Identificación de especies del género Aedes (Diptera; Culicidae) y detección de infección por Arbovirus (CHIKV, DENV, MAYV, ZIKV) circulantes en tres municipios de Arauca, Colombia.

La identificación de las especies de vectores y su infección natural mediante RT- PCR (reacción en cadena de la polimerasa con transcriptasa inversa) son datos importantes para el control de la transmisión de las arbovirosis, lo cual se lleva a cabo principalmente en países como México y Brasil. Sin...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2020
Institución:
Universidad del Rosario
Repositorio:
Repositorio EdocUR - U. Rosario
Idioma:
spa
OAI Identifier:
oai:repository.urosario.edu.co:10336/28211
Acceso en línea:
https://doi.org/10.48713/10336_28211
https://repository.urosario.edu.co/handle/10336/28211
Palabra clave:
Arbovirus
Dengue
Zika
Chikungunya
Mayaro
Aedes
Otros invertebrados
Incidencia & prevención de la enfermedad
Arbovirus
Dengue
Zika
Chikungunya
Mayaro
Aedes
Rights
License
Abierto (Texto Completo)
id EDOCUR2_100d0ed331082d906b0d8b16d29b0f75
oai_identifier_str oai:repository.urosario.edu.co:10336/28211
network_acronym_str EDOCUR2
network_name_str Repositorio EdocUR - U. Rosario
repository_id_str
dc.title.spa.fl_str_mv Identificación de especies del género Aedes (Diptera; Culicidae) y detección de infección por Arbovirus (CHIKV, DENV, MAYV, ZIKV) circulantes en tres municipios de Arauca, Colombia.
dc.title.TranslatedTitle.eng.fl_str_mv Identification of species of the genus Aedes (Diptera; Culicidae) and detection of infection by Arbovirus (CHIKV, DENV, MAYV, ZIKV) circulating in three municipalities of Arauca, Colombia.
title Identificación de especies del género Aedes (Diptera; Culicidae) y detección de infección por Arbovirus (CHIKV, DENV, MAYV, ZIKV) circulantes en tres municipios de Arauca, Colombia.
spellingShingle Identificación de especies del género Aedes (Diptera; Culicidae) y detección de infección por Arbovirus (CHIKV, DENV, MAYV, ZIKV) circulantes en tres municipios de Arauca, Colombia.
Arbovirus
Dengue
Zika
Chikungunya
Mayaro
Aedes
Otros invertebrados
Incidencia & prevención de la enfermedad
Arbovirus
Dengue
Zika
Chikungunya
Mayaro
Aedes
title_short Identificación de especies del género Aedes (Diptera; Culicidae) y detección de infección por Arbovirus (CHIKV, DENV, MAYV, ZIKV) circulantes en tres municipios de Arauca, Colombia.
title_full Identificación de especies del género Aedes (Diptera; Culicidae) y detección de infección por Arbovirus (CHIKV, DENV, MAYV, ZIKV) circulantes en tres municipios de Arauca, Colombia.
title_fullStr Identificación de especies del género Aedes (Diptera; Culicidae) y detección de infección por Arbovirus (CHIKV, DENV, MAYV, ZIKV) circulantes en tres municipios de Arauca, Colombia.
title_full_unstemmed Identificación de especies del género Aedes (Diptera; Culicidae) y detección de infección por Arbovirus (CHIKV, DENV, MAYV, ZIKV) circulantes en tres municipios de Arauca, Colombia.
title_sort Identificación de especies del género Aedes (Diptera; Culicidae) y detección de infección por Arbovirus (CHIKV, DENV, MAYV, ZIKV) circulantes en tres municipios de Arauca, Colombia.
dc.contributor.advisor.none.fl_str_mv Ramírez, Juan David
Hernandez, Diana Carolina
dc.subject.spa.fl_str_mv Arbovirus
Dengue
Zika
Chikungunya
Mayaro
Aedes
topic Arbovirus
Dengue
Zika
Chikungunya
Mayaro
Aedes
Otros invertebrados
Incidencia & prevención de la enfermedad
Arbovirus
Dengue
Zika
Chikungunya
Mayaro
Aedes
dc.subject.ddc.spa.fl_str_mv Otros invertebrados
Incidencia & prevención de la enfermedad
dc.subject.keyword.spa.fl_str_mv Arbovirus
Dengue
Zika
Chikungunya
Mayaro
Aedes
description La identificación de las especies de vectores y su infección natural mediante RT- PCR (reacción en cadena de la polimerasa con transcriptasa inversa) son datos importantes para el control de la transmisión de las arbovirosis, lo cual se lleva a cabo principalmente en países como México y Brasil. Sin embargo, esta información para el oriente de Colombia es limitada. Por lo cual, el siguiente estudio tuvo como objetivo la identificación (morfológica y molecular) de las especies del genero Aedes presentes en tres municipios (Saravena, Arauquita y Tame) del departamento de Arauca, Colombia. Así como, la detección de la infección por arbovirus (Dengue, Chikungunya, Zika y Mayaro), mediante la amplificación del material genético por RT-PCR. Los resultados muestran la coexistencia de Ae. aegypti y Ae. albopictus en la zona urbana de los municipios de Saravena y Arauquita, donde los individuos se encontraron infectados por Dengue (DENV-1) y Chikungunya (CHIKV). El arbovirus con mayor frecuencia es el DENV-1 con una tasa de infección de 24,3% (27/111) para Ae. aegypti y 39,7% (23/58) para Ae. albopictus. Seguido por CHIKV con una tasa de infección de 1,8% (2/111) para Ae. aegypti y 6,9% (4/58) para Ae. albopictus. Se obtuvo un 4.5% (5/111) de infección mixta por DENV-1 y CHIKV en la especie Ae. aegypti y no se detectó infección por Zika (ZIKV) y Mayaro (MAYV). Finalmente, el presente estudio propone el procesamiento individual de los insectos y no por pools para la detección de los arbovirus dado que de esta manera se obtiene una tasa de infección más acertada y se logra evidenciar las infecciones mixtas.
publishDate 2020
dc.date.accessioned.none.fl_str_mv 2020-08-20T22:39:00Z
dc.date.available.none.fl_str_mv 2020-08-20T22:39:00Z
dc.date.created.none.fl_str_mv 2020-03-07
dc.type.eng.fl_str_mv bachelorThesis
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.document.spa.fl_str_mv Artículo
dc.type.spa.spa.fl_str_mv Trabajo de grado
dc.identifier.doi.none.fl_str_mv https://doi.org/10.48713/10336_28211
dc.identifier.uri.none.fl_str_mv https://repository.urosario.edu.co/handle/10336/28211
url https://doi.org/10.48713/10336_28211
https://repository.urosario.edu.co/handle/10336/28211
dc.language.iso.spa.fl_str_mv spa
language spa
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.acceso.spa.fl_str_mv Abierto (Texto Completo)
rights_invalid_str_mv Abierto (Texto Completo)
http://purl.org/coar/access_right/c_abf2
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad del Rosario
dc.publisher.department.spa.fl_str_mv Facultad de Ciencias Naturales y Matemáticas
dc.publisher.program.spa.fl_str_mv Biología
institution Universidad del Rosario
dc.source.bibliographicCitation.spa.fl_str_mv Atencia, M. C., Pérez, M. D. J., Caldera, S. M., Jaramillo, M. C., & Bejarano, E. E. (2018). Genetic variability of Aedes aegypti in the department of Sucre, Colombia, by analysis of the nucleotide sequence of the mitochondrial ND4 gene. Biomédica, 38(2), 267-276.
