et al. Targeted Ablation, Silencing, and Activation Establish Glycinergic Dorsal Horn Neurons as Key Components of a Spinal Gate for Pain and Itch. Neuron. 2015 Mar;85(6):1289–304.
Armbruster A, Neumann E, Kötter V, Hermanns H, Werdehausen R, Eulenburg V. The GlyT1 Inhibitor Bitopertin Ameliorates Allodynia and Hyperalgesia in Animal Models of Neuropathic and Inflammatory Pain. Front Mol Neurosci. 2018 Jan 10;10.
Werdehausen R, Mittnacht S, Bee LA, Minett MS, Armbruster A, Bauer I, et al. The lidocaine metabolite N-ethylglycine has antinociceptive effects in experimental inflammatory and neuropathic pain. Pain. 2015 Sep;156(9):1647–59.
Hayashi K, Jutabha P, Endou H, Sagara H, Anzai N. LAT1 Is a Critical Transporter of Essential Amino Acids for Immune Reactions in Activated Human T Cells. The Journal of Immunology. 2013 Oct 15;191(8):4080–5.
Wang W, Zou W. Amino Acids and Their Transporters in T Cell Immunity and Cancer Therapy. Mol Cell. 2020 Nov;80(3):384–95.
Kono M, Yoshida N, Tsokos GC. Amino Acid Metabolism in Lupus. Front Immunol. 2021 Feb 22;12.
Holeček M. Serine Metabolism in Health and Disease and as a Conditionally Essential Amino Acid. Nutrients. 2022 May 9;14(9):1987.
Silvagno F, Vernone A, Pescarmona GP. The Role of Glutathione in Protecting against the Severe Inflammatory Response Triggered by COVID-19. Antioxidants. 2020 Jul 16;9(7):624.
Hristov BD. The Role of Glutathione Metabolism in Chronic Illness Development and Its Potential Use as a Novel Therapeutic Target. Cureus. 2022 Sep 28;
Hristov BD. The Role of Glutathione Metabolism in Chronic Illness Development and Its Potential Use as a Novel Therapeutic Target. Cureus. 2022 Sep 28;
Hristov BD. The Role of Glutathione Metabolism in Chronic Illness Development and Its Potential Use as a Novel Therapeutic Target. Cureus. 2022 Sep 28;
Karna E, Szoka L, Huynh TYL, Palka JA. Proline-dependent regulation of collagen metabolism. Cellular and Molecular Life Sciences. 2020 May 18;77(10):1911–8.
Karna E, Szoka L, Huynh TYL, Palka JA. Proline-dependent regulation of collagen metabolism. Cellular and Molecular Life Sciences. 2020 May 18;77(10):1911–8.
Wang W, Zou W. Amino Acids and Their Transporters in T Cell Immunity and Cancer Therapy. Mol Cell. 2020 Nov;80(3):384–95.
Ron-Harel N, Ghergurovich JM, Notarangelo G, LaFleur MW, Tsubosaka Y, Sharpe AH, et al. T Cell Activation Depends on Extracellular Alanine. Cell Rep. 2019 Sep;28(12):3011-3021.e4.
Ron-Harel N, Ghergurovich JM, Notarangelo G, LaFleur MW, Tsubosaka Y, Sharpe AH, et al. T Cell Activation Depends on Extracellular Alanine. Cell Rep. 2019 Sep;28(12):3011-3021.e4.
Bruni C, Guignabert C, Manetti M, Cerinic MM, Humbert M. The multifaceted problem of pulmonary arterial hypertension in systemic sclerosis. Lancet Rheumatol [Internet]. 2021 Feb 1 [cited 2022 Nov 21];3(2):e149–59. Available from: http://www.thelancet.com/article/S2665991320303568/fulltext
Blake M, Prisco SZ, Prins KW. Abstract 14967: Branching Out: Disrupted Branched Chain Amino Acid Metabolism Exacerbates Pulmonary Arterial Hypertension. Circulation. 2023 Nov 7;148(Suppl_1).
Zhenyukh O, González‐Amor M, Rodrigues‐Diez RR, Esteban V, Ruiz‐Ortega M, Salaices M, et al. Branched‐chain amino acids promote endothelial dysfunction through increased reactive oxygen species generation and inflammation. J Cell Mol Med. 2018 Oct 31;22(10):4948–62
Zhenyukh O, Civantos E, Ruiz-Ortega M, Sánchez MS, Vázquez C, Peiró C, et al. High concentration of branched-chain amino acids promotes oxidative stress, inflammation and migration of human peripheral blood mononuclear cells via mTORC1 activation. Free Radic Biol Med. 2017 Mar;104:165–77.
Lee HL, Lee J, Cha JH, Cho S, Sung PS, Hur W, et al. Anti-fibrotic effects of branched-chain amino acids on hepatic stellate cells. Korean J Intern Med. 2022 Jan 1;37(1):53–62.
Kang J, Zhu L, Lu J, Zhang X. Application of metabolomics in autoimmune diseases: Insight into biomarkers and pathology. J Neuroimmunol. 2015 Feb;279:25–32.
