Distributed optimization with information-constrained population dynamics
In a multi-agent framework, distributed optimization problems are generally described as the minimization of a global objective function, where each agent can get information only from a neighborhood defined by a network topology. To solve the problem, this work presents an information-constrained s...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2019
- Institución:
- Universidad del Rosario
- Repositorio:
- Repositorio EdocUR - U. Rosario
- Idioma:
- eng
- OAI Identifier:
- oai:repository.urosario.edu.co:10336/22477
- Acceso en línea:
- https://doi.org/10.1016/j.jfranklin.2018.10.016
https://repository.urosario.edu.co/handle/10336/22477
- Palabra clave:
- Constrained optimization
Electric load dispatching
Graph theory
Multi agent systems
Population dynamics
Scheduling
Convergence rates
Distributed optimization
Economic dispatch problems
Equilibrium point
Global objective functions
Local information
Multiagent framework
Topological constraints
Problem solving
- Rights
- License
- Abierto (Texto Completo)
id |
EDOCUR2_0e6e95b8281e43d2c2c94bafd9e2ecfd |
---|---|
oai_identifier_str |
oai:repository.urosario.edu.co:10336/22477 |
network_acronym_str |
EDOCUR2 |
network_name_str |
Repositorio EdocUR - U. Rosario |
repository_id_str |
|
spelling |
85913ad6-cad1-4952-8d57-6fcd186ddb8087069670600c777da98-fab1-4bfb-9a12-5170db79a07e2020-05-25T23:56:39Z2020-05-25T23:56:39Z2019In a multi-agent framework, distributed optimization problems are generally described as the minimization of a global objective function, where each agent can get information only from a neighborhood defined by a network topology. To solve the problem, this work presents an information-constrained strategy based on population dynamics, where payoff functions and tasks are assigned to each node in a connected graph. We prove that the so-called distributed replicator equation (DRE) converges to an optimal global outcome by means of the local-information exchange subject to the topological constraints of the graph. To show the application of the proposed strategy, we implement the DRE to solve an economic dispatch problem with distributed generation. We also present some simulation results to illustrate the theoretic optimality and stability of the equilibrium points and the effects of typical network topologies on the convergence rate of the algorithm. © 2018 The Franklin Instituteapplication/pdfhttps://doi.org/10.1016/j.jfranklin.2018.10.016160032https://repository.urosario.edu.co/handle/10336/22477engElsevier Ltd236No. 1209Journal of the Franklin InstituteVol. 356Journal of the Franklin Institute, ISSN:160032, Vol.356, No.1 (2019); pp. 209-236https://www.scopus.com/inward/record.uri?eid=2-s2.0-85056770633&doi=10.1016%2fj.jfranklin.2018.10.016&partnerID=40&md5=dde8ddc9deaa962c31b86b6837a52eb6Abierto (Texto Completo)http://purl.org/coar/access_right/c_abf2instname:Universidad del Rosarioreponame:Repositorio Institucional EdocURConstrained optimizationElectric load dispatchingGraph theoryMulti agent systemsPopulation dynamicsSchedulingConvergence ratesDistributed optimizationEconomic dispatch problemsEquilibrium pointGlobal objective functionsLocal informationMultiagent frameworkTopological constraintsProblem solvingDistributed optimization with information-constrained population dynamicsarticleArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501Pantoja, A.Obando Bravo, Germán DarioQuijano, N.10336/22477oai:repository.urosario.edu.co:10336/224772022-05-02 07:37:16.843026https://repository.urosario.edu.coRepositorio institucional EdocURedocur@urosario.edu.co |
dc.title.spa.fl_str_mv |
Distributed optimization with information-constrained population dynamics |
title |
Distributed optimization with information-constrained population dynamics |
spellingShingle |
Distributed optimization with information-constrained population dynamics Constrained optimization Electric load dispatching Graph theory Multi agent systems Population dynamics Scheduling Convergence rates Distributed optimization Economic dispatch problems Equilibrium point Global objective functions Local information Multiagent framework Topological constraints Problem solving |
