Landowner attitudes and willingness to accept compensation from forest carbon offsets: Application of best-worst choice modeling in Florida USA
Little is known about institutional preferences and barriers for non-industrial private forest landowner participation in carbon (C) offset programs - factors that influence participation in such programs. To address this, we used Florida (U.S.) as a case study, and identified barriers to forest lan...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2016
- Institución:
- Universidad del Rosario
- Repositorio:
- Repositorio EdocUR - U. Rosario
- Idioma:
- eng
- OAI Identifier:
- oai:repository.urosario.edu.co:10336/24073
- Acceso en línea:
- https://doi.org/10.1016/j.forpol.2015.12.004
https://repository.urosario.edu.co/handle/10336/24073
- Palabra clave:
- C (programming language)
Economics
Best-worst scaling
Carbon offsets
Choice model
Discrete choice
Nonindustrial private forests
Willingness to accept
Forestry
Best-worst scaling
Carbon offsets
Choice modeling
Discrete choice
Non-industrial private forest
Willingness to accept
- Rights
- License
- Abierto (Texto Completo)
id |
EDOCUR2_1441cfdbb6d7db7d1b1649fec1060da7 |
---|---|
oai_identifier_str |
oai:repository.urosario.edu.co:10336/24073 |
network_acronym_str |
EDOCUR2 |
network_name_str |
Repositorio EdocUR - U. Rosario |
repository_id_str |
|
spelling |
26df483b-680b-416a-a43c-90faacb1ead9-165878e80-826f-4f78-9afd-6a08a68c8b69-12d7c8bf2-67a1-46d2-a8e0-b82768ad86d9-12020-05-26T00:08:17Z2020-05-26T00:08:17Z2016Little is known about institutional preferences and barriers for non-industrial private forest landowner participation in carbon (C) offset programs - factors that influence participation in such programs. To address this, we used Florida (U.S.) as a case study, and identified barriers to forest landowner participation in a hypothetical carbon-offset program and landowner willingness-to-accept compensation for enrollment. Preferences were elicited via survey methods and a recent innovation to best-worst scaling (BWS), called best-worst choice (BWC), which retains the analytical features of scaling while enabling measurements in a traditional discrete-choice framework. Results indicate that NIPF landowners are more influenced by revenue than early withdrawal penalty or contract duration, but will exchange revenue for other contract features. We estimate that programs offering $20 or $30 per-acre-per-year have significantly stronger impacts on enrollment than $5 or $10. The least preferred feature was a 100-year commitment. Overall our BWC approach is novel in that it circumvents BWS' limitation by providing an ability to estimate actual willingness-to-pay/accept. The U.S. has a new policy to cut 32% of 2005 power plant carbon emissions by 2030 and allow forest C offsets. Thus, results can also be used to inform state-level policies that compensate landowners for capturing C emissions. © 2015 Elsevier B.V.application/pdfhttps://doi.org/10.1016/j.forpol.2015.12.00413899341https://repository.urosario.edu.co/handle/10336/24073engElsevier4235Forest Policy and EconomicsVol. 63Forest Policy and Economics, ISSN:13899341, Vol.63,(2016); pp. 35-42https://www.scopus.com/inward/record.uri?eid=2-s2.0-84955304826&doi=10.1016%2fj.forpol.2015.12.004&partnerID=40&md5=bfe0eaf9424320e4b3d21d83b39d010bAbierto (Texto Completo)http://purl.org/coar/access_right/c_abf2instname:Universidad del Rosarioreponame:Repositorio Institucional EdocURC (programming language)EconomicsBest-worst scalingCarbon offsetsChoice modelDiscrete choiceNonindustrial private forestsWillingness to acceptForestryBest-worst scalingCarbon offsetsChoice modelingDiscrete choiceNon-industrial private forestWillingness to acceptLandowner attitudes and willingness to accept compensation from forest carbon offsets: Application of best-worst choice modeling in Florida USAarticleArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501Soto, José R.Adams, Damian C.Escobedo, Francisco J.ORIGINAL1-s2_0-S1389934115300757-main.pdfapplication/pdf411404https://repository.urosario.edu.co/bitstreams/d9f8529d-b998-4db1-ac7d-67e3f1ef370e/download7dadc38e7aa201021a312e2bf6657e84MD51TEXT1-s2_0-S1389934115300757-main.pdf.txt1-s2_0-S1389934115300757-main.pdf.txtExtracted texttext/plain58501https://repository.urosario.edu.co/bitstreams/d30b9a88-7882-4f20-b29a-c8f23af2ac3e/downloadeb999e922233dcf42e99f90bf066d23aMD52THUMBNAIL1-s2_0-S1389934115300757-main.pdf.jpg1-s2_0-S1389934115300757-main.pdf.jpgGenerated Thumbnailimage/jpeg4513https://repository.urosario.edu.co/bitstreams/ea0e26d1-6663-4dbc-b374-af782e2ed02f/download10d685274482104b76ac2f224bbdd93bMD5310336/24073oai:repository.urosario.edu.co:10336/240732022-05-02 07:37:21.389662https://repository.urosario.edu.coRepositorio institucional EdocURedocur@urosario.edu.co |
dc.title.spa.fl_str_mv |
Landowner attitudes and willingness to accept compensation from forest carbon offsets: Application of best-worst choice modeling in Florida USA |
title |
Landowner attitudes and willingness to accept compensation from forest carbon offsets: Application of best-worst choice modeling in Florida USA |
spellingShingle |