Azevedo, R. S., Silva, E. V., Carvalho, V. L., Rodrigues, S. G., Neto, J. P. N., Monteiro, H. A., ... & Vasconcelos, P. F. (2009). Mayaro fever virus, Brazilian amazon. Emerging infectious diseases, 15(11), 1830.
Barbosa, R. M. R., Melo-Santos, M. A. V. D., Silveira Jr, J. C., Silva-Filha, M. H. N. L., Souza, W. V., Oliveira, C. M. F. D., ... & Nakazawa, M. M. (2020). Infestation of an endemic arbovirus area by sympatric populations of Aedes aegypti and Aedes albopictus in Brazil. Memórias do Instituto Oswaldo Cruz, 115.
Barmak, D. H., Dorso, C. O., & Otero, M. (2016). Modelling dengue epidemic spreading with human mobility. Physica A: Statistical Mechanics and its Applications, 447, 129-140.
Beaty, B. J., Black, W. C., Eisen, L., Flores, A. E., García-Rejón, J. E., Loroño-Pino, M., & Saavedra-Rodriguez, K. (2016). The intensifying storm: Domestication of Aedes aegypti, urbanization of arboviruses, and emerging insecticide resistance. In Global Health Im-pacts of Vector-Borne Diseases: Workshop Summary, National Academies Press.
Boletín Epidemiológico Semanal (BES) Semana Epidemiológica 22, 24 al 30 de mayo (2020). Obtenido de: https://www.ins.gov.co/buscadoreventos/BoletinEpidemiologico/2020_Bolet%C3%ADn_epidemiológico_semana%2022.pd f
Bracco, J. E., Capurro, M. L., Lourenço-de-Oliveira, R., & Sallum, M. A. M. (2007). Genetic variability of Aedes aegypti in the Americas using a mitochondrial gene: evidence of multiple introductions. Memorias do Instituto Oswaldo Cruz, 102(5), 573-580.
Caldera, S. M., Jaramillo, M. C., Cochero, S., Pérez Doria, A., & Bejarano, E. E. (2019). Diferencias genéticas entre poblaciones de Aedes aegypti de municipios del norte de Colombia, con baja y alta incidencia de dengue. Revista.
Camacho-Gómez, M., & Zuleta, L. P. (2019). Primer reporte de Aedes (Stegomyia) albopictus (Skuse) en la Orinoquía colombiana. Biomédica, 39(4). Camacho-Gómez & Zuleta, 2019
Calle-Tobón, A., Pérez-Pérez, J., Rojo, R., Rojas-Montoya, W., Triana-Chavez, O., RúaUribe, G., & Gómez-Palacio, A. (2020). Surveillance of Zika virus in field-caught Aedes aegypti and Aedes albopictus suggests important role of male mosquitoes in viral populations maintenance in Medellín, Colombia. Infection, Genetics and Evolution, 104434.
Caron, M., Paupy, C., Grard, G., Becquart, P., Mombo, I., Nso, B. B. B., ... & Leroy, E. M. (2012). Recent introduction and rapid dissemination of Chikungunya virus and Dengue virus serotype 2 associated with human and mosquito coinfections in Gabon, central Africa. Clinical infectious diseases, 55(6), e45-e53.
Carvajal, J. J., Honorio, N. A., Díaz, S. P., Ruiz, E. R., Asprilla, J., Ardila, S., & Parra-Henao, G. (2016). Detección de Aedes albopictus (Skuse)(Diptera: Culicidae) en el municipio de Istmina, Chocó, Colombia. Biomédica, 36(3), 438-446
Cheong, Y. L., Leitão, P. J., & Lakes, T. (2014). Assessment of land use factors associated with dengue cases in Malaysia using Boosted Regression Trees. Spatial and spatio-temporal epidemiology, 10, 75-84.
Claeys, C., Robles, C., Bertaudiere-Montes, V., Deschamps-Cottin, M., Megnifo, H. T., Pelagie-Moutenda, R., ... & Bravet, P. (2016). Socio-ecological factors contributing to the exposure of human populations to mosquito bites that transmit dengue fever, chikungunya and zika viruses: a comparison between mainland France and the French Antilles. Environnement, Risques & Santé, 15(4), 318-325.
Cook, R. J. (2005). Kappa. Encyclopedia of biostatistics, 4.
Cova-Garcia, P., Sutil, E., & Rausseo, J. A. (1966). Mosquitos (Culicinos) de Venezuela: Tomo I and Tomo II. Ministerio de Sanidad y Asistencia Social, Caracas.
de la Cruz, C. H., Martinez, S. L. A., Failoc-Rojas, V. E., & Aguilar-Gamboa, F. R. (2019). Momento de considerar otras arbovirosis luego del virus mayaro. Revista Cubana de Medicina General Integral, 35(2).
Duong, V., Lambrechts, L., Paul, R. E., Ly, S., Lay, R. S., Long, K. C., ... & Buchy, P. (2015). Asymptomatic humans transmit dengue virus to mosquitoes. Proceedings of the National Academy of Sciences, 112(47), 14688-14693.
Eiras, A. E., Pires, S. F., Staunton, K. M., Paixão, K. S., Resende, M. C., Silva, H. A., ... & Ritchie, S. A. (2018). A high-risk Zika and dengue transmission hub: virus detections in mosquitoes at a Brazilian university campus. Parasites & vectors, 11(1), 359.
Espinal, M. A., Andrus, J. K., Jauregui, B., Hull Waterman, S., Morens, D. M., Santos, J. I., ... & Olson, D. (2019). Arbovirosis emergentes y reemergentes transmitidas por Aedes en la Región de las Américas: implicaciones en materia de políticas de salud. Rev Panam Salud Publica; 43, may 2019.
Faye, O., Diallo, D., Diallo, M., Weidmann, M., & Sall, A. A. (2013). Quantitative real-time PCR detection of Zika virus and evaluation with field-caught mosquitoes. Virol J, 10, 311. doi:10.1186/1743-422x-10-311
Failloux, A. B., Vazeille, M., & Rodhain, F. (2002). Geographic genetic variation in populations of the dengue virus vector Aedes aegypti. Journal of Molecular Evolution, 55(6), 653-663.
Ferreira-de-Brito, A., Ribeiro, I. P., Miranda, R. M. D., Fernandes, R. S., Campos, S. S., Silva, K. A. B. D., ... & Lourenço-de-Oliveira, R. (2016). First detection of natural infection of Aedes aegypti with Zika virus in Brazil and throughout South America. Memórias do Instituto Oswaldo Cruz, 111(10), 655-658.
Freitas, R. M. D. (2010). A review on the ecological determinants of Aedes aegypti (Diptera: Culicidae) vectorial capacity.
Forattini, O. P. (1965). Entomologia médica: culicini: culex, Aedes e Psorophora (Vol. 2). Faculdade de Higiene e Saúde Pública, Depto. de Parasitología.
Garcia-Rejon, J. E., Ulloa-Garcia, A., Cigarroa-Toledo, N., Pech-May, A., MachainWilliams, C., Cetina-Trejo, R. C., ... & Baak-Baak, C. M. (2018). Study of Aedes aegypti population with emphasis on the gonotrophic cycle length and identification of arboviruses: implications for vector management in cemeteries. Revista do Instituto de Medicina Tropical de São Paulo, 60.
