Phylogenetic relationships and evolutionary patterns of the genus Psammolestes (Hemiptera: Reduviidae)

La familia Reduviidae (Hemiptera: Heteroptera) se encuentra entre las familias más diversas de los verdaderos insectos. La evolución y las relaciones filogenéticas de las tribus Rhodniini y Triatomini (Triatominae) están bien estudiadas debido a su relevancia epidemiológica como vectores de Trypanos...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2021
Institución:
Universidad del Rosario
Repositorio:
Repositorio EdocUR - U. Rosario
Idioma:
eng
OAI Identifier:
oai:repository.urosario.edu.co:10336/30865
Acceso en línea:
https://doi.org/10.48713/10336_30865
https://repository.urosario.edu.co/handle/10336/30865
Palabra clave:
Evolución geográfica
Nicho de desarrollo y proliferación de los Psammolestes
Genética de poblaciones del insecto
Variables ambientales
Análisis filogenético molecular
Invertebrados
Evolución & genética
Geographical evolution
Development and proliferation niche of the Psammolestes
Genetics of insect populations
Environmental variables
Molecular phylogenetic analysis
Rights
License
Atribución-SinDerivadas 2.5 Colombia
id EDOCUR2_0c7f0a1d6bc1b19cd2abba285dfbfeca
oai_identifier_str oai:repository.urosario.edu.co:10336/30865
network_acronym_str EDOCUR2
network_name_str Repositorio EdocUR - U. Rosario
repository_id_str
dc.title.spa.fl_str_mv Phylogenetic relationships and evolutionary patterns of the genus Psammolestes (Hemiptera: Reduviidae)
dc.title.TranslatedTitle.spa.fl_str_mv Relaciones filogenéticas y patrones evolutivos del género Psammolestes (Hemiptera: Reduviidae).
title Phylogenetic relationships and evolutionary patterns of the genus Psammolestes (Hemiptera: Reduviidae)
spellingShingle Phylogenetic relationships and evolutionary patterns of the genus Psammolestes (Hemiptera: Reduviidae)
Evolución geográfica
Nicho de desarrollo y proliferación de los Psammolestes
Genética de poblaciones del insecto
Variables ambientales
Análisis filogenético molecular
Invertebrados
Evolución & genética
Geographical evolution
Development and proliferation niche of the Psammolestes
Genetics of insect populations
Environmental variables
Molecular phylogenetic analysis
title_short Phylogenetic relationships and evolutionary patterns of the genus Psammolestes (Hemiptera: Reduviidae)
title_full Phylogenetic relationships and evolutionary patterns of the genus Psammolestes (Hemiptera: Reduviidae)
title_fullStr Phylogenetic relationships and evolutionary patterns of the genus Psammolestes (Hemiptera: Reduviidae)
title_full_unstemmed Phylogenetic relationships and evolutionary patterns of the genus Psammolestes (Hemiptera: Reduviidae)
title_sort Phylogenetic relationships and evolutionary patterns of the genus Psammolestes (Hemiptera: Reduviidae)
dc.contributor.advisor.none.fl_str_mv Ramírez, Juan David
Salazar, Camilo
Salgado-Roa, Fabian Camilo
Hernandez, Diana Carolina
dc.contributor.none.fl_str_mv Ballesteros Chitiva, Nathalia
Rueda, Nicol
Oliveira, Jader
Aristeu da Rosa, Joao
Urbano, Plutarco
dc.subject.spa.fl_str_mv Evolución geográfica
Nicho de desarrollo y proliferación de los Psammolestes
Genética de poblaciones del insecto
Variables ambientales
Análisis filogenético molecular
topic Evolución geográfica
Nicho de desarrollo y proliferación de los Psammolestes
