Mapping local and global variability in plant trait distributions

Our ability to understand and predict the response of ecosystems to a changing environment depends on quantifying vegetation functional diversity. However, representing this diversity at the global scale is challenging. Typically, in Earth system models, characterization of plant diversity has been...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2017
Institución:
Universidad del Rosario
Repositorio:
Repositorio EdocUR - U. Rosario
Idioma:
eng
OAI Identifier:
oai:repository.urosario.edu.co:10336/22879
Acceso en línea:
https://doi.org/10.1073/pnas.1708984114
https://repository.urosario.edu.co/handle/10336/22879
Palabra clave:
Nitrogen
Phosphorus
Article
Bayes theorem
Concentration (parameters)
Data base
Environment
Evergreen
Leaf area
Leaf litter
Model
Nonhuman
Plant
Prediction
Priority journal
Ecosystem
Geography
Plant dispersal
Quantitative trait
Spatial analysis
Statistical model
Ecosystem
Environment
Geography
Plant dispersal
Plants
Spatial analysis
Bayesian modeling
Climate
Global
Plant traits
Spatial statistics
statistical
heritable
Models
Quantitative trait
Rights
License
Abierto (Texto Completo)
id EDOCUR2_1363cbc92bde841da63b3d52f8bb723d
oai_identifier_str oai:repository.urosario.edu.co:10336/22879
network_acronym_str EDOCUR2
network_name_str Repositorio EdocUR - U. Rosario
repository_id_str
dc.title.spa.fl_str_mv Mapping local and global variability in plant trait distributions
title Mapping local and global variability in plant trait distributions
spellingShingle Mapping local and global variability in plant trait distributions
Nitrogen
Phosphorus
Article
Bayes theorem
Concentration (parameters)
Data base
Environment
Evergreen
Leaf area
Leaf litter
Model
Nonhuman
Plant
Prediction
Priority journal
Ecosystem
Geography
Plant dispersal
Quantitative trait
Spatial analysis
Statistical model
Ecosystem
Environment
Geography
Plant dispersal
Plants
Spatial analysis
Bayesian modeling
Climate
Global
Plant traits
Spatial statistics
statistical
heritable
Models
Quantitative trait
title_short Mapping local and global variability in plant trait distributions
title_full Mapping local and global variability in plant trait distributions
title_fullStr Mapping local and global variability in plant trait distributions
title_full_unstemmed Mapping local and global variability in plant trait distributions
title_sort Mapping local and global variability in plant trait distributions
dc.subject.keyword.spa.fl_str_mv Nitrogen
Phosphorus
Article
Bayes theorem
Concentration (parameters)
Data base
Environment
Evergreen
Leaf area
Leaf litter
Model
Nonhuman
Plant
Prediction
Priority journal
Ecosystem
Geography
Plant dispersal
Quantitative trait
Spatial analysis
Statistical model
Ecosystem
Environment
Geography
Plant dispersal
Plants
Spatial analysis
Bayesian modeling
Climate
Global
Plant traits
Spatial statistics
topic Nitrogen
Phosphorus
Article
Bayes theorem
Concentration (parameters)
Data base
Environment
Evergreen
Leaf area
Leaf litter
Model
Nonhuman
Plant
Prediction
Priority journal
Ecosystem
Geography
Plant dispersal
Quantitative trait
Spatial analysis
Statistical model
Ecosystem
Environment
Geography
Plant dispersal
Plants
Spatial analysis
Bayesian modeling
Climate
Global
Plant traits
Spatial statistics
statistical
heritable
Models
Quantitative trait
dc.subject.keyword.eng.fl_str_mv statistical
heritable
Models
Quantitative trait
description Our ability to understand and predict the response of ecosystems to a changing environment depends on quantifying vegetation functional diversity. However, representing this diversity at the global scale is challenging. Typically, in Earth system models, characterization of plant diversity has been limited to grouping related species into plant functional types (PFTs), with all trait variation in a PFT collapsed into a single mean value that is applied globally. Using the largest global plant trait database and state of the art Bayesian modeling, we created fine-grained global maps of plant trait distributions that can be applied to Earth system models. Focusing on a set of plant traits closely coupled to photosynthesis and foliar respiration - specific leaf area (SLA) and dry mass-based concentrations of leaf nitrogen (Nm) and phosphorus (Pm), we characterize how traits vary within and among over 50,000 ?50×50-km cells across the entire vegetated land surface. We do this in several ways - without defining the PFT of each grid cell and using 4 or 14 PFTs; each model's predictions are evaluated against out-of-sample data. This endeavor advances prior trait mapping by generating global maps that preserve variability across scales by using modern Bayesian spatial statistical modeling in combination with a database over three times larger than that in previous analyses. Our maps reveal that the most diverse grid cells possess trait variability close to the range of global PFT means.