Gómez-Palacio, A., Suaza-Vasco, J., Castaño, S., Triana, O., & Uribe, S. (2017). Aedes albopictus (Skuse, 1894) infected with the American-Asian genotype of dengue type 2 virus in Medellín suggests its possible role as vector of dengue fever in Colombia. Biomédica, 37, 135-142
Gu, W., Lampman, R., & Novak, R. J. (2004). Assessment of arbovirus vector infection rates using variable size pooling. Medical and veterinary entomology, 18(2), 200-204
Gutiérrez‐Bugallo, G., Rodríguez‐Roche, R., Díaz, G., Pérez, M., Mendizábal, M. E., Peraza, I., ... & Guzmán, M. G. (2018). Spatio‐temporal distribution of vertically transmitted dengue viruses by Aedes aegypti (Diptera: Culicidae) from Arroyo Naranjo, Havana, Cuba. Tropical Medicine & International Health, 23(12), 1342-1349.
Gómez-Palacio, A., Suaza-Vasco, J., Castaño, S., Triana, O., & Uribe, S. (2017). Aedes albopictus (Skuse, 1894) infected with the American-Asian genotype of dengue type 2 virus in Medellín suggests its possible role as vector of dengue fever in Colombia. Biomédica, 37, 135-142.
Hall, R. J., Wang, J., Todd, A. K., Bissielo, A. B., Yen, S., Strydom, H., ... & Peacey, M. (2014). Evaluation of rapid and simple techniques for the enrichment of viruses prior to metagenomic virus discovery. Journal of virological methods, 195, 194-204.
Higa, Y., Yen, N. T., Kawada, H., Son, T. H., Hoa, N. T., & Takagi, M. (2010). Geographic distribution of Aedes aegypti and Aedes albopictus collected from used tires in Vietnam. Journal of the American Mosquito Control Association, 26(1), 1-9.
Hoyos-López, R., Atencia-Pineda, M. C., & Gallego-Gómez, J. C. (2019). Phylogenetic analysis of Dengue-2 serotypes circulating in mangroves in Northern Cordoba,
Hoyos-López, R., Suaza-Vasco, J., Rúa-Uribe, G., Uribe, S., & Gallego-Gómez, J. C. (2016). Molecular detection of flaviviruses and alphaviruses in mosquitoes (Diptera: Culicidae) from coastal ecosystems in the Colombian Caribbean. Memórias do Instituto Oswaldo Cruz, 111(10), 625-634.
Jaimes-Duenez, J., Arboleda, S., Triana-Chávez, O., & Gomez-Palacio, A. (2015). Spatiotemporal distribution of Aedes aegypti (Diptera: Culicidae) mitochondrial lineages in cities with distinct dengue incidence rates suggests complex population dynamics of the dengue vector in Colombia. PLoS Negl Trop Dis, 9(4), e0003553.
Joyce, A. L., Torres, M. M., Torres, R., & Moreno, M. (2018). Genetic variability of the Aedes aegypti (Diptera: Culicidae) mosquito in El Salvador, vector of dengue, yellow fever, chikungunya and Zika. Parasites & vectors, 11(1), 637.
Kraemer, M. U., Sinka, M. E., Duda, K. A., Mylne, A. Q., Shearer, F. M., Barker, C. M., ... & Hendrickx, G. (2015). The global distribution of the arbovirus vectors Aedes aegypti and Ae. albopictus. elife, 4, e08347
Kraemer, M. U., Reiner, R. C., Brady, O. J., Messina, J. P., Gilbert, M., Pigott, D. M., ... & Shirude, S. (2019). Past and future spread of the arbovirus vectors Aedes aegypti and Aedes albopictus. Nature microbiology, 4(5), 854.
Lanciotti, R. S., Kosoy, O. L., Laven, J. J., Panella, A. J., Velez, J. O., Lambert, A. J., & Campbell, G. L. (2007). Chikungunya virus in US travelers returning from India, 2006. Emerg Infect Dis, 13(5), 764-767. doi:10.3201/eid1305.070015
Lee, Y., Schmidt, H., Collier, T. C., Conner, W. R., Hanemaaijer, M. J., Slatkin, M., ... & Mulligan, F. S. (2019). Genome-wide divergence among invasive populations of Aedes aegypti in California. BMC genomics, 20(1), 1-10.
Li, Y., Kamara, F., Zhou, G., Puthiyakunnon, S., Li, C., Liu, Y., ... & Chen, X. G. (2014). Urbanization increases Aedes albopictus larval habitats and accelerates mosquito development and survivorship. PLoS Negl Trop Dis, 8(11), e3301.
Liang, L., Jia, P., Tan, X., Chen, J., & Chen, X. (2019). Potential effects of heat waves on the population dynamics of the dengue mosquito Aedes albopictus. PLoS neglected tropical diseases, 13(7), e0007528.
Long, K. C., Ziegler, S. A., Thangamani, S., Hausser, N. L., Kochel, T. J., Higgs, S., & Tesh, R. B. (2011). Experimental transmission of Mayaro virus by Aedes aegypti. Am J Trop Med Hyg, 85(4), 750-757. doi:10.4269/ajtmh.2011.11-0359.
Lorenz, C., Ribeiro, A. F., & Chiaravalloti-Neto, F. (2019). Mayaro virus distribution in South America. Acta tropica, 198, 105093.
Lounibos, L. P., & Kramer, L. D. (2016). Invasiveness of Aedes aegypti and Aedes albopictus and vectorial capacity for chikungunya virus. The Journal of infectious diseases, 214(suppl_5), S453-S458.
Lourenço-de-Oliveira, R., Vazeille, M., Filippis, A. M. B. D., & Failloux, A. B. (2002). Oral susceptibility to yellow fever virus of Aedes aegypti from Brazil. Memorias do Instituto Oswaldo Cruz, 97(3), 437-439.
Lozano-Fuentes, S., Hayden, M. H., Welsh-Rodriguez, C., Ochoa-Martinez, C., TapiaSantos, B., Kobylinski, K. C., . . . Eisen, L. (2012). The dengue virus mosquito vector Aedes aegypti at high elevation in Mexico. Am J Trop Med Hyg, 87(5), 902-909. doi:10.4269/ajtmh.2012.12-0244.
Maia, L. M. S., Bezerra, M. C. F., Costa, M. C. S., Souza, E. M., Oliveira, M. E. B., Ribeiro, A. L. M., ... & Slhessarenko, R. D. (2019). Natural vertical infection by dengue virus serotype 4, Zika virus and Mayaro virus in Aedes (Stegomyia) aegypti and Aedes (Stegomyia) albopictus. Medical and veterinary entomology, 33(3), 437-442.
Massaro, E., Kondor, D., & Ratti, C. (2019). Assessing the interplay between human mobility and mosquito borne diseases in urban environments. Scientific reports, 9(1), 1-13
Martínez-Vega, R. A., Danis-Lozano, R., Díaz-Quijano, F. A., Velasco-Hernández, J., Santos-Luna, R., Román-Pérez, S., ... & Ramos-Castañeda, J. (2015). Peridomestic infection as a determining factor of dengue transmission. PLoS neglected tropical diseases, 9(12), e0004296.