Genética de poblaciones del insecto
Variables ambientales
Análisis filogenético molecular
Invertebrados
Evolución & genética
Geographical evolution
Development and proliferation niche of the Psammolestes
Genetics of insect populations
Environmental variables
Molecular phylogenetic analysis
dc.subject.ddc.spa.fl_str_mv Invertebrados
Evolución & genética
dc.subject.keyword.spa.fl_str_mv Geographical evolution
Development and proliferation niche of the Psammolestes
Genetics of insect populations
Environmental variables
Molecular phylogenetic analysis
description La familia Reduviidae (Hemiptera: Heteroptera) se encuentra entre las familias más diversas de los verdaderos insectos. La evolución y las relaciones filogenéticas de las tribus Rhodniini y Triatomini (Triatominae) están bien estudiadas debido a su relevancia epidemiológica como vectores de Trypanosoma cruzi, el parásito que causa la enfermedad de Chagas. Rhodniini está compuesto por los géneros Rhodnius y Psammolestes, donde queda por estudiar la diversidad genética del segundo en comparación con Rhodnius, principal vector de T. cruzi. Por lo tanto, reunimos 92 muestras en total, 38 de Psammolestes arthuri en Colombia, 24 de Psammolestes tertius y 30 de coreodas de Psammolestes en Brasil. Usamos cinco nuevos loci nucleares: tRNA guanina (37) -N (1) metil transferasa (TRNA), proteína inducible por hormona juvenil putativa (PJH), proteína de ensamblaje de proteína de azufre de hierro citosólico probable Ciao 1 (CISP), lipoil sintasa, mitocondrial ( LSM) y proteína no caracterizada para la adhesión celular (UPCA), junto con dos loci previamente informados: 28S y CYTB, para representar las relaciones filogenéticas y los patrones evolutivos del género Psammolestes. Cuatro de las siete topologías de genes no eran consistentes con la topología concatenada, mientras que las otras tres eran concordantes, pero el patrón general es claro: Psammolestes es un grupo monofilético, corroborando hipótesis previamente sugeridas para el género. El análisis de agrupamiento junto con las estadísticas resumidas de genética de poblaciones dio como resultado la delimitación de tres poblaciones diferentes. Estos tres clusters corresponden a cada una de las especies de Psammolestes conocidas a priori -definidas por morfología, ecología y métodos citogenéticos- lo que sugiere que las poblaciones de cada una de las especies tienen una estructura genética bien sustentada. En general, nuestros resultados corroboraron la existencia de las tres especies de Psammolestes descritas anteriormente, 4 mostrando que probablemente divergieron en alopatría, bajo la influencia del escudo de Guyana y la cuenca del Amazonas como barreras para la dispersión.
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2021-02-03T16:09:11Z
dc.date.available.none.fl_str_mv 2021-02-03T16:09:11Z
dc.date.created.none.fl_str_mv 2021-01-25
dc.type.eng.fl_str_mv bachelorThesis
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.document.spa.fl_str_mv Artículo
dc.type.spa.spa.fl_str_mv Trabajo de grado
dc.identifier.doi.none.fl_str_mv https://doi.org/10.48713/10336_30865
dc.identifier.uri.none.fl_str_mv https://repository.urosario.edu.co/handle/10336/30865
url https://doi.org/10.48713/10336_30865
https://repository.urosario.edu.co/handle/10336/30865