publishDate 2017
dc.date.created.spa.fl_str_mv 2017
dc.date.accessioned.none.fl_str_mv 2020-05-25T23:58:31Z
dc.date.available.none.fl_str_mv 2020-05-25T23:58:31Z
dc.type.eng.fl_str_mv article
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.spa.spa.fl_str_mv Artículo
dc.identifier.doi.none.fl_str_mv https://doi.org/10.1073/pnas.1708984114
dc.identifier.issn.none.fl_str_mv 10916490
00278424
dc.identifier.uri.none.fl_str_mv https://repository.urosario.edu.co/handle/10336/22879
url https://doi.org/10.1073/pnas.1708984114
https://repository.urosario.edu.co/handle/10336/22879
identifier_str_mv 10916490
00278424
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.citationEndPage.none.fl_str_mv E10946
dc.relation.citationIssue.none.fl_str_mv No. 51
dc.relation.citationStartPage.none.fl_str_mv E10937
dc.relation.citationTitle.none.fl_str_mv Proceedings of the National Academy of Sciences of the United States of America
dc.relation.citationVolume.none.fl_str_mv Vol. 114
dc.relation.ispartof.spa.fl_str_mv Proceedings of the National Academy of Sciences of the United States of America, ISSN:10916490, 00278424, Vol.114, No.51 (2017); pp. E10937-E10946
dc.relation.uri.spa.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-85038871701&doi=10.1073%2fpnas.1708984114&partnerID=40&md5=bc50785f52376a4305a7bc29eb72ab2c
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.acceso.spa.fl_str_mv Abierto (Texto Completo)
rights_invalid_str_mv Abierto (Texto Completo)
http://purl.org/coar/access_right/c_abf2
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv National Academy of Sciences
institution Universidad del Rosario
dc.source.instname.spa.fl_str_mv instname:Universidad del Rosario
dc.source.reponame.spa.fl_str_mv reponame:Repositorio Institucional EdocUR
repository.name.fl_str_mv Repositorio institucional EdocUR
repository.mail.fl_str_mv edocur@urosario.edu.co
_version_ 1814167732061470720
spelling 94169d31-ecc2-4187-b52e-5d9072bf4516-1a9aefb67-904c-46c4-b1d5-9ae7b4222708-1e7f2ac01-5450-4788-b404-a5fad4a2cbc9-1656bc47a-9f93-4c35-8917-d085ba3baabb-16366a06e-29b5-43c4-b777-eb80042c68ab-13ec12f69-f6cb-4b40-b541-d68fd8b1d356-18ff3a0ef-0503-4daa-b8da-a0e4453c0dbd-1ffa38352-d4f4-4b47-90aa-c86ecb0c3ded-1ec39d3fc-3d7d-4020-8dc6-4c98f9e0ec85-1671980c4-7a3e-4d6b-89b3-a385d6d374e3-1689fedc4-626d-43a8-8ecb-80ba7bff3ee0-17c078f5f-d8fd-4e94-91ef-c94fb0f67c31-1ee83775d-b19d-4645-9b4f-d8a04e23809e-11da6868a-cbab-472f-8bb5-4d944e7e3770-14cd15122-ac1b-423f-9fe3-19205a177d6c-147d0d8e2-020b-4d5f-883e-0a46b8d15b14-1f9889499-9a9c-4362-990e-ca22bb649d12-142a16363-7317-4d2a-a8ad-1c33bcc9f49e-1212c80cf-3860-4e82-a90a-cf2ac58757b9-10f28c8a7-e80a-41d1-949a-0c8abaae5fee-18b6513df-2ab0-478c-9932-412e0bda946d-1d6904284-90d9-44c8-bd76-32c1072e2d43-1e9e82b9e-73bb-44d7-be7f-9d6f5ab50710-1ededa0b5-cf76-4d7d-ac0a-5c593327ea75-1c755cfbe-ecea-43d0-8c7e-8cadb8ccf01c-119355a61-5a88-498f-9b69-341b182f8c86-199d0998d-9869-4bb9-b629-4b810ffff660-16bbdde6f-c7e0-4827-9dcc-5ea50de41403-1108abbb1-41b7-476b-b9ac-0f221f279b70-159304756-4b15-45c6-931e-b9614e37cf09-1b84da519-b2cc-49d0-b809-4a4e9bd1b82f-1eb2dc306-940c-4945-b319-3d04b480c7fa-1c3507a5d-6e98-449b-b0e8-dc6e2b013659-1cb34074c-a2fd-4c8a-95e6-9f993440dd79-147d762f7-57ec-4c42-8744-1102a5b8f52d-10bc4b1b1-705c-4225-8240-d6378edbb574-1e008095a-ab5b-455a-b7e8-b4c706fcb691-11b28b389-8b45-47b3-acd3-742caf79f274-1dd5c24fb-bd0e-407c-b3be-c6ec49819750-1a2287552-0df9-4615-ab0a-0c984a44f485-1fc192064-f6fa-42e0-acd5-217e0789b641-113d3c785-aba7-4443-a732-7c44d113bacc-1695b314b-d4a8-469d-a8da-c491359f5f67-147b1f43c-e87a-4dd5-8819-f91138286888-163092c84-4bd2-415d-ab6f-99b908d4a26b-120d54106-395a-40c6-8856-b4d1ca6e5b99-16167be89-a51e-4cd3-ba82-53fa3911954f-13f1b7c9a-d20b-4b64-aa7e-8fd96a5bd161-1c788cef9-2ae9-49dd-90dd-c99a65388b63-1f6c00cc3-c5cb-4eba-81f4-0048ad93f8b4-1dd5f360a-2d47-4aaf-88c0-7d028b0f57e9-12020-05-25T23:58:31Z2020-05-25T23:58:31Z2017Our