Zhou J, Zhong L. Applications of liquid chromatography-mass spectrometry based metabolomics in predictive and personalized medicine. Front Mol Biosci. 2022 Nov 3;9.
dc.source.instname.none.fl_str_mv instname:Universidad del Rosario
dc.source.reponame.none.fl_str_mv reponame:Repositorio Institucional EdocUR
bitstream.url.fl_str_mv https://repository.urosario.edu.co/bitstreams/495cb37b-9e7c-4c89-8a41-d76901d4eb0e/download
https://repository.urosario.edu.co/bitstreams/1aaae20b-5f85-4c5a-9cbd-db2a7436be10/download
https://repository.urosario.edu.co/bitstreams/94834938-d291-4726-a27d-5eb5499b7012/download
https://repository.urosario.edu.co/bitstreams/573d19b2-30d7-44dc-907f-23d2bfd736f4/download
https://repository.urosario.edu.co/bitstreams/8fc30b00-8831-4424-ab21-ecfd20024968/download
bitstream.checksum.fl_str_mv b2825df9f458e9d5d96ee8b7cd74fde6
5b1f74ad1c19b85781911b2d36022006
5643bfd9bcf29d560eeec56d584edaa9
d4227c52670cfe151e3fdc088332c22e
e58d0c7981e79da7271a50b7847e222e
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio institucional EdocUR
repository.mail.fl_str_mv edocur@urosario.edu.co
_version_ 1818107009695744000
spelling Rodríguez Velandia, Yhojan Alexis1022961735-1Monsalve Carmona, Diana Marcela53167288600Centro de Estudio de Enfermedades Autoinmunes - CREAMorales González, Victoria IsabelEspecialista en Epidemiología (en Convenio con el CES)EspecializaciónFull timeee82b857-49ed-4e8a-9009-74ea6ae58f11-12024-07-15T16:45:25Z2024-07-15T16:45:25Z2023-12-31Introducción: La esclerosis sistémica (ES) es una enfermedad autoinmune crónica con una etiología poco clara. Se caracterizada por un curso impredecible, alta morbilidad y un mayor riesgo de mortalidad. Según estudios recientes, la identificación de rutas metabólicas alteradas puede ser crucial para comprender la fisiopatología de la enfermedad. Por lo tanto, la metabolómica podría desempeñar un papel importante en una mejor comprensión de estos mecanismos patogénicos, así como una posible herramienta para identificar fenotipos de la enfermedad. Objetivo: Evaluar las diferencias en el perfil metabolómico de los metabolitos derivados de aminoácidos medidos en muestras de suero de pacientes con ES en comparación con sujetos sanos y su asociación con los diferentes fenotipos de la enfermedad. Metodología: Se realizó un estudio de casos y controles. Se midió la concentración sérica de metabolitos derivados de aminoácidos de pacientes con ES (n=38) en comparación con un grupo de control (n=38). Las diferencias de metabolitos se analizaron mediante cromatografía de gases acoplada a espectrometría de masas con analizador de tiempo de vuelo (GC/MS-QTOF). Resultados: El análisis de muestras de suero de 13 metabolitos derivados de aminoácidos reveló una regulación negativa significativa de N-etilglicina en pacientes con ES en comparación con controles sanos (p= 0,048). Asimismo, un cambio >1 de L-cisteína, DL-isoleucina, Sarcosina, L-prolina, L-leucina, L-valina, Hidroxi-L-prolina, Ala-ala, L-alanina y L-serina mostró una tendencia a la baja en pacientes con ES en comparación con sujetos sanos; sin embargo este cambio no fue estadísticamente significativo. Además, nuestros resultados demostraron un aumento significativo en los metabolitos Ala-Ala y L-serina (p = 0,032) en la ES difusa y una disminución significativa en DL-isoleucina, L-leucina y L-valina en pacientes con enfermedad pulmonar intersticial. Conclusión: Estos hallazgos arrojan luz sobre los perfiles y vías metabólicas alteradas de los individuos con ES, que pueden ofrecer dianas terapéuticas novedosas y diagnósticos dirigidos a la enfermedad.Background: Systemic sclerosis (SSc) is a chronic autoimmune disease with an unclear etiology. It is characterized by an unpredictable course, high morbidity, and an increased risk of mortality. According to recent studies, identifying altered metabolic pathways may be crucial to comprehend the physiopathology of the disease. Thus, metabolomics might play an important role in a better understanding of these pathogenic mechanisms and a possible tool to identify disease phenotypes. Objective: To evaluate the differences in the metabolomic profile from amino acid-derived metabolites measured in serum samples of SSc patients compared to healthy subjects and their association with the different disease phenotypes. Methodology: A case-control study was conducted. The serum concentration of amino acid-derived metabolites from SSc patients (n=38) compared to a control group (n=38) was measured. The metabolite differences in serum samples were analyzed using gas chromatography