Landowner attitudes and willingness to accept compensation from forest carbon offsets: Application of best-worst choice modeling in Florida USA C (programming language) Economics Best-worst scaling Carbon offsets Choice model Discrete choice Nonindustrial private forests Willingness to accept Forestry Best-worst scaling Carbon offsets Choice modeling Discrete choice Non-industrial private forest Willingness to accept |
title_short |
Landowner attitudes and willingness to accept compensation from forest carbon offsets: Application of best-worst choice modeling in Florida USA |
title_full |
Landowner attitudes and willingness to accept compensation from forest carbon offsets: Application of best-worst choice modeling in Florida USA |
title_fullStr |
Landowner attitudes and willingness to accept compensation from forest carbon offsets: Application of best-worst choice modeling in Florida USA |
title_full_unstemmed |
Landowner attitudes and willingness to accept compensation from forest carbon offsets: Application of best-worst choice modeling in Florida USA |
title_sort |
Landowner attitudes and willingness to accept compensation from forest carbon offsets: Application of best-worst choice modeling in Florida USA |
dc.subject.keyword.spa.fl_str_mv |
C (programming language) Economics Best-worst scaling Carbon offsets Choice model Discrete choice Nonindustrial private forests Willingness to accept Forestry Best-worst scaling Carbon offsets Choice modeling Discrete choice Non-industrial private forest Willingness to accept |
topic |
C (programming language) Economics Best-worst scaling Carbon offsets Choice model Discrete choice Nonindustrial private forests Willingness to accept Forestry Best-worst scaling Carbon offsets Choice modeling Discrete choice Non-industrial private forest Willingness to accept |
description |
Little is known about institutional preferences and barriers for non-industrial private forest landowner participation in carbon (C) offset programs - factors that influence participation in such programs. To address this, we used Florida (U.S.) as a case study, and identified barriers to forest landowner participation in a hypothetical carbon-offset program and landowner willingness-to-accept compensation for enrollment. Preferences were elicited via survey methods and a recent innovation to best-worst scaling (BWS), called best-worst choice (BWC), which retains the analytical features of scaling while enabling measurements in a traditional discrete-choice framework. Results indicate that NIPF landowners are more influenced by revenue than early withdrawal penalty or contract duration, but will exchange revenue for other contract features. We estimate that programs offering $20 or $30 per-acre-per-year have significantly stronger impacts on enrollment than $5 or $10. The least preferred feature was a 100-year commitment. Overall our BWC approach is novel in that it circumvents BWS' limitation by providing an ability to estimate actual willingness-to-pay/accept. The U.S. has a new policy to cut 32% of 2005 power plant carbon emissions by 2030 and allow forest C offsets. Thus, results can also be used to inform state-level policies that compensate landowners for capturing C emissions. © 2015 Elsevier B.V. |
publishDate |
2016 |
dc.date.created.spa.fl_str_mv |
2016 |
dc.date.accessioned.none.fl_str_mv |
2020-05-26T00:08:17Z |
dc.date.available.none.fl_str_mv |
2020-05-26T00:08:17Z |
dc.type.eng.fl_str_mv |
article |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.spa.spa.fl_str_mv |
Artículo |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.1016/j.forpol.2015.12.004 |
dc.identifier.issn.none.fl_str_mv |
13899341 |
dc.identifier.uri.none.fl_str_mv |
https://repository.urosario.edu.co/handle/10336/24073 |
url |
https://doi.org/10.1016/j.forpol.2015.12.004 https://repository.urosario.edu.co/handle/10336/24073 |
identifier_str_mv |
13899341 |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.relation.citationEndPage.none.fl_str_mv |
42 |
dc.relation.citationStartPage.none.fl_str_mv |
35 |
dc.relation.citationTitle.none.fl_str_mv |
Forest Policy and Economics |
dc.relation.citationVolume.none.fl_str_mv |
Vol. 63 |
dc.relation.ispartof.spa.fl_str_mv |
Forest Policy and Economics, ISSN:13899341, Vol.63,(2016); pp. 35-42 |
dc.relation.uri.spa.fl_str_mv |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84955304826&doi=10.1016%2fj.forpol.2015.12.004&partnerID=40&md5=bfe0eaf9424320e4b3d21d83b39d010b |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.acceso.spa.fl_str_mv |
Abierto (Texto Completo) |
rights_invalid_str_mv |
Abierto (Texto Completo) http://purl.org/coar/access_right/c_abf2 |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Elsevier |
institution |
Universidad del Rosario |
dc.source.instname.spa.fl_str_mv |
instname:Universidad del Rosario |
dc.source.reponame.spa.fl_str_mv |
reponame:Repositorio Institucional EdocUR |
bitstream.url.fl_str_mv |
https://repository.urosario.edu.co/bitstreams/d9f8529d-b998-4db1-ac7d-67e3f1ef370e/download https://repository.urosario.edu.co/bitstreams/d30b9a88-7882-4f20-b29a-c8f23af2ac3e/download https://repository.urosario.edu.co/bitstreams/ea0e26d1-6663-4dbc-b374-af782e2ed02f/download |
bitstream.checksum.fl_str_mv |
7dadc38e7aa201021a312e2bf6657e84 eb999e922233dcf42e99f90bf066d23a 10d685274482104b76ac2f224bbdd93b |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio institucional EdocUR |
repository.mail.fl_str_mv |
edocur@urosario.edu.co |
_version_ |
1814167479213096960 |