Patsoula, E., Samanidou-Voyadjoglou, A., Spanakos, G., Kremastinou, J., Nasioulas, G., & Vakalis, N. C. (2006). Molecular and morphological characterization of Aedes albopictus in northwestern Greece and differentiation from Aedes cretinus and Aedes aegypti. Journal of medical entomology, 43(1), 40-54.
Pech-May, A., Moo-Llanes, D. A., Puerto-Avila, M. B., Casas, M., Danis-Lozano, R., Ponce, G., ... & González, C. (2016). Population genetics and ecological niche of invasive Aedes albopictus in Mexico. Acta Tropica, 157, 30-41.
Pereira, T. N., Carvalho, F. D., De Mendonça, S. F., Rocha, M. N., & Moreira, L. A. (2020). Vector competence of Aedes aegypti, Aedes albopictus, and Culex quinquefasciatus mosquitoes for Mayaro virus. PLOS Neglected Tropical Diseases, 14(4), e0007518.
Ortiz-Canamejoy, K., & Villota, A. C. (2018). Primera evidencia de Aedes albopictus en el departamento del Putumayo, Colombia. MedUNAB, 21(1), 10-15.
Rahayu, A., Saraswati, U., Supriyati, E., Kumalawati, D. A., Hermantara, R., Rovik, A., ... & Wardana, D. S. (2019). Prevalence and Distribution of Dengue Virus in Aedes aegypti in Yogyakarta City before Deployment of Wolbachia Infected Aedes aegypti. International journal of environmental research and public health, 16(10), 1742.
Ramasamy, R., Surendran, S. N., Jude, P. J., Dharshini, S., & Vinobaba, M. (2011). Larval development of Aedes aegypti and Aedes albopictus in peri-urban brackish water and its implications for transmission of arboviral diseases. PLoS neglected tropical diseases, 5(11), e1369.
Roehrig, J. T., & Lanciotti, R. S. (2009). Arboviruses. In Clinical Virology Manual, Fourth Edition (pp. 387-407). American Society of Microbiology.
Salehi Z, Najafi M (2014) RNA preservation and stabilizaton. Biochem Physiol: Open Access 3: 1-4.
Santiago, G. A., Vergne, E., Quiles, Y., Cosme, J., Vazquez, J., Medina, J. F., . . . MunozJordan, J. L. (2013). Analytical and clinical performance of the CDC real time RT-PCR 27 assay for detection and typing of dengue virus. PLoS Negl Trop Dis, 7(7), e2311. doi:10.1371/journal.pntd.0002311
Sarfraz, M. S., Tripathi, N. K., Tipdecho, T., Thongbu, T., Kerdthong, P., & Souris, M. (2012). Analyzing the spatio-temporal relationship between dengue vector larval density and land-use using factor analysis and spatial ring mapping. BMC public health, 12(1), 853.
Shope, R. E., & Meegan, J. M. (1997). Arboviruses. In Viral Infections of Humans (pp. 151- 183). Springer, Boston, MA.p.151.
Turell, M. J., Beaman, J. R., & Tammariello, R. F. (1992). Susceptibility of selected strains of Aedes aegypti and Aedes albopictus (Diptera: Culicidae) to chikungunya virus. Journal of medical entomology, 29(1), 49-53.
Velandia-Romero, M. L., Olano, V. A., Coronel-Ruiz, C., Cabezas, L., Calderón-Peláez, M. A., Castellanos, J. E., & Matiz, M. I. (2017). Detección del virus del dengue en larvas y pupas de Aedes aegypti recolectadas en áreas rurales del municipio de Anapoima, Cundinamarca, Colombia. Biomédica, 37, 193-200.
Vega-Rúa, A., Zouache, K., Girod, R., Failloux, A. B., & Lourenço-de-Oliveira, R. (2014). High level of vector competence of Aedes aegypti and Aedes albopictus from ten American countries as a crucial factor in the spread of Chikungunya virus. Journal of virology, 88(11), 6294-6306.
Villar, L. A., Rojas, D. P., Besada-Lombana, S., & Sarti, E. (2015). Epidemiological trends of dengue disease in Colombia (2000-2011): a systematic review. PLoS neglected tropical diseases, 9(3).
Walter, SD, Hildreth, SW y Beaty, BJ (1980). Estimación de las tasas de infección en poblaciones de organismos utilizando grupos de tamaño variable. American Journal of Epidemiology , 112 (1), 124-128.
Weaver, S. C., & Barrett, A. D. (2004). Transmission cycles, host range, evolution and emergence of arboviral disease. Nature Reviews Microbiology, 2(10), 789
Whiteman, A., Gomez, C., Rovira, J., Chen, G., McMillan, W. O., & Loaiza, J. (2019). Aedes Mosquito Infestation in Socioeconomically Contrasting Neighborhoods of Panama City. EcoHealth, 16(2), 210-221.
World Health Organization. (2020). Real-time RT-PCR (TaqManTM) protocol – Mayaro virus (MAYV). Obtenido de: https://www.paho.org/en/node/60626
Zamora-Delgado, J., Castaño, J. C., & Hoyos-López, R. (2015). DNA barcode sequences used to identify Aedes (Stegomyia) albopictus (Diptera: Culicidae) in La Tebaida (Quindío, Colombia). Revista Colombiana de Entomología, 41(2), 212-217
Zhu, G., Liu, T., Xiao, J., Zhang, B., Song, T., Zhang, Y., ... & Hao, Y. (2019). Effects of human mobility, temperature and mosquito control on the spatiotemporal transmission of dengue. Science of the Total Environment, 651, 969-978
dc.source.instname.spa.fl_str_mv instname:Universidad del Rosario
dc.source.reponame.spa.fl_str_mv reponame:Repositorio Institucional EdocUR
bitstream.url.fl_str_mv https://repository.urosario.edu.co/bitstreams/86d5ec7b-9686-4c68-a76e-1caa0c8d3366/download
https://repository.urosario.edu.co/bitstreams/b5c78e49-4b6c-45ed-b8c3-9ad212fc529a/download
https://repository.urosario.edu.co/bitstreams/9ce5501a-1612-4a86-a399-d5e55f2e2b0a/download
https://repository.urosario.edu.co/bitstreams/60a622ab-5454-4a07-977c-ac0162e3f272/download
bitstream.checksum.fl_str_mv fab9d9ed61d64f6ac005dee3306ae77e
57f5a22c76f4d5ec04a93be6e9bf4c27
bba96e0818a5d4c0feb2d73d715b5819
7a1a79b6ebf770c9e435dc0ba65b71e9
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio institucional EdocUR
repository.mail.fl_str_mv edocur@urosario.edu.co
_version_ 1814167710492262400