coupled to quadruple time-of-flight mass spectrometry (GC/MS-QTOF). Results: The analysis of serum samples of 13 AA-derived metabolites revealed a significant downregulation of N-ethylglycine in SSc patients compared to healthy controls (p= 0,048). Likewise, fold change >1 of L-cysteine, DL-isoleucine, Sarcosine, L-proline, L-leucine, L-valine, Hydroxy-L-proline, Ala-ala, L-alanine, and L-serine showed a downward trend in patients with SSc compared to healthy subjects; however, this change was not statistically significant. Furthermore, our results demonstrated a significant increase in Ala-Ala and L-serine (p= 0,032) metabolites in the diffuse cutaneous SSc subtype, and a significant decrease in DL-isoleucine, L-leucine, and L-valine in SSc-interstitial lung disease patients. Conclusion: These findings shed light on SSc patients' altered metabolic profiles and pathways, which may offer novel targets for SSc-directed therapies and diagnostics.89 ppapplication/pdfhttps://repository.urosario.edu.co/handle/10336/43019engUniversidad del RosarioUniversidad CES. Facultad de MedicinaEscuela de Medicina y Ciencias de la SaludEspecialización en EpidemiologíaAttribution-NonCommercial-ShareAlike 4.0 InternationalAbierto (Texto Completo)EL AUTOR, manifiesta que la obra objeto de la presente autorización es original y la realizó sin violar o usurpar derechos de autor de terceros, por lo tanto la obra es de exclusiva autoría y tiene la titularidad sobre la misma. PARGRAFO: En caso de presentarse cualquier reclamación o acción por parte de un tercero en cuanto a los derechos de autor sobre la obra en cuestión, EL AUTOR, asumirá toda la responsabilidad, y saldrá en defensa de los derechos aquí autorizados; para todos los efectos la universidad actúa como un tercero de buena fe. EL AUTOR, autoriza a LA UNIVERSIDAD DEL ROSARIO, para que en los términos establecidos en la Ley 23 de 1982, Ley 44 de 1993, Decisión andina 351 de 1993, Decreto 460 de 1995 y demás normas generales sobre la materia, utilice y use la obra objeto de la presente autorización. -------------------------------------- POLITICA DE TRATAMIENTO DE DATOS PERSONALES. Declaro que autorizo previa y de forma informada el tratamiento de mis datos personales por parte de LA UNIVERSIDAD DEL ROSARIO para fines académicos y en aplicación de convenios con terceros o servicios conexos con actividades propias de la academia, con estricto cumplimiento de los principios de ley. Para el correcto ejercicio de mi derecho de habeas data cuento con la cuenta de correo habeasdata@urosario.edu.co, donde previa identificación podré solicitar la consulta, corrección y supresión de mis datos.http://creativecommons.org/licenses/by-nc-sa/4.0/http://purl.org/coar/access_right/c_abf2Smith V, Scirè CA, Talarico R, Airo P, Alexander T, Allanore Y, et al. Systemic sclerosis: state of the art on clinical practice guidelines. RMD Open [Internet]. 2019;4(Suppl 1):e000782–e000782. Available from: http://rmdopen.bmj.com/content/4/Suppl_1/e000782.abstractElhai M, Meune C, Avouac J, Kahan A, Allanore Y. Trends in mortality in patients with systemic sclerosis over 40 years: a systematic review and meta-analysis of cohort studies. Rheumatology. 2012;51(6):1017–26.Rubio-Rivas M, Royo C, Simeón CP, Corbella X, Fonollosa V. Mortality and survival in systemic sclerosis: Systematic review and meta-analysis. Semin Arthritis Rheum. 2014 Oct;44(2):208–19.Elhai M, Meune C, Boubaya M, Avouac J, Hachulla E, Balbir-Gurman A, et al. Mapping and predicting mortality from systemic sclerosis. Ann Rheum Dis. 2017 Nov;76(11):1897–905.Hao Y, Hudson M, Baron M, Carreira P, Stevens W, Rabusa C, et al. Early Mortality in a Multinational Systemic Sclerosis Inception Cohort. Arthritis & Rheumatology. 2017 May 6;69(5):1067–77.Kang GW, Jung KH, Lee YS, Kim HJ, Yoon DY, Lee SH, et al. Incidence, prevalence, mortality and causes of death in systemic sclerosis in Korea: a nationwide population‐based study. British Journal of Dermatology. 2018;178(1).Tyndall AJ, Bannert B, Vonk M, Airo P, Cozzi F, Carreira PE, et al. Causes and risk factors for death in systemic sclerosis: a study from the EULAR Scleroderma Trials and Research (EUSTAR) database. Ann Rheum Dis. 2010 Oct 1;69(10):1809–15.Bairkdar M, Rossides M, Westerlind H, Hesselstrand R, Arkema E V, Holmqvist M. Incidence and prevalence of systemic sclerosis globally: a comprehensive systematic review and meta-analysis. Rheumatology. 2021 Jul 1;60(7):3121–33.Fan Y, Bender S, Shi W, Zoz D. Incidence and prevalence of systemic sclerosis and systemic sclerosis with interstitial lung disease in the United States. J Manag Care Spec Pharm. 