Landowner attitudes and willingness to accept compensation from forest carbon offsets: Application of best-worst choice modeling in Florida USA

Little is known about institutional preferences and barriers for non-industrial private forest landowner participation in carbon (C) offset programs - factors that influence participation in such programs. To address this, we used Florida (U.S.) as a case study, and identified barriers to forest lan...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2016
Institución:
Universidad del Rosario
Repositorio:
Repositorio EdocUR - U. Rosario
Idioma:
eng
OAI Identifier:
oai:repository.urosario.edu.co:10336/24073
Acceso en línea:
https://doi.org/10.1016/j.forpol.2015.12.004
https://repository.urosario.edu.co/handle/10336/24073
Palabra clave:
C (programming language)
Economics
Best-worst scaling
Carbon offsets
Choice model
Discrete choice
Nonindustrial private forests
Willingness to accept
Forestry
Best-worst scaling
Carbon offsets
Choice modeling
Discrete choice
Non-industrial private forest
Willingness to accept
Rights
License
Abierto (Texto Completo)
id EDOCUR2_1441cfdbb6d7db7d1b1649fec1060da7
oai_identifier_str oai:repository.urosario.edu.co:10336/24073
network_acronym_str EDOCUR2
network_name_str Repositorio EdocUR - U. Rosario
repository_id_str
spelling 26df483b-680b-416a-a43c-90faacb1ead9-165878e80-826f-4f78-9afd-6a08a68c8b69-12d7c8bf2-67a1-46d2-a8e0-b82768ad86d9-12020-05-26T00:08:17Z2020-05-26T00:08:17Z2016Little is known about institutional preferences and barriers for non-industrial private forest landowner participation in carbon (C) offset programs - factors that influence participation in such programs. To address this, we used Florida (U.S.) as a case study, and identified barriers to forest landowner participation in a hypothetical carbon-offset program and landowner willingness-to-accept compensation for enrollment. Preferences were elicited via survey methods and a recent innovation to best-worst scaling (BWS), called best-worst choice (BWC), which retains the analytical features of scaling while enabling measurements in a traditional discrete-choice framework. Results indicate that NIPF landowners are more influenced by revenue than early withdrawal penalty or contract duration, but will exchange revenue for other contract features. We estimate that programs offering $20 or $30 per-acre-per-year have significantly stronger impacts on enrollment than $5 or $10. The least preferred feature was a 100-year commitment. Overall our BWC approach is novel in that it circumvents BWS' limitation by providing an ability to estimate actual willingness-to-pay/accept. The U.S. has a new policy to cut 32% of 2005 power plant carbon emissions by 2030 and allow forest C offsets. Thus, results can also be used to inform state-level policies that compensate landowners for capturing C emissions. © 2015 Elsevier B.V.application/pdfhttps://doi.org/10.1016/j.forpol.2015.12.00413899341https://repository.urosario.edu.co/handle/10336/24073engElsevier4235Forest Policy and EconomicsVol. 63Forest Policy and Economics, ISSN:13899341, Vol.63,(2016); pp. 35-42https://www.scopus.com/inward/record.uri?eid=2-s2.0-84955304826&doi=10.1016%2fj.forpol.2015.12.004&partnerID=40&md5=bfe0eaf9424320e4b3d21d83b39d010bAbierto (Texto Completo)http://purl.org/coar/access_right/c_abf2instname:Universidad del Rosarioreponame:Repositorio Institucional EdocURC (programming language)EconomicsBest-worst scalingCarbon offsetsChoice modelDiscrete choiceNonindustrial private forestsWillingness to acceptForestryBest-worst scalingCarbon offsetsChoice modelingDiscrete choiceNon-industrial private forestWillingness to acceptLandowner attitudes and willingness to accept compensation from forest carbon offsets: Application of best-worst choice modeling in Florida USAarticleArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501Soto, José R.Adams, Damian C.Escobedo, Francisco J.ORIGINAL1-s2_0-S1389934115300757-main.pdfapplication/pdf411404https://repository.urosario.edu.co/bitstreams/d9f8529d-b998-4db1-ac7d-67e3f1ef370e/download7dadc38e7aa201021a312e2bf6657e84MD51TEXT1-s2_0-S1389934115300757-main.pdf.txt1-s2_0-S1389934115300757-main.pdf.txtExtracted texttext/plain58501https://repository.urosario.edu.co/bitstreams/d30b9a88-7882-4f20-b29a-c8f23af2ac3e/downloadeb999e922233dcf42e99f90bf066d23aMD52THUMBNAIL1-s2_0-S1389934115300757-main.pdf.jpg1-s2_0-S1389934115300757-main.pdf.jpgGenerated Thumbnailimage/jpeg4513https://repository.urosario.edu.co/bitstreams/ea0e26d1-6663-4dbc-b374-af782e2ed02f/download10d685274482104b76ac2f224bbdd93bMD5310336/24073oai:repository.urosario.edu.co:10336/240732022-05-02 07:37:21.389662https://repository.urosario.edu.coRepositorio institucional EdocURedocur@urosario.edu.co
dc.title.spa.fl_str_mv Landowner attitudes and willingness to accept compensation from forest carbon offsets: Application of best-worst choice modeling in Florida USA
title Landowner attitudes and willingness to accept compensation from forest carbon offsets: Application of best-worst choice modeling in Florida USA
spellingShingle Landowner attitudes and willingness to accept compensation from forest carbon offsets: Application of best-worst choice modeling in Florida USA