spelling Ramírez, Juan David1011716118600Hernandez, Diana Carolina3de18c45-9f0e-4f44-a6d1-417cd6fc6586600Martínez Medina, David FernandoBiólogoFull time4924639f-fb38-4462-8257-661ce94fc1906002020-08-20T22:39:00Z2020-08-20T22:39:00Z2020-03-07La identificación de las especies de vectores y su infección natural mediante RT- PCR (reacción en cadena de la polimerasa con transcriptasa inversa) son datos importantes para el control de la transmisión de las arbovirosis, lo cual se lleva a cabo principalmente en países como México y Brasil. Sin embargo, esta información para el oriente de Colombia es limitada. Por lo cual, el siguiente estudio tuvo como objetivo la identificación (morfológica y molecular) de las especies del genero Aedes presentes en tres municipios (Saravena, Arauquita y Tame) del departamento de Arauca, Colombia. Así como, la detección de la infección por arbovirus (Dengue, Chikungunya, Zika y Mayaro), mediante la amplificación del material genético por RT-PCR. Los resultados muestran la coexistencia de Ae. aegypti y Ae. albopictus en la zona urbana de los municipios de Saravena y Arauquita, donde los individuos se encontraron infectados por Dengue (DENV-1) y Chikungunya (CHIKV). El arbovirus con mayor frecuencia es el DENV-1 con una tasa de infección de 24,3% (27/111) para Ae. aegypti y 39,7% (23/58) para Ae. albopictus. Seguido por CHIKV con una tasa de infección de 1,8% (2/111) para Ae. aegypti y 6,9% (4/58) para Ae. albopictus. Se obtuvo un 4.5% (5/111) de infección mixta por DENV-1 y CHIKV en la especie Ae. aegypti y no se detectó infección por Zika (ZIKV) y Mayaro (MAYV). Finalmente, el presente estudio propone el procesamiento individual de los insectos y no por pools para la detección de los arbovirus dado que de esta manera se obtiene una tasa de infección más acertada y se logra evidenciar las infecciones mixtas.The identification of the vector species and their natural infection are important data for the control of the transmission of arboviral infections. However, this information for the eastern part of Colombia is limited. Therefore, the following study aimed to identify (morphological and molecular) the species of the genus Aedes present in three municipalities (Saravena, Arauquita and Tame) in the department of Arauca, Colombia. As well as the detection of arboviral infection (Dengue, Chikungunya, Zika and Mayaro), by amplifying the genetic 3 material by RT-PCR (reverse transcriptase polymerase chain reaction). The results showed the coexistence of Ae. aegypti and Ae. albopictus in the urban area of the municipalities of Saravena and Arauquita, where the individuals were found infected by Dengue (DENV-1) and Chikungunya (CHIKV). The most frequently arbovirus was DENV-1 with an infection rate of 24.3% (27/111) for Ae. aegypti and 39.7% (23/58) for Ae. albopictus. Followed by CHIKV with an infection rate of 1.8% (2/111) for Ae. aegypti and 6.9% (4/58) for Ae. albopictus. A mixed infection of DENV-1 and CHIKV was obtained in 4.5% (5/111) in the species Ae. aegypti and Zika (ZIKV) and Mayaro (MAYV) infection were not detected. Finally, the present study proposes the individual processing of insects for the detection of arboviruses since in this way a more accurate infection rate is obtained and the mixed infections are evidenced.Dirección de Investigación e Innovación de la Universidad del Rosarioapplication/pdfhttps://doi.org/10.48713/10336_28211 https://repository.urosario.edu.co/handle/10336/28211spaUniversidad del RosarioFacultad de Ciencias Naturales y MatemáticasBiologíaAbierto (Texto Completo)EL AUTOR, manifiesta que la obra objeto de la presente autorización es original y la realizó sin violar o usurpar derechos de autor de terceros, por lo tanto la obra es de exclusiva autoría y tiene la titularidad sobre la misma.http://purl.org/coar/access_right/c_abf2Atencia, M. C., Pérez, M. D. J., Caldera, S. M., Jaramillo, M. C., & Bejarano, E. E. (2018). Genetic variability of Aedes aegypti in the department of Sucre, Colombia, by analysis of the nucleotide sequence of the mitochondrial ND4 gene. Biomédica, 38(2), 267-276.Azevedo, R. S., Silva, E. V., Carvalho, V. L., Rodrigues, S. G., Neto, J. P. N., Monteiro, H. A., ... & Vasconcelos, P. F. (2009). Mayaro fever virus, Brazilian amazon. Emerging infectious diseases, 15(11), 1830.Barbosa, R. M. R., Melo-Santos, M. A. V. D., Silveira Jr, J. C., Silva-Filha, M. H. N. L., Souza, W. V., Oliveira, C. M. F. D., ... & Nakazawa, M. M. (2020). Infestation of an endemic arbovirus area by sympatric populations of Aedes aegypti and Aedes albopictus in Brazil. Memórias do Instituto Oswaldo Cruz, 115.Barmak, D. H., Dorso, C. O., & Otero, M. (2016). Modelling dengue epidemic spreading with human mobility. Physica A: Statistical Mechanics and its Applications, 447, 129-140.Beaty, B. J., Black, W. C., Eisen, L., Flores, A. E., García-Rejón, J. E., Loroño-Pino, M., & Saavedra-Rodriguez, K. (2016). The intensifying storm: Domestication of Aedes aegypti, urbanization of arboviruses, and emerging insecticide resistance. In Global Health Im-pacts of Vector-Borne Diseases: Workshop Summary, National Academies Press.Boletín Epidemiológico Semanal (BES) Semana Epidemiológica 22, 24 al 30 de mayo (2020). Obtenido de: https://www.ins.gov.co/buscadoreventos/BoletinEpidemiologico/2020_Bolet%C3%ADn_epidemiológico_semana%2022.pd fBracco, J. E., Capurro, M. L., Lourenço-de-Oliveira, R., & Sallum, M. A. M. (2007). Genetic variability of Aedes aegypti in the Americas using a mitochondrial gene: evidence of multiple introductions. Memorias do Instituto Oswaldo Cruz, 102(5), 573-580.Caldera, S. M., Jaramillo, M. C., Cochero, S., Pérez Doria, A., & Bejarano, E. E. (2019). Diferencias genéticas entre poblaciones de Aedes aegypti de municipios del norte de Colombia, con baja y alta incidencia de dengue. Revista.Camacho-Gómez, M., & Zuleta, L. P. (2019). Primer reporte de Aedes (Stegomyia) albopictus (Skuse) en la Orinoquía colombiana. Biomédica, 39(4). Camacho-Gómez & Zuleta, 2019Calle-Tobón, A., Pérez-Pérez, J., Rojo, R., Rojas-Montoya, W., Triana-Chavez, O., RúaUribe, G., & Gómez-Palacio, A. (2020). Surveillance of Zika virus in field-caught Aedes aegypti and Aedes albopictus suggests important role of male mosquitoes in viral populations maintenance in Medellín, Colombia. Infection, Genetics