2020 Dec;26(12):1539–47Kuwana M, Saito A, Sakamoto W, Raabe C, Saito K. Incidence Rate and Prevalence of Systemic Sclerosis and Systemic Sclerosis-Associated Interstitial Lung Disease in Japan: Analysis Using Japanese Claims Databases. Adv Ther. 2022 May 22;39(5):2222–35.Fernández-Ávila DG, Bernal-Macías S, Gutiérrez JM, Rincón DN, Rosselli D. Prevalence of systemic sclerosis in Colombia: Data from the National Health Registry 2012–2016. J Scleroderma Relat Disord. 2020;5(2):137–42.Firestein GS. Kelley & Firestein’s Textbook of Rheumatology. 11th ed. Philadelphia, PA: Elsevier; 2020. 1473-1498.e4 p.Denton CP, Khanna D. Systemic sclerosis. The Lancet. 2017 Oct;390(10103):1685–99.Allanore Y, Simms R, Distler O, Trojanowska M, Pope J, Denton CP, et al. Systemic sclerosis. Nat Rev Dis Primers [Internet]. 2015;1(1):15002. Available from: https://doi.org/10.1038/nrdp.2015.2Resolución 5265 de 2018, 27 de noviembre, Por la cual se actualiza el listado de enfermedades huérfanas y se dictan otras disposiciones (Diario Oficial No. 50.791, de 28 de noviembre de 2018). .Manchester M, Anand A. Metabolomics: Strategies to Define the Role of Metabolism in Virus Infection and Pathogenesis. Adv Virus Res. 2017;98:57–81.Amaro A, Petretto A, Angelini G, Pfeffer U. Advancements in Omics Sciences. Translational Medicine: Tools and Techniques. 2016;67–108.Guijas C, Montenegro-Burke JR, Warth B, Spilker ME, Siuzdak G. Metabolomics activity screening for identifying metabolites that modulate phenotype. Nat Biotechnol. 2018;36(4):316–20.Ellis DI, Dunn WB, Griffin JL, Allwood JW, Goodacre R. Metabolic fingerprinting as a diagnostic tool. Pharmacogenomics. 2007 Sep;8(9):1243–66.Pattanaik D, Brown M, Postlethwaite BC, Postlethwaite AE. Pathogenesis of Systemic Sclerosis. Front Immunol. 2015 Jun 8;6.Barnes J, Mayes MD. Epidemiology of systemic sclerosis. Curr Opin Rheumatol. 2012 Mar;24(2):165–70.Bergamasco A, Hartmann N, Wallace L, Verpillat P. Epidemiology of systemic sclerosis and systemic sclerosis-associated interstitial lung disease. Clin Epidemiol. 2019 Apr;Volume 11:257–73.Hughes M, Pauling JD, Armstrong-James L, Denton CP, Galdas P, Flurey C. Gender-related differences in systemic sclerosis. Autoimmun Rev. 2020 Apr;19(4):102494.Abbot S, Bossingham D, Proudman S, de Costa C, Ho-Huynh A. Risk factors for the development of systemic sclerosis: a systematic review of the literature. Rheumatol Adv Pract [Internet]. 2018;2(2):1–12. Available from: https://academic.oup.com/rheumap/article/2/2/rky041/5126834Coral-Alvarado P, Pardo AL, Castaño-Rodriguez N, Rojas-Villarraga A, Anaya JM. Systemic sclerosis: A world wide global analysis. Clin Rheumatol. 2009 Jul 11;28(7):757–65.Jerjen R, Nikpour M, Krieg T, Denton CP, Saracino AM. Systemic sclerosis in adults. Part I: Clinical features and pathogenesis. J Am Acad Dermatol. 2022 Nov;87(5):937–54.Thoreau B, Chaigne B, Renaud A, Mouthon L. Pathophysiology of systemic sclerosis. Presse Med. 2021 Apr;50(1):104087.Hua-Huy T, Dinh-Xuan AT. Cellular and molecular mechanisms in the pathophysiology of systemic sclerosis. Pathologie Biologie. 2015 Apr;63(2):61–8.Rubio-Rivas M, Moreno R, Corbella X. Occupational and environmental scleroderma. Systematic review and meta-analysis. Clin Rheumatol. 2017 Mar 14;36(3):569–82.Moroncini G, Mori S, Tonnini C, Gabrielli A. Role of viral infections in the etiopathogenesis of systemic sclerosis. Clin Exp Rheumatol. 2013;31(2 Suppl 76):3–7.Chairta P, Nicolaou P, Christodoulou K. Genomic and genetic studies of systemic sclerosis: A systematic review. Hum Immunol. 2017 Feb;78(2):153–65.Orvain C, Assassi S, Avouac J, Allanore Y. Systemic sclerosis pathogenesis: contribution of recent advances in genetics. Curr Opin Rheumatol. 2020 Nov;32(6):505–14.Asano Y. Systemic sclerosis. J Dermatol [Internet]. 2018 Feb 1 [cited 2023 Mar 1];45(2):128–38. Available from: https://pubmed.ncbi.nlm.nih.gov/29226387/Truchetet ME, Brembilla NC, Chizzolini C. Current Concepts on the Pathogenesis of Systemic Sclerosis. Clin Rev Allergy Immunol. 2021 Sep 6;64(3):262–83.Brown M, O’Reilly S. The immunopathogenesis of fibrosis in systemic sclerosis. Clin Exp Immunol. 2019 Feb 18;195(3):310–21.Ihn H. Autocrine TGF-β signaling in the pathogenesis of systemic sclerosis. J Dermatol Sci. 2008 Feb;49(2):103–13.Ferreli C, Gasparini G, Parodi A, Cozzani E, Rongioletti F, Atzori L. Cutaneous Manifestations of Scleroderma and Scleroderma-Like Disorders: a Comprehensive Review. Clin Rev Allergy Immunol. 2017 Dec 16;53(3):306–36.Jinnin M. Mechanisms of skin fibrosis in systemic sclerosis. J Dermatol. 