dc.language.iso.spa.fl_str_mv eng
language eng
dc.rights.spa.fl_str_mv Atribución-SinDerivadas 2.5 Colombia
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.acceso.spa.fl_str_mv Abierto (Texto Completo)
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-nd/2.5/co/
rights_invalid_str_mv Atribución-SinDerivadas 2.5 Colombia
Abierto (Texto Completo)
http://creativecommons.org/licenses/by-nd/2.5/co/
http://purl.org/coar/access_right/c_abf2
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad del Rosario
dc.publisher.department.spa.fl_str_mv Facultad de Ciencias Naturales y Matemáticas
dc.publisher.program.spa.fl_str_mv Biología
institution Universidad del Rosario
dc.source.bibliographicCitation.spa.fl_str_mv Abad-Franch, F., Lima, M. M., Sarquis, O., Gurgel-Gonçalves, R., Sánchez-Martín, M., Calzada, J., Saldaña, A., Monteiro, F. A., Palomeque, F. S., Santos, W. S., Angulo, V. M., Esteban, L., Dias, F. B. S., Diotaiuti, L., Bar, M. E., & Gottdenker, N. L. (2015). On palms, bugs, and Chagas disease in the Americas. Acta Tropica, 151, 126-141. https://doi.org/10.1016/j.actatropica.2015.07.005
Abad-Franch, F., & Monteiro, F. A. (2007b). Biogeography and evolution of Amazonian triatomines (Heteroptera: Reduviidae): implications for Chagas disease surveillance in humid forest ecoregions. Memórias Do Instituto Oswaldo Cruz, 102, 57-70. https://doi.org/10.1590/S0074-02762007005000108
Abad-Franch, F., Monteiro, F. A., Jaramillo O., N., Gurgel-Gonçalves, R., Dias, F. B. S., & Diotaiuti, L. (2009b). Ecology, evolution, and the long-term surveillance of vector-borne Chagas disease: A multi-scale appraisal of the tribe Rhodniini (Triatominae). Acta Tropica, 110(2), 159-177. https://doi.org/10.1016/j.actatropica.2008.06.005
Anisimova, M., Gil, M., Dufayard, J.-F., Dessimoz, C., & Gascuel, O. (2011). Survey of Branch Support Methods Demonstrates Accuracy, Power, and Robustness of Fast Likelihood-based Approximation Schemes. Systematic Biology, 60(5), 685-699. https://doi.org/10.1093/sysbio/syr041
Asin, S., & Catalá, S. (1995). Development of Trypanosoma cruzi in Triatoma infestans: Influence of Temperature and Blood Consumption. The Journal of parasitology, 81, 1-7. https://doi.org/10.2307/3283997
Barbet‐Massin, M., Jiguet, F., Albert, C. H., & Thuiller, W. (2012). Selecting pseudo-absences for species distribution models: How, where and how many? Methods in Ecology and Evolution, 3(2), 327-338. https://doi.org/10.1111/j.2041-210X.2011.00172.x
Bargues, M. D., Marcilla, A., Dujardin, J. P., & Mas-Coma, S. (2002c). Triatomine vectors of Trypanosoma cruzi: A molecular perspective based on nuclear ribosomal DNA markers. Transactions of the Royal Society of Tropical Medicine and Hygiene, 96, S159-S164. https://doi.org/10.1016/S0035-9203(02)90069-6
Bern, C. (2015). Chagas’ Disease. New England Journal of Medicine, 373(5), 456-466. https://doi.org/10.1056/NEJMra1410150
Bobrowski, M., & Schickhoff, U. (2017). Why input matters: Selection of climate data sets for modelling the potential distribution of a treeline species in the Himalayan region. Ecological Modelling, 359, 92-102. https://doi.org/10.1016/j.ecolmodel.2017.05.021
Brown, J. L., & Carnaval, A. C. (2019). A tale of two niches: Methods, concepts, and evolution. Frontiers of Biogeography.
