Distributed optimization with information-constrained population dynamics

In a multi-agent framework, distributed optimization problems are generally described as the minimization of a global objective function, where each agent can get information only from a neighborhood defined by a network topology. To solve the problem, this work presents an information-constrained s...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2019
Institución:
Universidad del Rosario
Repositorio:
Repositorio EdocUR - U. Rosario
Idioma:
eng
OAI Identifier:
oai:repository.urosario.edu.co:10336/22477
Acceso en línea:
https://doi.org/10.1016/j.jfranklin.2018.10.016
https://repository.urosario.edu.co/handle/10336/22477
Palabra clave:
Constrained optimization
Electric load dispatching
Graph theory
Multi agent systems
Population dynamics
Scheduling
Convergence rates
Distributed optimization
Economic dispatch problems
Equilibrium point
Global objective functions
Local information
Multiagent framework
Topological constraints
Problem solving
Rights
License
Abierto (Texto Completo)
id EDOCUR2_0e6e95b8281e43d2c2c94bafd9e2ecfd
oai_identifier_str oai:repository.urosario.edu.co:10336/22477
network_acronym_str EDOCUR2
network_name_str Repositorio EdocUR - U. Rosario
repository_id_str
spelling 85913ad6-cad1-4952-8d57-6fcd186ddb8087069670600c777da98-fab1-4bfb-9a12-5170db79a07e2020-05-25T23:56:39Z2020-05-25T23:56:39Z2019In a multi-agent framework, distributed optimization problems are generally described as the minimization of a global objective function, where each agent can get information only from a neighborhood defined by a network topology. To solve the problem, this work presents an information-constrained strategy based on population dynamics, where payoff functions and tasks are assigned to each node in a connected graph. We prove that the so-called distributed replicator equation (DRE) converges to an optimal global outcome by means of the local-information exchange subject to the topological constraints of the graph. To show the application of the proposed strategy, we implement the DRE to solve an economic dispatch problem with distributed generation. We also present some simulation results to illustrate the theoretic optimality and stability of the equilibrium points and the effects of typical network topologies on the convergence rate of the algorithm. © 2018 The Franklin Instituteapplication/pdfhttps://doi.org/10.1016/j.jfranklin.2018.10.016160032https://repository.urosario.edu.co/handle/10336/22477engElsevier Ltd236No. 1209Journal of the Franklin InstituteVol. 356Journal of the Franklin Institute, ISSN:160032, Vol.356, No.1 (2019); pp. 209-236https://www.scopus.com/inward/record.uri?eid=2-s2.0-85056770633&doi=10.1016%2fj.jfranklin.2018.10.016&partnerID=40&md5=dde8ddc9deaa962c31b86b6837a52eb6Abierto (Texto Completo)http://purl.org/coar/access_right/c_abf2instname:Universidad del Rosarioreponame:Repositorio Institucional EdocURConstrained optimizationElectric load dispatchingGraph theoryMulti agent systemsPopulation dynamicsSchedulingConvergence ratesDistributed optimizationEconomic dispatch problemsEquilibrium pointGlobal objective functionsLocal informationMultiagent frameworkTopological constraintsProblem solvingDistributed optimization with information-constrained population dynamicsarticleArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501Pantoja, A.Obando Bravo, Germán DarioQuijano, N.10336/22477oai:repository.urosario.edu.co:10336/224772022-05-02 07:37:16.843026https://repository.urosario.edu.coRepositorio institucional EdocURedocur@urosario.edu.co
dc.title.spa.fl_str_mv Distributed optimization with information-constrained population dynamics
title Distributed optimization with information-constrained population dynamics
spellingShingle Distributed optimization with information-constrained population dynamics
Constrained optimization
Electric load dispatching
Graph theory
Multi agent systems
Population dynamics
Scheduling
Convergence rates
Distributed optimization
Economic dispatch problems
Equilibrium point
Global objective functions
Local information
Multiagent framework
Topological constraints
Problem solving
title_short Distributed optimization with information-constrained population dynamics
title_full Distributed optimization with information-constrained population dynamics
title_fullStr Distributed optimization with information-constrained population dynamics
title_full_unstemmed Distributed optimization with information-constrained population dynamics
title_sort Distributed optimization with information-constrained population dynamics
dc.subject.keyword.spa.fl_str_mv Constrained optimization
Electric load dispatching
Graph theory
Multi agent systems
Population dynamics
Scheduling
Convergence rates
Distributed optimization
Economic dispatch problems
Equilibrium point
Global objective functions
Local information
Multiagent framework
Topological constraints
Problem solving
topic Constrained optimization
Electric load dispatching
Graph theory
Multi agent systems
Population dynamics
Scheduling
Convergence rates
Distributed optimization
Economic dispatch problems
Equilibrium point
Global objective functions
Local information
Multiagent framework
Topological constraints
Problem solving
description In a multi-agent framework, distributed optimization problems are generally described as the minimization of a global objective function, where each agent can get information only from a neighborhood defined by a network topology. To solve the problem, this work presents an information-constrained strategy based on population dynamics, where payoff functions and tasks are assigned to each node in a connected graph. We prove that the so-called distributed replicator equation (DRE) converges to an optimal global outcome by means of the local-information exchange subject to the topological constraints of the graph. To show the application of the proposed strategy, we implement the DRE to solve an economic dispatch problem with distributed generation. We also present some simulation results to illustrate the theoretic optimality and stability of the equilibrium points and the effects of typical network topologies on the convergence rate of the algorithm. © 2018 The Franklin Institute
publishDate 2019
dc.date.created.spa.fl_str_mv 2019
dc.date.accessioned.none.fl_str_mv 2020-05-25T23:56:39Z
dc.date.available.none.fl_str_mv 2020-05-25T23:56:39Z
dc.type.eng.fl_str_mv article
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.spa.spa.fl_str_mv Artículo
dc.identifier.doi.none.fl_str_mv https://doi.org/10.1016/j.jfranklin.2018.10.016
dc.identifier.issn.none.fl_str_mv 160032
dc.identifier.uri.none.fl_str_mv https://repository.urosario.edu.co/handle/10336/22477
url https://doi.org/10.1016/j.jfranklin.2018.10.016
https://repository.urosario.edu.co/handle/10336/22477
identifier_str_mv 160032
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.citationEndPage.none.fl_str_mv 236
dc.relation.citationIssue.none.fl_str_mv No. 1
dc.relation.citationStartPage.none.fl_str_mv 209
dc.relation.citationTitle.none.fl_str_mv Journal of the Franklin Institute
dc.relation.citationVolume.none.fl_str_mv Vol. 356
dc.relation.ispartof.spa.fl_str_mv Journal of the Franklin Institute, ISSN:160032, Vol.356, No.1 (2019); pp. 209-236
dc.relation.uri.spa.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-85056770633&doi=10.1016%2fj.jfranklin.2018.10.016&partnerID=40&md5=dde8ddc9deaa962c31b86b6837a52eb6
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.acceso.spa.fl_str_mv Abierto (Texto Completo)
rights_invalid_str_mv Abierto (Texto Completo)
http://purl.org/coar/access_right/c_abf2
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Elsevier Ltd
institution Universidad del Rosario
dc.source.instname.spa.fl_str_mv instname:Universidad del Rosario
dc.source.reponame.spa.fl_str_mv reponame:Repositorio Institucional EdocUR
repository.name.fl_str_mv Repositorio institucional EdocUR
repository.mail.fl_str_mv edocur@urosario.edu.co
_version_ 1808390934419734528