2010 Jan;37(1):11–25.Bolognia J, Schaffer J, Duncan K, Ko C. Systemic Sclerosis and Sclerodermoid Disorders. In: Dermatology Essentials. 2nd ed. Elsevier Inc; 2022. p. 326–37Khanna D, Furst DE, Clements PJ, Allanore Y, Baron M, Czirjak L, et al. Standardization of the Modified Rodnan Skin Score for Use in Clinical Trials of Systemic Sclerosis. J Scleroderma Relat Disord. 2017 Jan 2;2(1):11–8.Chandra A, Sil A, Hati A, Shah KA. Salt and pepper appearance in systemic sclerosis. QJM: An International Journal of Medicine. 2022 Jan 21;115(1):41–2.Herrick AL. Systemic sclerosis: clinical features and management. Medicine. 2018;46(2):131–9.Haque A, Hughes M. Raynaud’s phenomenon. Clinical Medicine. 2020 Nov 16;20(6):580–7.Temprano KK. A Review of Raynaud’s Disease. Mo Med. 2016;113(2):123–6.Nassar M, Ghernautan V, Nso N, Nyabera A, Castillo FC, Tu W, et al. Gastrointestinal involvement in systemic sclerosis: An updated review. Medicine. 2022 Nov 11;101(45):e31780.Shreiner AB, Murray C, Denton C, Khanna D. Gastrointestinal manifestations of systemic sclerosis. J Scleroderma Relat Disord. 2016 Sep 18;1(3):247–56.Tandaipan JL, Castellví I. Systemic sclerosis and gastrointestinal involvement. Revista Colombiana de Reumatología (English Edition). 2020 Apr;27:44–54.Perelas A, Silver RM, Arrossi A V, Highland KB. Systemic sclerosis-associated interstitial lung disease. Lancet Respir Med. 2020 Mar;8(3):304–20.Morrisroe K, Stevens W, Huq M, Prior D, Sahhar J, Ngian GS, et al. Survival and quality of life in incident systemic sclerosis-related pulmonary arterial hypertension. Arthritis Res Ther. 2017 Dec 2;19(1):122Aurangabadkar GM, Aurangabadkar MY, Choudhary SS, Ali SN, Khan SM, Jadhav US. Pulmonary Manifestations in Rheumatological Diseases. Cureus. 2022 Sep 26;Lechartier B, Humbert M. Pulmonary arterial hypertension in systemic sclerosis. Presse Med. 2021 Apr;50(1):104062.Launay D, Sobanski V, Hachulla E, Humbert M. Pulmonary hypertension in systemic sclerosis: different phenotypes. European Respiratory Review. 2017 Sep 30;26(145):170056.Bruni C, Ross L. Cardiac involvement in systemic sclerosis: Getting to the heart of the matter. Best Pract Res Clin Rheumatol. 2021 Sep;35(3):101668.Lambova S. Cardiac manifestations in systemic sclerosis. World J Cardiol. 2014;6(9):993.Medina YF, Medina Torres D. Alteraciones renales en la esclerodermia. Revista Colombiana de Reumatología. 2020 Dec;27:55–61.Young A, Khanna D. Systemic Sclerosis. JCR Journal of Clinical Rheumatology. 2015 Apr;21(3):149–55.Desbois AC, Cacoub P. Systemic sclerosis: An update in 2016. Autoimmun Rev. 2016 May;15(5):417–26.Adigun R, Goyal A, Hariz A. Systemic Sclerosis. StatPearls [Internet]. 2022 May 8 [cited 2023 Mar 29]; Available from: https://www.ncbi.nlm.nih.gov/books/NBK430875/Boin F, Wigley FM. Clinical features and treatment of scleroderma . In: Firestein GS, Budd RC, Gabriel SE, editors. Kelley’s Textbook of Rheumatology. 9th ed. Philadelphia: Elsevier/Saunders; 2012. p. 1366–403Kowalska-Kępczyńska A. Systemic Scleroderma—Definition, Clinical Picture and Laboratory Diagnostics. J Clin Med. 2022 Apr 20;11(9):2299Herrick AL, Assassi S, Denton CP. Skin involvement in early diffuse cutaneous systemic sclerosis: an unmet clinical need. Nat Rev Rheumatol [Internet]. 2022 May 1 [cited 2023 Mar 29];18(5):276–85. Available from: https://pubmed.ncbi.nlm.nih.gov/35292731/Poormoghim H, Lucas M, Fertig N, Medsger Jr. TA. Systemic sclerosis sine scleroderma: Demographic, clinical, and serologic features and survival in forty-eight patients. Arthritis Rheum. 2000 Feb;43(2):444.Chong WH, Saha BK, Beegle S. Chronic dyspnea with Raynaud’s phenomenon and elevated ANA: A diagnosis of systemic sclerosis sine scleroderma. Am J Med Sci [Internet]. 2023 Feb 1 [cited 2023 Mar 30];365(2):198–204. Available from: https://pubmed.ncbi.nlm.nih.gov/35276077/Kucharz E, Kopeć-Mędrek M. Systemic sclerosis sine scleroderma. Advances in Clinical and Experimental Medicine. 2017 Aug 31;26(5):875–80.Masi AT. Preliminary criteria for the classification of systemic sclerosis (scleroderma). Subcommittee for scleroderma criteria of the American Rheumatism Association Diagnostic and Therapeutic Criteria Committee. Arthritis Rheum [Internet]. 1980 [cited 2023 Mar 28];23(5):581–90. Available from: https://pubmed.ncbi.nlm.nih.gov/7378088/Carwile LeRoy E, Black C, Fleischmajer R, Jablonska S, Krieg T, Medsger TA, et al. Scleroderma (systemic sclerosis): Classification, subsets and pathogenesis. Journal of Rheumatology [Internet]. 