Caicedo-Garzón, V., Salgado-Roa, F. C., Sánchez-Herrera, M., Hernández, C., Arias-Giraldo, L. M., García, L., Vallejo, G., Cantillo, O., Tovar, C., Rosa, J. A. da, Carrasco, H. J., Segovia, M., Salazar, C., & Ramírez, J. D. (2019). Genetic diversification of Panstrongylus geniculatus (Reduviidae: Triatominae) in northern South America. PLOS ONE, 14(10), e0223963. https://doi.org/10.1371/journal.pone.0223963
Carstens, B. C., Pelletier, T. A., Reid, N. M., & Satler, J. D. (2013b). How to fail at species delimitation. Molecular Ecology, 22(17), 4369-4383. https://doi.org/10.1111/mec.12413
Castillo-Neyra, R., Barbu, C. M., Salazar, R., Borrini, K., Naquira, C., & Levy, M. Z. (2015). Host-Seeking Behavior and Dispersal of Triatoma infestans, a Vector of Chagas Disease, under Semi-field Conditions. PLOS Neglected Tropical Diseases, 9(1), e3433. https://doi.org/10.1371/journal.pntd.0003433
Ceccarelli, S., Balsalobre, A., Medone, P., Cano, M. E., Gurgel Gonçalves, R., Feliciangeli, D., Vezzani, D., Wisnivesky-Colli, C., Gorla, D. E., Marti, G. A., & Rabinovich, J. E. (2018). DataTri, a database of American triatomine species occurrence. Scientific Data, 5(1), 180071. https://doi.org/10.1038/sdata.2018.71
Chagas, Carlos. (1909). Nova tripanozomiaze humana: Estudos sobre a morfolojia e o ciclo evolutivo do Schizotrypanum cruzi n. gen., n. sp., ajente etiolojico de nova entidade morbida do homem. Memórias do Instituto Oswaldo Cruz, 1(2), 159-218. https://doi.org/10.1590/S0074-02761909000200008
Chefaoui, R. M., & Lobo, J. M. (2008b). Assessing the effects of pseudo-absences on predictive distribution model performance. Ecological Modelling, 210(4), 478-486. https://doi.org/10.1016/j.ecolmodel.2007.08.010
Clement, M., Snell, Q., Walker, P., Posada, D., & Crandall, K. (s. f.). TCS: Estimating Gene Genealogies. 7.
Cruz-Guzmán, P. J., Morocoima, A., Chique, J. D., Ramonis-Quintero, J., Uzcátegui, M. T., & Carrasco, H. J. (s. f.). Psammolestes arthuri NATURALMENTE INFECTADO CON Trypanosoma cruzi ENCONTRADO EN SIMPATRÍA CON Rhodnius prolixus Y Triatoma maculata EN NIDOS DE AVES EN EL ESTADO ANZOÁTEGUI, VENEZUELA. 14.
de Paula, A. S., Diotaiuti, L., & Galvão, C. (2007). Systematics and biogeography of Rhodniini (Heteroptera: Reduviidae: Triatominae) based on 16S mitochondrial rDNA sequences. Journal of Biogeography, 34(4), 699-712. https://doi.org/10.1111/j.1365-2699.2006.01628.x
de Paula, A. S., Diotaiuti, L., & Scho, C. J. (2005). Testing the sister-group relationship of the Rhodniini and Triatomini (Insecta: Hemiptera: Reduviidae: Triatominae). Molecular Phylogenetics and Evolution, 8.