ability to understand and predict the response of ecosystems to a changing environment depends on quantifying vegetation functional diversity. However, representing this diversity at the global scale is challenging. Typically, in Earth system models, characterization of plant diversity has been limited to grouping related species into plant functional types (PFTs), with all trait variation in a PFT collapsed into a single mean value that is applied globally. Using the largest global plant trait database and state of the art Bayesian modeling, we created fine-grained global maps of plant trait distributions that can be applied to Earth system models. Focusing on a set of plant traits closely coupled to photosynthesis and foliar respiration - specific leaf area (SLA) and dry mass-based concentrations of leaf nitrogen (Nm) and phosphorus (Pm), we characterize how traits vary within and among over 50,000 ?50×50-km cells across the entire vegetated land surface. We do this in several ways - without defining the PFT of each grid cell and using 4 or 14 PFTs; each model's predictions are evaluated against out-of-sample data. This endeavor advances prior trait mapping by generating global maps that preserve variability across scales by using modern Bayesian spatial statistical modeling in combination with a database over three times larger than that in previous analyses. Our maps reveal that the most diverse grid cells possess trait variability close to the range of global PFT means.application/pdfhttps://doi.org/10.1073/pnas.17089841141091649000278424https://repository.urosario.edu.co/handle/10336/22879engNational Academy of SciencesE10946 No. 51E10937Proceedings of the National Academy of Sciences of the United States of AmericaVol. 114Proceedings of the National Academy of Sciences of the United States of America, ISSN:10916490, 00278424, Vol.114, No.51 (2017); pp. E10937-E10946https://www.scopus.com/inward/record.uri?eid=2-s2.0-85038871701&doi=10.1073%2fpnas.1708984114&partnerID=40&md5=bc50785f52376a4305a7bc29eb72ab2cAbierto (Texto Completo)http://purl.org/coar/access_right/c_abf2instname:Universidad del Rosarioreponame:Repositorio Institucional EdocURNitrogenPhosphorusArticleBayes theoremConcentration (parameters)Data baseEnvironmentEvergreenLeaf areaLeaf litterModelNonhumanPlantPredictionPriority journalEcosystemGeographyPlant dispersalQuantitative traitSpatial analysisStatistical modelEcosystemEnvironmentGeographyPlant dispersalPlantsSpatial analysisBayesian modelingClimateGlobalPlant traitsSpatial statisticsstatisticalheritableModelsQuantitative traitMapping local and global variability in plant trait distributionsarticleArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501Butler, Ethan E.Datta, AbhirupFlores-Moreno, HabacucChen, MingWythers, Kirk R.Fazayeli, FaridehBanerjee, ArindamAtkin, Owen K.Kattge, JensAmiaud, BernardBlonder, BenjaminBoenisch, GerhardBond-Lamberty, BenBrown, Kerry A.Byun, ChaehoCampetella, GiandiegoCerabolini, Bruno E. L.Cornelissen, Johannes H. C.Craine, Joseph M.Craven, Dylande Vries, Franciska T.Díaz, SandraDomingues, Tomas F.Forey, EstelleGonzález-Melo, AndrésGross, NicolasHan, WenxuanHattingh, Wesley N.Hickler, ThomasJansen, StevenKramer, KoenKraft, Nathan J. B.Kurokawa, HirokoLaughlin, Daniel C.Meir, PatrickMinden, VanessaNiinemets, ÜloOnoda, YusukePeñuelas, JosepRead, QuentinSack, LawrenSchamp, BrandonSoudzilovskaia, Nadejda A.Spasojevic, Marko J.Sosinski, EnioThornton, Peter E.Valladares, Fernandovan Bodegom, Peter M.Williams, MathewWirth, ChristianReich, Peter B.10336/22879oai:repository.urosario.edu.co:10336/228792022-05-02 07:37:14.396https://repository.urosario.edu.coRepositorio institucional EdocURedocur@urosario.edu.co