1988;15(2):202–5. Available from: https://www.taylorfrancis.com/chapters/edit/10.3109/9780203214237-95/scleroderma-systemic-sclerosis-classification-subsets-pathogenesisLeRoy EC, Medsger J. Criteria for the classification of early systemic sclerosis. J Rheumatol. 2001;28.Van Den Hoogen F, Khanna D, Fransen J, Johnson SR, Baron M, Tyndall A, et al. 2013 classification criteria for systemic sclerosis: an American college of rheumatology/European league against rheumatism collaborative initiative. Ann Rheum Dis [Internet]. 2013;72(11):1747–55. Available from: https://ard.bmj.com/content/72/11/1747Bukiri H, Volkmann ER. Current advances in the treatment of systemic sclerosis. Curr Opin Pharmacol. 2022 Jun;64:102211.Herrick AL. Advances in the Treatment of Systemic Sclerosis. Rheumatology. 2022;1(2):61.Ellis DI, Dunn WB, Griffin JL, Allwood JW, Goodacre R. Metabolic fingerprinting as a diagnostic tool. Pharmacogenomics. 2007 Sep;8(9):1243–66.Nalbantoglu S. Metabolomics: Basic Principles and Strategies. In: Molecular Medicine. IntechOpen; 2019.Yu X, Feng G, Zhang Q, Cao J. From Metabolite to Metabolome: Metabolomics Applications in Plasmodium Research. Front Microbiol. 2021 Jan 11;11.Chen HH, Tseng YJ, Wang SY, Tsai YS, Chang CS, Kuo TC, et al. The metabolome profiling and pathway analysis in metabolic healthy and abnormal obesity. International Journal of Obesity 2015 39:8 [Internet]. 2015 Apr 24 [cited 2022 Oct 4];39(8):1241–8. Available from: https://www.nature.com/articles/ijo201565Muthubharathi BC, Gowripriya T, Balamurugan K. Metabolomics: small molecules that matter more. Mol Omics [Internet]. 2021 Apr 1 [cited 2022 Oct 4];17(2):210–29. Available from: https://pubmed.ncbi.nlm.nih.gov/33598670/Guijas C, Montenegro-Burke JR, Warth B, Spilker ME, Siuzdak G. Metabolomics activity screening for identifying metabolites that modulate phenotype. Nat Biotechnol. 2018 Apr 5;36(4):316–20.Patti GJ, Yanes O, Siuzdak G. Metabolomics: the apogee of the omics trilogy. Nat Rev Mol Cell Biol. 2012 Apr 22;13(4):263–9.Johnson CH, Ivanisevic J, Siuzdak G. Metabolomics: beyond biomarkers and towards mechanisms. Nat Rev Mol Cell Biol. 2016 Jul 16;17(7):451–9.Tsoukalas D, Alegakis A, Fragkiadaki P, Papakonstantinou E, Nikitovic D, Karataraki A, et al. Application of metabolomics: Focus on the quantification of organic acids in healthy adults. Int J Mol Med. 2017 Jul;40(1):112–20.Kang J, Zhu L, Lu J, Zhang X. Application of metabolomics in autoimmune diseases: Insight into biomarkers and pathology. J Neuroimmunol. 2015 Feb 15;279(C):25–32.Zhu H, Chen W, Liu D, Luo H. The role of metabolism in the pathogenesis of systemic sclerosis. Metabolism [Internet]. 2019 Apr 1 [cited 2022 Oct 6];93:44–51. Available from: https://pubmed.ncbi.nlm.nih.gov/30586574/Morales-González V, Galeano-Sánchez D, Covaleda-Vargas JE, Rodriguez Y, Monsalve DM, Pardo-Rodriguez D, et al. Metabolic fingerprinting of systemic sclerosis: a systematic review. Front Mol Biosci. 2023 Aug 8;10.Smolenska Z, Zabielska-Kaczorowska M, Wojteczek A, Kutryb-Zajac B, Zdrojewski Z. Metabolic Pattern of Systemic Sclerosis: Association of Changes in Plasma Concentrations of Amino Acid-Related Compounds With Disease Presentation. Front Mol Biosci. 2020 Oct 15;7.Szamosi S, Csiki Z, Szomják E, Szolnoki E, Szőke G, Szekanecz Z, et al. Plasma Homocysteine Levels, The Prevalence of Methylenetetrahydrofolate Reductase Gene C677T Polymorphism and Macrovascular Disorders in Systemic Sclerosis: Risk Factors for Accelerated Macrovascular Damage? Clin Rev Allergy Immunol. 2009 Jun 18;36(2–3):145–9.Motegi S ichiro, Toki S, Yamada K, Uchiyama A, Ishikawa O. Elevated plasma homocysteine level is possibly associated with skin sclerosis in a series of Japanese patients with systemic sclerosis. J Dermatol. 2014 Sep;n/a-n/a.Bögl T, Mlynek F, Himmelsbach M, Sepp N, Buchberger W, Geroldinger-Simić M. Plasma Metabolomic Profiling Reveals Four Possibly Disrupted Mechanisms in Systemic Sclerosis. Biomedicines 2022, Vol 10, Page 607 [Internet]. 2022 Mar 4 [cited 2022 Oct 6];10(3):607. Available from: https://www.mdpi.com/2227-9059/10/3/607/htmFernández-Ochoa Á, Quirantes-Piné R, Borrás-Linares I, Gemperline D, Alarcón Riquelme ME, Beretta L, et al. Urinary and plasma metabolite differences detected by HPLC-ESI-QTOF-MS in systemic sclerosis patients. J Pharm Biomed Anal. 2019 Jan;162:82–90.Geroldinger-Simić M, Bögl T, Himmelsbach M, Sepp N, Buchberger W. Changes in Plasma Phospholipid Metabolism Are Associated with Clinical Manifestations of Systemic Sclerosis. Diagnostics. 