and Evolution, 104434.Caron, M., Paupy, C., Grard, G., Becquart, P., Mombo, I., Nso, B. B. B., ... & Leroy, E. M. (2012). Recent introduction and rapid dissemination of Chikungunya virus and Dengue virus serotype 2 associated with human and mosquito coinfections in Gabon, central Africa. Clinical infectious diseases, 55(6), e45-e53.Carvajal, J. J., Honorio, N. A., Díaz, S. P., Ruiz, E. R., Asprilla, J., Ardila, S., & Parra-Henao, G. (2016). Detección de Aedes albopictus (Skuse)(Diptera: Culicidae) en el municipio de Istmina, Chocó, Colombia. Biomédica, 36(3), 438-446Cheong, Y. L., Leitão, P. J., & Lakes, T. (2014). Assessment of land use factors associated with dengue cases in Malaysia using Boosted Regression Trees. Spatial and spatio-temporal epidemiology, 10, 75-84.Claeys, C., Robles, C., Bertaudiere-Montes, V., Deschamps-Cottin, M., Megnifo, H. T., Pelagie-Moutenda, R., ... & Bravet, P. (2016). Socio-ecological factors contributing to the exposure of human populations to mosquito bites that transmit dengue fever, chikungunya and zika viruses: a comparison between mainland France and the French Antilles. Environnement, Risques & Santé, 15(4), 318-325.Cook, R. J. (2005). Kappa. Encyclopedia of biostatistics, 4.Cova-Garcia, P., Sutil, E., & Rausseo, J. A. (1966). Mosquitos (Culicinos) de Venezuela: Tomo I and Tomo II. Ministerio de Sanidad y Asistencia Social, Caracas.de la Cruz, C. H., Martinez, S. L. A., Failoc-Rojas, V. E., & Aguilar-Gamboa, F. R. (2019). Momento de considerar otras arbovirosis luego del virus mayaro. Revista Cubana de Medicina General Integral, 35(2).Duong, V., Lambrechts, L., Paul, R. E., Ly, S., Lay, R. S., Long, K. C., ... & Buchy, P. (2015). Asymptomatic humans transmit dengue virus to mosquitoes. Proceedings of the National Academy of Sciences, 112(47), 14688-14693.Eiras, A. E., Pires, S. F., Staunton, K. M., Paixão, K. S., Resende, M. C., Silva, H. A., ... & Ritchie, S. A. (2018). A high-risk Zika and dengue transmission hub: virus detections in mosquitoes at a Brazilian university campus. Parasites & vectors, 11(1), 359.Espinal, M. A., Andrus, J. K., Jauregui, B., Hull Waterman, S., Morens, D. M., Santos, J. I., ... & Olson, D. (2019). Arbovirosis emergentes y reemergentes transmitidas por Aedes en la Región de las Américas: implicaciones en materia de políticas de salud. Rev Panam Salud Publica; 43, may 2019.Faye, O., Diallo, D., Diallo, M., Weidmann, M., & Sall, A. A. (2013). Quantitative real-time PCR detection of Zika virus and evaluation with field-caught mosquitoes. Virol J, 10, 311. doi:10.1186/1743-422x-10-311Failloux, A. B., Vazeille, M., & Rodhain, F. (2002). Geographic genetic variation in populations of the dengue virus vector Aedes aegypti. Journal of Molecular Evolution, 55(6), 653-663.Ferreira-de-Brito, A., Ribeiro, I. P., Miranda, R. M. D., Fernandes, R. S., Campos, S. S., Silva, K. A. B. D., ... & Lourenço-de-Oliveira, R. (2016). First detection of natural infection of Aedes aegypti with Zika virus in Brazil and throughout South America. Memórias do Instituto Oswaldo Cruz, 111(10), 655-658.Freitas, R. M. D. (2010). A review on the ecological determinants of Aedes aegypti (Diptera: Culicidae) vectorial capacity.Forattini, O. P. (1965). Entomologia médica: culicini: culex, Aedes e Psorophora (Vol. 2). Faculdade de Higiene e Saúde Pública, Depto. de Parasitología.Garcia-Rejon, J. E., Ulloa-Garcia, A., Cigarroa-Toledo, N., Pech-May, A., MachainWilliams, C., Cetina-Trejo, R. C., ... & Baak-Baak, C. M. (2018). Study of Aedes aegypti population with emphasis on the gonotrophic cycle length and identification of arboviruses: implications for vector management in cemeteries. Revista do Instituto de Medicina Tropical de São Paulo, 60.Gómez-Palacio, A., Suaza-Vasco, J., Castaño, S., Triana, O., & Uribe, S. (2017). Aedes albopictus (Skuse, 1894) infected with the American-Asian genotype of dengue type 2 virus in Medellín suggests its possible role as vector of dengue fever in Colombia. Biomédica, 37, 135-142Gu, W., Lampman, R., & Novak, R. J. (2004). Assessment of arbovirus vector infection rates using variable size pooling. Medical and veterinary entomology, 18(2), 200-204Gutiérrez‐Bugallo, G., Rodríguez‐Roche, R., Díaz, G., Pérez, M., Mendizábal, M. E., Peraza, I., ... & Guzmán, M. G. (2018). Spatio‐temporal distribution of vertically transmitted dengue viruses by Aedes aegypti (Diptera: Culicidae) from Arroyo Naranjo, Havana, Cuba. Tropical Medicine & International Health, 23(12), 1342-1349.Gómez-Palacio, A., Suaza-Vasco, J., Castaño, S., Triana, O., & Uribe, S. (2017). Aedes albopictus (Skuse, 1894) infected with the American-Asian genotype of dengue type 2 virus in Medellín suggests its possible role as vector of dengue fever in Colombia. Biomédica, 37, 135-142.Hall, R. J., Wang, J., Todd, A. K., Bissielo, A. B., Yen, S., Strydom, H., ... & Peacey, M. (2014). Evaluation of rapid and simple techniques for the enrichment of viruses prior to metagenomic virus discovery. Journal of virological methods, 195, 194-204.Higa, Y., Yen, N. T., Kawada, H., Son, T. H., Hoa, N. T., & Takagi, M. (2010). Geographic distribution of Aedes aegypti and Aedes albopictus collected from used tires in Vietnam. Journal of the American Mosquito Control Association, 26(1), 1-9.Hoyos-López, R., Atencia-Pineda, M. C., & Gallego-Gómez, J. C. (2019). Phylogenetic analysis of Dengue-2 serotypes circulating in mangroves in Northern Cordoba,Hoyos-López, R., Suaza-Vasco, J., Rúa-Uribe, G., Uribe, S., & Gallego-Gómez, J. C. (2016). Molecular detection of flaviviruses and alphaviruses in mosquitoes (Diptera: Culicidae) from coastal ecosystems in the Colombian Caribbean. Memórias do Instituto Oswaldo Cruz, 111(10), 625-634.Jaimes-Duenez, J., Arboleda, S., Triana-Chávez, O., & Gomez-Palacio, A. (2015). Spatiotemporal distribution of Aedes aegypti (Diptera: Culicidae) mitochondrial lineages in cities