C (programming language)
Economics
Best-worst scaling
Carbon offsets
Choice model
Discrete choice
Nonindustrial private forests
Willingness to accept
Forestry
Best-worst scaling
Carbon offsets
Choice modeling
Discrete choice
Non-industrial private forest
Willingness to accept
title_short Landowner attitudes and willingness to accept compensation from forest carbon offsets: Application of best-worst choice modeling in Florida USA
title_full Landowner attitudes and willingness to accept compensation from forest carbon offsets: Application of best-worst choice modeling in Florida USA
title_fullStr Landowner attitudes and willingness to accept compensation from forest carbon offsets: Application of best-worst choice modeling in Florida USA
title_full_unstemmed Landowner attitudes and willingness to accept compensation from forest carbon offsets: Application of best-worst choice modeling in Florida USA
title_sort Landowner attitudes and willingness to accept compensation from forest carbon offsets: Application of best-worst choice modeling in Florida USA
dc.subject.keyword.spa.fl_str_mv C (programming language)
Economics
Best-worst scaling
Carbon offsets
Choice model
Discrete choice
Nonindustrial private forests
Willingness to accept
Forestry
Best-worst scaling
Carbon offsets
Choice modeling
Discrete choice
Non-industrial private forest
Willingness to accept
topic C (programming language)
Economics
Best-worst scaling
Carbon offsets
Choice model
Discrete choice
Nonindustrial private forests
Willingness to accept
Forestry
Best-worst scaling
Carbon offsets
Choice modeling
Discrete choice
Non-industrial private forest
Willingness to accept
description Little is known about institutional preferences and barriers for non-industrial private forest landowner participation in carbon (C) offset programs - factors that influence participation in such programs. To address this, we used Florida (U.S.) as a case study, and identified barriers to forest landowner participation in a hypothetical carbon-offset program and landowner willingness-to-accept compensation for enrollment. Preferences were elicited via survey methods and a recent innovation to best-worst scaling (BWS), called best-worst choice (BWC), which retains the analytical features of scaling while enabling measurements in a traditional discrete-choice framework. Results indicate that NIPF landowners are more influenced by revenue than early withdrawal penalty or contract duration, but will exchange revenue for other contract features. We estimate that programs offering $20 or $30 per-acre-per-year have significantly stronger impacts on enrollment than $5 or $10. The least preferred feature was a 100-year commitment. Overall our BWC approach is novel in that it circumvents BWS' limitation by providing an ability to estimate actual willingness-to-pay/accept. The U.S. has a new policy to cut 32% of 2005 power plant carbon emissions by 2030 and allow forest C offsets. Thus, results can also be used to inform state-level policies that compensate landowners for capturing C emissions. © 2015 Elsevier B.V.
publishDate 2016
dc.date.created.spa.fl_str_mv 2016
dc.date.accessioned.none.fl_str_mv 2020-05-26T00:08:17Z
dc.date.available.none.fl_str_mv 2020-05-26T00:08:17Z
dc.type.eng.fl_str_mv article
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.spa.spa.fl_str_mv Artículo
dc.identifier.doi.none.fl_str_mv https://doi.org/10.1016/j.forpol.2015.12.004
dc.identifier.issn.none.fl_str_mv 13899341
dc.identifier.uri.none.fl_str_mv https://repository.urosario.edu.co/handle/10336/24073
url https://doi.org/10.1016/j.forpol.2015.12.004
https://repository.urosario.edu.co/handle/10336/24073
identifier_str_mv 13899341
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.citationEndPage.none.fl_str_mv 42
dc.relation.citationStartPage.none.fl_str_mv 35
dc.relation.citationTitle.none.fl_str_mv Forest Policy and Economics
dc.relation.citationVolume.none.fl_str_mv Vol. 63
dc.relation.ispartof.spa.fl_str_mv Forest Policy and Economics, ISSN:13899341, Vol.63,(2016); pp. 35-42
dc.relation.uri.spa.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-84955304826&doi=10.1016%2fj.forpol.2015.12.004&partnerID=40&md5=bfe0eaf9424320e4b3d21d83b39d010b
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.acceso.spa.fl_str_mv Abierto (Texto Completo)
rights_invalid_str_mv Abierto (Texto Completo)
http://purl.org/coar/access_right/c_abf2
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Elsevier
institution Universidad del Rosario
dc.source.instname.spa.fl_str_mv instname:Universidad del Rosario
dc.source.reponame.spa.fl_str_mv reponame:Repositorio Institucional EdocUR
bitstream.url.fl_str_mv https://repository.urosario.edu.co/bitstreams/d9f8529d-b998-4db1-ac7d-67e3f1ef370e/download
https://repository.urosario.edu.co/bitstreams/d30b9a88-7882-4f20-b29a-c8f23af2ac3e/download
https://repository.urosario.edu.co/bitstreams/ea0e26d1-6663-4dbc-b374-af782e2ed02f/download
bitstream.checksum.fl_str_mv 7dadc38e7aa201021a312e2bf6657e84
eb999e922233dcf42e99f90bf066d23a
10d685274482104b76ac2f224bbdd93b
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio institucional EdocUR
repository.mail.fl_str_mv edocur@urosario.edu.co
_version_ 1814167479213096960