2021 Nov 15;11(11):2116.Sobolewski P, Maślińska M, Wieczorek M, Łagun Z, Malewska A, Roszkiewicz M, et al. Systemic sclerosis – multidisciplinary disease: clinical features and treatment. Rheumatology. 2019 Sep 24;57(4):221–33.Zhang A, Sun H, Yan G, Wang P, Wang X. Metabolomics for Biomarker Discovery: Moving to the Clinic. Biomed Res Int. 2015;2015:354671.Akram M, Asif M, Uzair M, Naveed A, Madni MA, Ali Shah DS, et al. Amino acids: A review article. Journal of Medicinal Plants Research. 2011 Sep 9;5:3997–4000.The Human Metabolome Database - Metabocard for N-Ethylglycine.Maab H, Mustafa F, Arshad Ali S. Anti-inflammatory aspects of Lidocaine: a neglected therapeutic stance for COVID-19. Heart & Lung. 2020 Nov;49(6):877–8.Werdehausen R, Kremer D, Brandenburger T, Schlösser L, Jadasz J, Küry P, et al. Lidocaine Metabolites Inhibit Glycine Transporter 1. Anesthesiology. 2012 Jan 1;116(1):147–58.Foster E, Wildner H, Tudeau L, Haueter S, Ralvenius WT, Jegen M, et al. Targeted Ablation, Silencing, and Activation Establish Glycinergic Dorsal Horn Neurons as Key Components of a Spinal Gate for Pain and Itch. Neuron. 2015 Mar;85(6):1289–304.Armbruster A, Neumann E, Kötter V, Hermanns H, Werdehausen R, Eulenburg V. The GlyT1 Inhibitor Bitopertin Ameliorates Allodynia and Hyperalgesia in Animal Models of Neuropathic and Inflammatory Pain. Front Mol Neurosci. 2018 Jan 10;10.Werdehausen R, Mittnacht S, Bee LA, Minett MS, Armbruster A, Bauer I, et al. The lidocaine metabolite N-ethylglycine has antinociceptive effects in experimental inflammatory and neuropathic pain. Pain. 2015 Sep;156(9):1647–59.Hayashi K, Jutabha P, Endou H, Sagara H, Anzai N. LAT1 Is a Critical Transporter of Essential Amino Acids for Immune Reactions in Activated Human T Cells. The Journal of Immunology. 2013 Oct 15;191(8):4080–5.Wang W, Zou W. Amino Acids and Their Transporters in T Cell Immunity and Cancer Therapy. Mol Cell. 2020 Nov;80(3):384–95.Kono M, Yoshida N, Tsokos GC. Amino Acid Metabolism in Lupus. Front Immunol. 2021 Feb 22;12.Holeček M. Serine Metabolism in Health and Disease and as a Conditionally Essential Amino Acid. Nutrients. 2022 May 9;14(9):1987.Silvagno F, Vernone A, Pescarmona GP. The Role of Glutathione in Protecting against the Severe Inflammatory Response Triggered by COVID-19. Antioxidants. 2020 Jul 16;9(7):624.Hristov BD. The Role of Glutathione Metabolism in Chronic Illness Development and Its Potential Use as a Novel Therapeutic Target. Cureus. 2022 Sep 28;Hristov BD. The Role of Glutathione Metabolism in Chronic Illness Development and Its Potential Use as a Novel Therapeutic Target. Cureus. 2022 Sep 28;Hristov BD. The Role of Glutathione Metabolism in Chronic Illness Development and Its Potential Use as a Novel Therapeutic Target. Cureus. 2022 Sep 28;Karna E, Szoka L, Huynh TYL, Palka JA. Proline-dependent regulation of collagen metabolism. Cellular and Molecular Life Sciences. 2020 May 18;77(10):1911–8.Karna E, Szoka L, Huynh TYL, Palka JA. Proline-dependent regulation of collagen metabolism. Cellular and Molecular Life Sciences. 2020 May 18;77(10):1911–8.Wang W, Zou W. Amino Acids and Their Transporters in T Cell Immunity and Cancer Therapy. Mol Cell. 2020 Nov;80(3):384–95.Ron-Harel N, Ghergurovich JM, Notarangelo G, LaFleur MW, Tsubosaka Y, Sharpe AH, et al. T Cell Activation Depends on Extracellular Alanine. Cell Rep. 2019 Sep;28(12):3011-3021.e4.Ron-Harel N, Ghergurovich JM, Notarangelo G, LaFleur MW, Tsubosaka Y, Sharpe AH, et al. T Cell Activation Depends on Extracellular Alanine. Cell Rep. 2019 Sep;28(12):3011-3021.e4.Bruni C, Guignabert C, Manetti M, Cerinic MM, Humbert M. The multifaceted problem of pulmonary arterial hypertension in systemic sclerosis. Lancet Rheumatol [Internet]. 2021 Feb 1 [cited 2022 Nov 21];3(2):e149–59. Available from: http://www.thelancet.com/article/S2665991320303568/fulltextBlake M, Prisco SZ, Prins KW. Abstract 14967: Branching Out: Disrupted Branched Chain Amino Acid Metabolism Exacerbates Pulmonary Arterial Hypertension. Circulation. 2023 Nov 7;148(Suppl_1).Zhenyukh O, González‐Amor M, Rodrigues‐Diez RR, Esteban V, Ruiz‐Ortega M, Salaices M, et al. Branched‐chain amino acids promote endothelial dysfunction through increased reactive oxygen species generation and inflammation. J Cell Mol Med. 2018 Oct 31;22(10):4948–62Zhenyukh O, Civantos E, Ruiz-Ortega M, Sánchez MS, Vázquez C, Peiró C, et al. High concentration of branched-chain amino acids promotes oxidative stress, inflammation and migration of human peripheral blood mononuclear cells via mTORC1 activation. Free Radic Biol Med. 2017 Mar;104:165–77.Lee HL, Lee J, Cha JH, Cho S, Sung PS, Hur W, et al. Anti-fibrotic effects of branched-chain amino acids on hepatic stellate cells. Korean J Intern Med. 2022 Jan 1;37(1):53–62.Kang J, Zhu L, Lu J, Zhang X. Application of metabolomics in autoimmune diseases: Insight into biomarkers and pathology. J Neuroimmunol. 