Mapping local and global variability in plant trait distributions
Our ability to understand and predict the response of ecosystems to a changing environment depends on quantifying vegetation functional diversity. However, representing this diversity at the global scale is challenging. Typically, in Earth system models, characterization of plant diversity has been...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2017
- Institución:
- Universidad del Rosario
- Repositorio:
- Repositorio EdocUR - U. Rosario
- Idioma:
- eng
- OAI Identifier:
- oai:repository.urosario.edu.co:10336/22879
- Acceso en línea:
- https://doi.org/10.1073/pnas.1708984114
https://repository.urosario.edu.co/handle/10336/22879
- Palabra clave:
- Nitrogen
Phosphorus
Article
Bayes theorem
Concentration (parameters)
Data base
Environment
Evergreen
Leaf area
Leaf litter
Model
Nonhuman
Plant
Prediction
Priority journal
Ecosystem
Geography
Plant dispersal
Quantitative trait
Spatial analysis
Statistical model
Ecosystem
Environment
Geography
Plant dispersal
Plants
Spatial analysis
Bayesian modeling
Climate
Global
Plant traits
Spatial statistics
statistical
heritable
Models
Quantitative trait
- Rights
- License
- Abierto (Texto Completo)
id |
EDOCUR2_1363cbc92bde841da63b3d52f8bb723d |
---|---|
oai_identifier_str |
oai:repository.urosario.edu.co:10336/22879 |
network_acronym_str |
EDOCUR2 |
network_name_str |
Repositorio EdocUR - U. Rosario |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Mapping local and global variability in plant trait distributions |
title |
Mapping local and global variability in plant trait distributions |
spellingShingle |
Mapping local and global variability in plant trait distributions Nitrogen Phosphorus Article Bayes theorem Concentration (parameters) Data base Environment Evergreen Leaf area Leaf litter Model Nonhuman Plant Prediction Priority journal Ecosystem Geography Plant dispersal Quantitative trait Spatial analysis Statistical model Ecosystem Environment Geography Plant dispersal Plants Spatial analysis Bayesian modeling Climate Global Plant traits Spatial statistics statistical heritable Models Quantitative trait |
title_short |
Mapping local and global variability in plant trait distributions |
title_full |
Mapping local and global variability in plant trait distributions |
title_fullStr |
Mapping local and global variability in plant trait distributions |
title_full_unstemmed |
Mapping local and global variability in plant trait distributions |
title_sort |
Mapping local and global variability in plant trait distributions |
dc.subject.keyword.spa.fl_str_mv |
Nitrogen Phosphorus Article Bayes theorem Concentration (parameters) Data base Environment Evergreen Leaf area Leaf litter Model Nonhuman Plant Prediction Priority journal Ecosystem Geography Plant dispersal Quantitative trait Spatial analysis Statistical model Ecosystem Environment Geography Plant dispersal Plants Spatial analysis Bayesian modeling Climate Global Plant traits Spatial statistics |
topic |
Nitrogen Phosphorus Article Bayes theorem Concentration (parameters) Data base Environment Evergreen Leaf area Leaf litter Model Nonhuman Plant Prediction Priority journal Ecosystem Geography Plant dispersal Quantitative trait Spatial analysis Statistical model Ecosystem Environment Geography Plant dispersal Plants Spatial analysis Bayesian modeling Climate Global Plant traits Spatial statistics statistical heritable Models Quantitative trait |
dc.subject.keyword.eng.fl_str_mv |
statistical heritable Models Quantitative trait |
description |
Our ability to understand and predict the response of ecosystems to a changing environment depends on quantifying vegetation functional diversity. However, representing this diversity at the global scale is challenging. Typically, in Earth system models, characterization of plant diversity has been limited to grouping related species into plant functional types (PFTs), with all trait variation in a PFT collapsed into a single mean value that is applied globally. Using the largest global plant trait database and state of the art Bayesian modeling, we created fine-grained global maps of plant trait distributions that can be applied to Earth system models. Focusing on a set of plant traits closely coupled