title_short |
Distributed optimization with information-constrained population dynamics |
title_full |
Distributed optimization with information-constrained population dynamics |
title_fullStr |
Distributed optimization with information-constrained population dynamics |
title_full_unstemmed |
Distributed optimization with information-constrained population dynamics |
title_sort |
Distributed optimization with information-constrained population dynamics |
dc.subject.keyword.spa.fl_str_mv |
Constrained optimization Electric load dispatching Graph theory Multi agent systems Population dynamics Scheduling Convergence rates Distributed optimization Economic dispatch problems Equilibrium point Global objective functions Local information Multiagent framework Topological constraints Problem solving |
topic |
Constrained optimization Electric load dispatching Graph theory Multi agent systems Population dynamics Scheduling Convergence rates Distributed optimization Economic dispatch problems Equilibrium point Global objective functions Local information Multiagent framework Topological constraints Problem solving |
description |
In a multi-agent framework, distributed optimization problems are generally described as the minimization of a global objective function, where each agent can get information only from a neighborhood defined by a network topology. To solve the problem, this work presents an information-constrained strategy based on population dynamics, where payoff functions and tasks are assigned to each node in a connected graph. We prove that the so-called distributed replicator equation (DRE) converges to an optimal global outcome by means of the local-information exchange subject to the topological constraints of the graph. To show the application of the proposed strategy, we implement the DRE to solve an economic dispatch problem with distributed generation. We also present some simulation results to illustrate the theoretic optimality and stability of the equilibrium points and the effects of typical network topologies on the convergence rate of the algorithm. © 2018 The Franklin Institute |
publishDate |
2019 |
dc.date.created.spa.fl_str_mv |
2019 |
dc.date.accessioned.none.fl_str_mv |
2020-05-25T23:56:39Z |
dc.date.available.none.fl_str_mv |
2020-05-25T23:56:39Z |
dc.type.eng.fl_str_mv |
article |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.spa.spa.fl_str_mv |
Artículo |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.1016/j.jfranklin.2018.10.016 |
dc.identifier.issn.none.fl_str_mv |
160032 |
dc.identifier.uri.none.fl_str_mv |
https://repository.urosario.edu.co/handle/10336/22477 |
url |
https://doi.org/10.1016/j.jfranklin.2018.10.016 https://repository.urosario.edu.co/handle/10336/22477 |
identifier_str_mv |
160032 |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.relation.citationEndPage.none.fl_str_mv |
236 |
dc.relation.citationIssue.none.fl_str_mv |
No. 1 |
dc.relation.citationStartPage.none.fl_str_mv |
209 |
dc.relation.citationTitle.none.fl_str_mv |
Journal of the Franklin Institute |
dc.relation.citationVolume.none.fl_str_mv |
Vol. 356 |
dc.relation.ispartof.spa.fl_str_mv |
Journal of the Franklin Institute, ISSN:160032, Vol.356, No.1 (2019); pp. 209-236 |
dc.relation.uri.spa.fl_str_mv |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85056770633&doi=10.1016%2fj.jfranklin.2018.10.016&partnerID=40&md5=dde8ddc9deaa962c31b86b6837a52eb6 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.acceso.spa.fl_str_mv |
Abierto (Texto Completo) |
rights_invalid_str_mv |
Abierto (Texto Completo) http://purl.org/coar/access_right/c_abf2 |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Elsevier Ltd |
institution |
Universidad del Rosario |
dc.source.instname.spa.fl_str_mv |
instname:Universidad del Rosario |
dc.source.reponame.spa.fl_str_mv |
reponame:Repositorio Institucional EdocUR |
repository.name.fl_str_mv |
Repositorio institucional EdocUR |
repository.mail.fl_str_mv |
edocur@urosario.edu.co |
_version_ |
1818106841600622592 |