2015 Feb;279:25–32.Zhou J, Zhong L. Applications of liquid chromatography-mass spectrometry based metabolomics in predictive and personalized medicine. Front Mol Biosci. 2022 Nov 3;9.instname:Universidad del Rosarioreponame:Repositorio Institucional EdocUREsclerosis sistémicaMetabolómicaVías metabólicasAminoácidosSystemic sclerosisMetabolomicsMetabolic pathwaysAmino acidsMetabolomic profile in patients with systemic sclerosis versus healthy subjects and its association with disease phenotypesPerfil metabolómico en pacientes con esclerosis sistémica versus sujetos sanos y su asociación con los fenotipos de la enfermedadbachelorThesisTrabajo de gradoTrabajo de gradohttp://purl.org/coar/resource_type/c_7a1fEscuela de Medicina y Ciencias de la SaludBogotáLICENSElicense.txtlicense.txttext/plain1483https://repository.urosario.edu.co/bitstreams/495cb37b-9e7c-4c89-8a41-d76901d4eb0e/downloadb2825df9f458e9d5d96ee8b7cd74fde6MD54ORIGINALMetabolomic_profile_in_patients_with_systemic_sclerosis_versus_Trabajo_de_Grado_Victoria_Morales_Gonzalez.pdfMetabolomic_profile_in_patients_with_systemic_sclerosis_versus_Trabajo_de_Grado_Victoria_Morales_Gonzalez.pdfapplication/pdf2932295https://repository.urosario.edu.co/bitstreams/1aaae20b-5f85-4c5a-9cbd-db2a7436be10/download5b1f74ad1c19b85781911b2d36022006MD55CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81160https://repository.urosario.edu.co/bitstreams/94834938-d291-4726-a27d-5eb5499b7012/download5643bfd9bcf29d560eeec56d584edaa9MD56TEXTMetabolomic_profile_in_patients_with_systemic_sclerosis_versus_Trabajo_de_Grado_Victoria_Morales_Gonzalez.pdf.txtMetabolomic_profile_in_patients_with_systemic_sclerosis_versus_Trabajo_de_Grado_Victoria_Morales_Gonzalez.pdf.txtExtracted texttext/plain100455https://repository.urosario.edu.co/bitstreams/573d19b2-30d7-44dc-907f-23d2bfd736f4/downloadd4227c52670cfe151e3fdc088332c22eMD57THUMBNAILMetabolomic_profile_in_patients_with_systemic_sclerosis_versus_Trabajo_de_Grado_Victoria_Morales_Gonzalez.pdf.jpgMetabolomic_profile_in_patients_with_systemic_sclerosis_versus_Trabajo_de_Grado_Victoria_Morales_Gonzalez.pdf.jpgGenerated Thumbnailimage/jpeg2680https://repository.urosario.edu.co/bitstreams/8fc30b00-8831-4424-ab21-ecfd20024968/downloade58d0c7981e79da7271a50b7847e222eMD5810336/43019oai:repository.urosario.edu.co:10336/430192024-07-16 03:03:57.036http://creativecommons.org/licenses/by-nc-sa/4.0/Attribution-NonCommercial-ShareAlike 4.0 Internationalhttps://repository.urosario.edu.coRepositorio institucional EdocURedocur@urosario.edu.coRUwoTE9TKSBBVVRPUihFUyksIG1hbmlmaWVzdGEobWFuaWZlc3RhbW9zKSBxdWUgbGEgb2JyYSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIHJlYWxpesOzIHNpbiB2aW9sYXIgbyB1c3VycGFyIGRlcmVjaG9zIGRlIGF1dG9yIGRlIHRlcmNlcm9zLCBwb3IgbG8gdGFudG8gbGEgb2JyYSBlcyBkZSBleGNsdXNpdmEgYXV0b3LDrWEgeSB0aWVuZSBsYSB0aXR1bGFyaWRhZCBzb2JyZSBsYSBtaXNtYS4KPGJyLz4KUEFSQUdSQUZPOiBFbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbiwgRUwgQVVUT1IsIGFzdW1pcsOhIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkLCB5IHNhbGRyw6EgZW4gZGVmZW5zYSBkZSBsb3MgZGVyZWNob3MgYXF1w60gYXV0b3JpemFkb3M7IHBhcmEgdG9kb3MgbG9zIGVmZWN0b3MgbGEgdW5pdmVyc2lkYWQgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4KPGhyLz4KRUwgQVVUT1IsIGF1dG9yaXphIGEgTEEgVU5JVkVSU0lEQUQgREVMIFJPU0FSSU8sICBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgTGV5IDQ0IGRlIDE5OTMsIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbm9ybWFzIGdlbmVyYWxlcyBzb2JyZSBsYSBtYXRlcmlhLCAgdXRpbGljZSB5IHVzZSBsYSBvYnJhIG9iamV0byBkZSBsYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuLgoKLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0KClBPTElUSUNBIERFIFRSQVRBTUlFTlRPIERFIERBVE9TIFBFUlNPTkFMRVMuIERlY2xhcm8gcXVlIGF1dG9yaXpvIHByZXZpYSB5IGRlIGZvcm1hIGluZm9ybWFkYSBlbCB0cmF0YW1pZW50byBkZSBtaXMgZGF0b3MgcGVyc29uYWxlcyBwb3IgcGFydGUgZGUgTEEgVU5JVkVSU0lEQUQgREVMIFJPU0FSSU8gIHBhcmEgZmluZXMgYWNhZMOpbWljb3MgeSBlbiBhcGxpY2FjacOzbiBkZSBjb252ZW5pb3MgY29uIHRlcmNlcm9zIG8gc2VydmljaW9zIGNvbmV4b3MgY29uIGFjdGl2aWRhZGVzIHByb3BpYXMgZGUgbGEgYWNhZGVtaWEsIGNvbiBlc3RyaWN0byBjdW1wbGltaWVudG8gZGUgbG9zIHByaW5jaXBpb3MgZGUgbGV5LiBQYXJhIGVsIGNvcnJlY3RvIGVqZXJjaWNpbyBkZSBtaSBkZXJlY2hvIGRlIGhhYmVhcyBkYXRhICBjdWVudG8gY29uIGxhIGN1ZW50YSBkZSBjb3JyZW8gaGFiZWFzZGF0YUB1cm9zYXJpby5lZHUuY28sIGRvbmRlIHByZXZpYSBpZGVudGlmaWNhY2nDs24gIHBvZHLDqSBzb2xpY2l0YXIgbGEgY29uc3VsdGEsIGNvcnJlY2Npw7NuIHkgc3VwcmVzacOzbiBkZSBtaXMgZGF0b3MuCg==