to photosynthesis and foliar respiration - specific leaf area (SLA) and dry mass-based concentrations of leaf nitrogen (Nm) and phosphorus (Pm), we characterize how traits vary within and among over 50,000 ?50×50-km cells across the entire vegetated land surface. We do this in several ways - without defining the PFT of each grid cell and using 4 or 14 PFTs; each model's predictions are evaluated against out-of-sample data. This endeavor advances prior trait mapping by generating global maps that preserve variability across scales by using modern Bayesian spatial statistical modeling in combination with a database over three times larger than that in previous analyses. Our maps reveal that the most diverse grid cells possess trait variability close to the range of global PFT means. |
publishDate |
2017 |
dc.date.created.spa.fl_str_mv |
2017 |
dc.date.accessioned.none.fl_str_mv |
2020-05-25T23:58:31Z |
dc.date.available.none.fl_str_mv |
2020-05-25T23:58:31Z |
dc.type.eng.fl_str_mv |
article |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.spa.spa.fl_str_mv |
Artículo |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.1073/pnas.1708984114 |
dc.identifier.issn.none.fl_str_mv |
10916490 00278424 |
dc.identifier.uri.none.fl_str_mv |
https://repository.urosario.edu.co/handle/10336/22879 |
url |
https://doi.org/10.1073/pnas.1708984114 https://repository.urosario.edu.co/handle/10336/22879 |
identifier_str_mv |
10916490 00278424 |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.relation.citationEndPage.none.fl_str_mv |
E10946 |
dc.relation.citationIssue.none.fl_str_mv |
No. 51 |
dc.relation.citationStartPage.none.fl_str_mv |
E10937 |
dc.relation.citationTitle.none.fl_str_mv |
Proceedings of the National Academy of Sciences of the United States of America |
dc.relation.citationVolume.none.fl_str_mv |
Vol. 114 |
dc.relation.ispartof.spa.fl_str_mv |
Proceedings of the National Academy of Sciences of the United States of America, ISSN:10916490, 00278424, Vol.114, No.51 (2017); pp. E10937-E10946 |
dc.relation.uri.spa.fl_str_mv |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85038871701&doi=10.1073%2fpnas.1708984114&partnerID=40&md5=bc50785f52376a4305a7bc29eb72ab2c |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.acceso.spa.fl_str_mv |
Abierto (Texto Completo) |
rights_invalid_str_mv |
Abierto (Texto Completo) http://purl.org/coar/access_right/c_abf2 |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
National Academy of Sciences |
institution |
Universidad del Rosario |
dc.source.instname.spa.fl_str_mv |
instname:Universidad del Rosario |
dc.source.reponame.spa.fl_str_mv |
reponame:Repositorio Institucional EdocUR |
repository.name.fl_str_mv |
Repositorio institucional EdocUR |
repository.mail.fl_str_mv |
edocur@urosario.edu.co |
_version_ |
1814167732061470720 |
spelling |
94169d31-ecc2-4187-b52e-5d9072bf4516-1a9aefb67-904c-46c4-b1d5-9ae7b4222708-1e7f2ac01-5450-4788-b404-a5fad4a2cbc9-1656bc47a-9f93-4c35-8917-d085ba3baabb-16366a06e-29b5-43c4-b777-eb80042c68ab-13ec12f69-f6cb-4b40-b541-d68fd8b1d356-18ff3a0ef-0503-4daa-b8da-a0e4453c0dbd-1ffa38352-d4f4-4b47-90aa-c86ecb0c3ded-1ec39d3fc-3d7d-4020-8dc6-4c98f9e0ec85-1671980c4-7a3e-4d6b-89b3-a385d6d374e3-1689fedc4-626d-43a8-8ecb-80ba7bff3ee0-17c078f5f-d8fd-4e94-91ef-c94fb0f67c31-1ee83775d-b19d-4645-9b4f-d8a04e23809e-11da6868a-cbab-472f-8bb5-4d944e7e3770-14cd15122-ac1b-423f-9fe3-19205a177d6c-147d0d8e2-020b-4d5f-883e-0a46b8d15b14-1f9889499-9a9c-4362-990e-ca22bb649d12-142a16363-7317-4d2a-a8ad-1c33bcc9f49e-1212c80cf-3860-4e82-a90a-cf2ac58757b9-10f28c8a7-e80a-41d1-949a-0c8abaae5fee-18b6513df-2ab0-478c-9932-412e0bda946d-1d6904284-90d9-44c8-bd76-32c1072e2d43-1e9e82b9e-73bb-44d7-be7f-9d6f5ab50710-1ededa0b5-cf76-4d7d-ac0a-5c593327ea75-1c755cfbe-ecea-43d0-8c7e-8cadb8ccf01c-119355a61-5a88-498f-9b69-341b182f8c86-199d0998d-9869-4bb9-b629-4b810ffff660-16bbdde6f-c7e0-4827-9dcc-5ea50de41403-1108abbb1-41b7-476b-b9ac-0f221f279b70-159304756-4b15-45c6-931e-b9614e37cf09-1b84da519-b2cc-49d0-b809-4a4e9bd1b82f-1eb2dc306-940c-4945-b319-3d04b480c7fa-1c3507a5d-6e98-449b-b0e8-dc6e2b013659-1cb34074c-a2fd-4c8a-95e6-9f993440dd79-147d762f7-57ec-4c42-8744-1102a5b8f52d-10bc4b1b1-705c-4225-8240-d6378edbb574-1e008095a-ab5b-455a-b7e8-b4c706fcb691-11b28b389-8b45-47b3-acd3-742caf79f274-1dd5c24fb-bd0e-407c-b3be-c6ec49819750-1a2287552-0df9-4615-ab0a-0c984a44f485-1fc192064-f6fa-42e0-acd5-217e0789b641-113d3c785-aba7-4443-a732-7c44d113bacc-1695b314b-d4a8-469d-a8da-c491359f5f67-147b1f43c-e87a-4dd5-8819-f91138286888-163092c84-4bd2-415d-ab6f-99b908d4a26b-120d54106-395a-40c6-8856-b4d1ca6e5b99-16167be89-a51e-4cd3-ba82-53fa3911954f-13f1b7c9a-d20b-4b64-aa7e-8fd96a5bd161-1c788cef9-2ae9-49dd-90dd-c99a65388b63-1f6c00cc3-c5cb-4eba-81f4-0048ad93f8b4-1dd5f360a-2d47-4aaf-88c0-7d028b0f57e9-12020-05-25T23:58:31Z2020-05-25T23:58:31Z2017Our