with distinct dengue incidence rates suggests complex population dynamics of the dengue vector in Colombia. PLoS Negl Trop Dis, 9(4), e0003553.Joyce, A. L., Torres, M. M., Torres, R., & Moreno, M. (2018). Genetic variability of the Aedes aegypti (Diptera: Culicidae) mosquito in El Salvador, vector of dengue, yellow fever, chikungunya and Zika. Parasites & vectors, 11(1), 637.Kraemer, M. U., Sinka, M. E., Duda, K. A., Mylne, A. Q., Shearer, F. M., Barker, C. M., ... & Hendrickx, G. (2015). The global distribution of the arbovirus vectors Aedes aegypti and Ae. albopictus. elife, 4, e08347Kraemer, M. U., Reiner, R. C., Brady, O. J., Messina, J. P., Gilbert, M., Pigott, D. M., ... & Shirude, S. (2019). Past and future spread of the arbovirus vectors Aedes aegypti and Aedes albopictus. Nature microbiology, 4(5), 854.Lanciotti, R. S., Kosoy, O. L., Laven, J. J., Panella, A. J., Velez, J. O., Lambert, A. J., & Campbell, G. L. (2007). Chikungunya virus in US travelers returning from India, 2006. Emerg Infect Dis, 13(5), 764-767. doi:10.3201/eid1305.070015Lee, Y., Schmidt, H., Collier, T. C., Conner, W. R., Hanemaaijer, M. J., Slatkin, M., ... & Mulligan, F. S. (2019). Genome-wide divergence among invasive populations of Aedes aegypti in California. BMC genomics, 20(1), 1-10.Li, Y., Kamara, F., Zhou, G., Puthiyakunnon, S., Li, C., Liu, Y., ... & Chen, X. G. (2014). Urbanization increases Aedes albopictus larval habitats and accelerates mosquito development and survivorship. PLoS Negl Trop Dis, 8(11), e3301.Liang, L., Jia, P., Tan, X., Chen, J., & Chen, X. (2019). Potential effects of heat waves on the population dynamics of the dengue mosquito Aedes albopictus. PLoS neglected tropical diseases, 13(7), e0007528.Long, K. C., Ziegler, S. A., Thangamani, S., Hausser, N. L., Kochel, T. J., Higgs, S., & Tesh, R. B. (2011). Experimental transmission of Mayaro virus by Aedes aegypti. Am J Trop Med Hyg, 85(4), 750-757. doi:10.4269/ajtmh.2011.11-0359.Lorenz, C., Ribeiro, A. F., & Chiaravalloti-Neto, F. (2019). Mayaro virus distribution in South America. Acta tropica, 198, 105093.Lounibos, L. P., & Kramer, L. D. (2016). Invasiveness of Aedes aegypti and Aedes albopictus and vectorial capacity for chikungunya virus. The Journal of infectious diseases, 214(suppl_5), S453-S458.Lourenço-de-Oliveira, R., Vazeille, M., Filippis, A. M. B. D., & Failloux, A. B. (2002). Oral susceptibility to yellow fever virus of Aedes aegypti from Brazil. Memorias do Instituto Oswaldo Cruz, 97(3), 437-439.Lozano-Fuentes, S., Hayden, M. H., Welsh-Rodriguez, C., Ochoa-Martinez, C., TapiaSantos, B., Kobylinski, K. C., . . . Eisen, L. (2012). The dengue virus mosquito vector Aedes aegypti at high elevation in Mexico. Am J Trop Med Hyg, 87(5), 902-909. doi:10.4269/ajtmh.2012.12-0244.Maia, L. M. S., Bezerra, M. C. F., Costa, M. C. S., Souza, E. M., Oliveira, M. E. B., Ribeiro, A. L. M., ... & Slhessarenko, R. D. (2019). Natural vertical infection by dengue virus serotype 4, Zika virus and Mayaro virus in Aedes (Stegomyia) aegypti and Aedes (Stegomyia) albopictus. Medical and veterinary entomology, 33(3), 437-442.Massaro, E., Kondor, D., & Ratti, C. (2019). Assessing the interplay between human mobility and mosquito borne diseases in urban environments. Scientific reports, 9(1), 1-13Martínez-Vega, R. A., Danis-Lozano, R., Díaz-Quijano, F. A., Velasco-Hernández, J., Santos-Luna, R., Román-Pérez, S., ... & Ramos-Castañeda, J. (2015). Peridomestic infection as a determining factor of dengue transmission. PLoS neglected tropical diseases, 9(12), e0004296.Patsoula, E., Samanidou-Voyadjoglou, A., Spanakos, G., Kremastinou, J., Nasioulas, G., & Vakalis, N. C. (2006). Molecular and morphological characterization of Aedes albopictus in northwestern Greece and differentiation from Aedes cretinus and Aedes aegypti. Journal of medical entomology, 43(1), 40-54.Pech-May, A., Moo-Llanes, D. A., Puerto-Avila, M. B., Casas, M., Danis-Lozano, R., Ponce, G., ... & González, C. (2016). Population genetics and ecological niche of invasive Aedes albopictus in Mexico. Acta Tropica, 157, 30-41.Pereira, T. N., Carvalho, F. D., De Mendonça, S. F., Rocha, M. N., & Moreira, L. A. (2020). Vector competence of Aedes aegypti, Aedes albopictus, and Culex quinquefasciatus mosquitoes for Mayaro virus. PLOS Neglected Tropical Diseases, 14(4), e0007518.Ortiz-Canamejoy, K., & Villota, A. C. (2018). Primera evidencia de Aedes albopictus en el departamento del Putumayo, Colombia. MedUNAB, 21(1), 10-15.Rahayu, A., Saraswati, U., Supriyati, E., Kumalawati, D. A., Hermantara, R., Rovik, A., ... & Wardana, D. S. (2019). Prevalence and Distribution of Dengue Virus in Aedes aegypti in Yogyakarta City before Deployment of Wolbachia Infected Aedes aegypti. International journal of environmental research and public health, 16(10), 1742.Ramasamy, R., Surendran, S. N., Jude, P. J., Dharshini, S., & Vinobaba, M. (2011). Larval development of Aedes aegypti and Aedes albopictus in peri-urban brackish water and its implications for transmission of arboviral diseases. PLoS neglected tropical diseases, 5(11), e1369.Roehrig, J. T., & Lanciotti, R. S. (2009). Arboviruses. In Clinical Virology Manual, Fourth Edition (pp. 387-407). American Society of Microbiology.Salehi Z, Najafi M (2014) RNA preservation and stabilizaton. Biochem Physiol: Open Access 3: 1-4.Santiago, G. A., Vergne, E., Quiles, Y., Cosme, J., Vazquez, J., Medina, J. F., . . . MunozJordan, J. L. (2013). Analytical and clinical performance of the CDC real time RT-PCR 27 assay for detection and typing of dengue virus. PLoS Negl Trop Dis, 7(7), e2311. doi:10.1371/journal.pntd.0002311Sarfraz, M. S., Tripathi, N. K., Tipdecho, T., Thongbu, T., Kerdthong, P., & Souris, M. (2012). Analyzing the spatio-temporal relationship between dengue vector larval density and land-use using factor analysis and spatial ring mapping. BMC public health, 12(1), 