ability to understand and predict the response of ecosystems to a changing environment depends on quantifying vegetation functional diversity. However, representing this diversity at the global scale is challenging. Typically, in Earth system models, characterization of plant diversity has been limited to grouping related species into plant functional types (PFTs), with all trait variation in a PFT collapsed into a single mean value that is applied globally. Using the largest global plant trait database and state of the art Bayesian modeling, we created fine-grained global maps of plant trait distributions that can be applied to Earth system models. Focusing on a set of plant traits closely coupled to photosynthesis and foliar respiration - specific leaf area (SLA) and dry mass-based concentrations of leaf nitrogen (Nm) and phosphorus (Pm), we characterize how traits vary within and among over 50,000 ?50×50-km cells across the entire vegetated land surface. We do this in several ways - without defining the PFT of each grid cell and using 4 or 14 PFTs; each model's predictions are evaluated against out-of-sample data. This endeavor advances prior trait mapping by generating global maps that preserve variability across scales by using modern Bayesian spatial statistical modeling in combination with a database over three times larger than that in previous analyses. Our maps reveal that the most diverse grid cells possess trait variability close to the range of global PFT means.application/pdfhttps://doi.org/10.1073/pnas.17089841141091649000278424https://repository.urosario.edu.co/handle/10336/22879engNational Academy of SciencesE10946 No. 51E10937Proceedings of the National Academy of Sciences of the United States of AmericaVol. 114Proceedings of the National Academy of Sciences of the United States of America, ISSN:10916490, 00278424, Vol.114, No.51 (2017); pp. E10937-E10946https://www.scopus.com/inward/record.uri?eid=2-s2.0-85038871701&doi=10.1073%2fpnas.1708984114&partnerID=40&md5=bc50785f52376a4305a7bc29eb72ab2cAbierto (Texto Completo)http://purl.org/coar/access_right/c_abf2instname:Universidad del Rosarioreponame:Repositorio Institucional EdocURNitrogenPhosphorusArticleBayes theoremConcentration (parameters)Data baseEnvironmentEvergreenLeaf areaLeaf litterModelNonhumanPlantPredictionPriority journalEcosystemGeographyPlant dispersalQuantitative traitSpatial analysisStatistical modelEcosystemEnvironmentGeographyPlant dispersalPlantsSpatial analysisBayesian modelingClimateGlobalPlant traitsSpatial statisticsstatisticalheritableModelsQuantitative traitMapping local and global variability in plant trait distributionsarticleArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501Butler, Ethan E.Datta, AbhirupFlores-Moreno, HabacucChen, MingWythers, Kirk R.Fazayeli, FaridehBanerjee, ArindamAtkin, Owen K.Kattge, JensAmiaud, BernardBlonder, BenjaminBoenisch, GerhardBond-Lamberty, BenBrown, Kerry A.Byun, ChaehoCampetella, GiandiegoCerabolini, Bruno E. L.Cornelissen, Johannes H. C.Craine, Joseph M.Craven, Dylande Vries, Franciska T.Díaz, SandraDomingues, Tomas F.Forey, EstelleGonzález-Melo, AndrésGross, NicolasHan, WenxuanHattingh, Wesley N.Hickler, ThomasJansen, StevenKramer, KoenKraft, Nathan J. B.Kurokawa, HirokoLaughlin, Daniel C.Meir, PatrickMinden, VanessaNiinemets, ÜloOnoda, YusukePeñuelas, JosepRead, QuentinSack, LawrenSchamp, BrandonSoudzilovskaia, Nadejda A.Spasojevic, Marko J.Sosinski, EnioThornton, Peter E.Valladares, Fernandovan Bodegom, Peter M.Williams, MathewWirth, ChristianReich, Peter B.10336/22879oai:repository.urosario.edu.co:10336/228792022-05-02 07:37:14.396https://repository.urosario.edu.coRepositorio institucional EdocURedocur@urosario.edu.co |