853.Shope, R. E., & Meegan, J. M. (1997). Arboviruses. In Viral Infections of Humans (pp. 151- 183). Springer, Boston, MA.p.151.Turell, M. J., Beaman, J. R., & Tammariello, R. F. (1992). Susceptibility of selected strains of Aedes aegypti and Aedes albopictus (Diptera: Culicidae) to chikungunya virus. Journal of medical entomology, 29(1), 49-53.Velandia-Romero, M. L., Olano, V. A., Coronel-Ruiz, C., Cabezas, L., Calderón-Peláez, M. A., Castellanos, J. E., & Matiz, M. I. (2017). Detección del virus del dengue en larvas y pupas de Aedes aegypti recolectadas en áreas rurales del municipio de Anapoima, Cundinamarca, Colombia. Biomédica, 37, 193-200.Vega-Rúa, A., Zouache, K., Girod, R., Failloux, A. B., & Lourenço-de-Oliveira, R. (2014). High level of vector competence of Aedes aegypti and Aedes albopictus from ten American countries as a crucial factor in the spread of Chikungunya virus. Journal of virology, 88(11), 6294-6306.Villar, L. A., Rojas, D. P., Besada-Lombana, S., & Sarti, E. (2015). Epidemiological trends of dengue disease in Colombia (2000-2011): a systematic review. PLoS neglected tropical diseases, 9(3).Walter, SD, Hildreth, SW y Beaty, BJ (1980). Estimación de las tasas de infección en poblaciones de organismos utilizando grupos de tamaño variable. American Journal of Epidemiology , 112 (1), 124-128.Weaver, S. C., & Barrett, A. D. (2004). Transmission cycles, host range, evolution and emergence of arboviral disease. Nature Reviews Microbiology, 2(10), 789Whiteman, A., Gomez, C., Rovira, J., Chen, G., McMillan, W. O., & Loaiza, J. (2019). Aedes Mosquito Infestation in Socioeconomically Contrasting Neighborhoods of Panama City. EcoHealth, 16(2), 210-221.World Health Organization. (2020). Real-time RT-PCR (TaqManTM) protocol – Mayaro virus (MAYV). Obtenido de: https://www.paho.org/en/node/60626Zamora-Delgado, J., Castaño, J. C., & Hoyos-López, R. (2015). DNA barcode sequences used to identify Aedes (Stegomyia) albopictus (Diptera: Culicidae) in La Tebaida (Quindío, Colombia). Revista Colombiana de Entomología, 41(2), 212-217Zhu, G., Liu, T., Xiao, J., Zhang, B., Song, T., Zhang, Y., ... & Hao, Y. (2019). Effects of human mobility, temperature and mosquito control on the spatiotemporal transmission of dengue. Science of the Total Environment, 651, 969-978instname:Universidad del Rosarioreponame:Repositorio Institucional EdocURArbovirusDengueZikaChikungunyaMayaroAedesOtros invertebrados595600Incidencia & prevención de la enfermedad614600ArbovirusDengueZikaChikungunyaMayaroAedesIdentificación de especies del género Aedes (Diptera; Culicidae) y detección de infección por Arbovirus (CHIKV, DENV, MAYV, ZIKV) circulantes en tres municipios de Arauca, Colombia.Identification of species of the genus Aedes (Diptera; Culicidae) and detection of infection by Arbovirus (CHIKV, DENV, MAYV, ZIKV) circulating in three municipalities of Arauca, Colombia.bachelorThesisArtículoTrabajo de gradohttp://purl.org/coar/resource_type/c_7a1fLICENSElicense.txtlicense.txttext/plain1475https://repository.urosario.edu.co/bitstreams/86d5ec7b-9686-4c68-a76e-1caa0c8d3366/downloadfab9d9ed61d64f6ac005dee3306ae77eMD52ORIGINALMartinezMedina-DavidFernando-2020.pdfMartinezMedina-DavidFernando-2020.pdfapplication/pdf572753https://repository.urosario.edu.co/bitstreams/b5c78e49-4b6c-45ed-b8c3-9ad212fc529a/download57f5a22c76f4d5ec04a93be6e9bf4c27MD51TEXTMartinezMedina-DavidFernando-2020.pdf.txtMartinezMedina-DavidFernando-2020.pdf.txtExtracted texttext/plain51310https://repository.urosario.edu.co/bitstreams/9ce5501a-1612-4a86-a399-d5e55f2e2b0a/downloadbba96e0818a5d4c0feb2d73d715b5819MD53THUMBNAILMartinezMedina-DavidFernando-2020.pdf.jpgMartinezMedina-DavidFernando-2020.pdf.jpgGenerated Thumbnailimage/jpeg2551https://repository.urosario.edu.co/bitstreams/60a622ab-5454-4a07-977c-ac0162e3f272/download7a1a79b6ebf770c9e435dc0ba65b71e9MD5410336/28211oai:repository.urosario.edu.co:10336/282112020-11-21 18:38:37.077https://repository.urosario.edu.coRepositorio institucional EdocURedocur@urosario.edu.coRUwoTE9TKSBBVVRPUihFUyksIG1hbmlmaWVzdGEobWFuaWZlc3RhbW9zKSBxdWUgbGEgb2JyYSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIHJlYWxpesOzIHNpbiB2aW9sYXIgbyB1c3VycGFyIGRlcmVjaG9zIGRlIGF1dG9yIGRlIHRlcmNlcm9zLCBwb3IgbG8gdGFudG8gbGEgb2JyYSBlcyBkZSBleGNsdXNpdmEgYXV0b3LDrWEgeSB0aWVuZSBsYSB0aXR1bGFyaWRhZCBzb2JyZSBsYSBtaXNtYS4gCgpQQVJHUkFGTzogRW4gY2FzbyBkZSBwcmVzZW50YXJzZSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybyBlbiBjdWFudG8gYSBsb3MgZGVyZWNob3MgZGUgYXV0b3Igc29icmUgbGEgb2JyYSBlbiBjdWVzdGnDs24sIEVMIEFVVE9SLCBhc3VtaXLDoSB0b2RhIGxhIHJlc3BvbnNhYmlsaWRhZCwgeSBzYWxkcsOhIGVuIGRlZmVuc2EgZGUgbG9zIGRlcmVjaG9zIGFxdcOtIGF1dG9yaXphZG9zOyBwYXJhIHRvZG9zIGxvcyBlZmVjdG9zIGxhIHVuaXZlcnNpZGFkIGFjdMO6YSBjb21vIHVuIHRlcmNlcm8gZGUgYnVlbmEgZmUuIAoKRUwgQVVUT1IsIGF1dG9yaXphIGEgTEEgVU5JVkVSU0lEQUQgREVMIFJPU0FSSU8sICBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgTGV5IDQ0IGRlIDE5OTMsIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbm9ybWFzIGdlbmVyYWxlcyBzb2JyZSBsYSBtYXRlcmlhLCAgdXRpbGljZSB5IHVzZSBsYSBvYnJhIG9iamV0byBkZSBsYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuLgoKLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0KClBPTElUSUNBIERFIFRSQVRBTUlFTlRPIERFIERBVE9TIFBFUlNPTkFMRVMuIERlY2xhcm8gcXVlIGF1dG9yaXpvIHByZXZpYSB5IGRlIGZvcm1hIGluZm9ybWFkYSBlbCB0cmF0YW1pZW50byBkZSBtaXMgZGF0b3MgcGVyc29uYWxlcyBwb3IgcGFydGUgZGUgTEEgVU5JVkVSU0lEQUQgREVMIFJPU0FSSU8gIHBhcmEgZmluZXMgYWNhZMOpbWljb3MgeSBlbiBhcGxpY2FjacOzbiBkZSBjb252ZW5pb3MgY29uIHRlcmNlcm9zIG8gc2VydmljaW9zIGNvbmV4b3MgY29uIGFjdGl2aWRhZGVzIHByb3BpYXMgZGUgbGEgYWNhZGVtaWEsIGNvbiBlc3RyaWN0byBjdW1wbGltaWVudG8gZGUgbG9zIHByaW5jaXBpb3MgZGUgbGV5LiBQYXJhIGVsIGNvcnJlY3RvIGVqZXJjaWNpbyBkZSBtaSBkZXJlY2hvIGRlIGhhYmVhcyBkYXRhICBjdWVudG8gY29uIGxhIGN1ZW50YSBkZSBjb3JyZW8gaGFiZWFzZGF0YUB1cm9zYXJpby5lZHUuY28sIGRvbmRlIHByZXZpYSBpZGVudGlmaWNhY2nDs24gIHBvZHLDqSBzb2xpY2l0YXIgbGEgY29uc3VsdGEsIGNvcnJlY2Npw7NuIHkgc3VwcmVzacOzbiBkZSBtaXMgZGF0b3MuCgo=