Degnan, J. H., & Rosenberg, N. A. (2006b). Discordance of Species Trees with Their Most Likely Gene Trees. PLOS Genetics, 2(5), e68. https://doi.org/10.1371/journal.pgen.0020068
Dias, J. C. P., Silveira, A. C., & Schofield, C. J. (2002). The impact of Chagas disease control in Latin America: A review. Memórias do Instituto Oswaldo Cruz, 97(5), 603-612. https://doi.org/10.1590/S0074-02762002000500002
Dixon, P. (2003). VEGAN, a package of R functions for community ecology. Journal of Vegetation Science, 14(6), 927-930. https://doi.org/10.1111/j.1654-1103.2003.tb02228.x
Dujardin, J. P., Chavez, T., Moreno, J. M., Machane, M., Noireau, F., & Schofield, C. J. (1999). Comparison of Isoenzyme Electrophoresis and Morphometric Analysis for Phylogenetic Reconstruction of the Rhodniini (Hemiptera: Reduviidae: Triatominae). Journal of Medical Entomology, 36(6), 653-659. https://doi.org/10.1093/jmedent/36.6.653
Dujardin, J.-P., Beard, C. B., & Ryckman, R. (2007). The relevance of wing geometry in entomological surveillance of Triatominae, vectors of Chagas disease. Infection, Genetics and Evolution, 7(2), 161-167. https://doi.org/10.1016/j.meegid.2006.07.005
Earl, D. A., & vonHoldt, B. M. (2012). STRUCTURE HARVESTER: A website and program for visualizing STRUCTURE output and implementing the Evanno method. Conservation Genetics Resources, 4(2), 359-361. https://doi.org/10.1007/s12686-011-9548-7
Edwards, S. V. (2009). Natural selection and phylogenetic analysis. Proceedings of the National Academy of Sciences, 106(22), 8799-8800. https://doi.org/10.1073/pnas.0904103106
Elith, J., Graham*, C. H., Anderson, R. P., Dudík, M., Ferrier, S., Guisan, A., Hijmans, R. J., Huettmann, F., Leathwick, J. R., Lehmann, A., Li, J., Lohmann, L. G., Loiselle, B. A., Manion, G., Moritz, C., Nakamura, M., Nakazawa, Y., Overton, J. M. M., Peterson, A. T., … Zimmermann, N. E. (2006). Novel methods improve prediction of species’ distributions from occurrence data. Ecography, 29(2), 129-151. https://doi.org/10.1111/j.2006.0906-7590.04596.x
Ence, D. D., & Carstens, B. C. (2011b). SpedeSTEM: A rapid and accurate method for species delimitation. Molecular Ecology Resources, 11(3), 473-480. https://doi.org/10.1111/j.1755-0998.2010.02947.x
Evanno, G., Regnaut, S., & Goudet, J. (2005). Detecting the number of clusters of individuals using the software structure: A simulation study. Molecular Ecology, 14(8), 2611-2620. https://doi.org/10.1111/j.1365-294X.2005.02553.x
Friedman, J. H. (2006). Recent advances in predictive (machine) learning. Journal of classification, 23(2), 175-197.
Fu, Y. X., & Li, W. H. (1993). Statistical tests of neutrality of mutations. Genetics, 133(3), 693-709.
Funk, D. J., & Omland, K. E. (2003b). Species-Level Paraphyly and Polyphyly: Frequency, Causes, and Consequences, with Insights from Animal Mitochondrial DNA. Annual Review of Ecology, Evolution, and Systematics, 34(1), 397-423. https://doi.org/10.1146/annurev.ecolsys.34.011802.132421
Gadagkar, S. R., Rosenberg, M. S., & Kumar, S. (2005). Inferring species phylogenies from multiple genes: Concatenated sequence tree versus consensus gene tree. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 304B(1), 64-74. https://doi.org/10.1002/jez.b.21026
Galvão, C., Carcavallo, R., Rocha, D. D. S., & Jurberg, J. (2003). A checklist of the current valid species of the subfamily Triatominae Jeannel, 1919 (Hemiptera, Reduviidae) and their geographical distribution, with nomenclatural and taxonomic notes. Zootaxa, 202(1), 1-36. https://doi.org/10.11646/zootaxa.202.1.1
Golding, N., Wilson, A. L., Moyes, C. L., Cano, J., Pigott, D. M., Velayudhan, R., Brooker, S. J., Smith, D. L., Hay, S. I., & Lindsay, S. W. (2015). Integrating vector control across diseases. BMC Medicine, 13(1), 249. https://doi.org/10.1186/s12916-015-0491-4
Gorchakov, R., Trosclair, L. P., Wozniak, E. J., Feria, P. T., Garcia, M. N., Gunter, S. M., & Murray, K. O. (2016). Trypanosoma cruzi Infection Prevalence and Bloodmeal Analysis in Triatomine Vectors of Chagas Disease From Rural Peridomestic Locations in Texas, 2013–2014. Journal of Medical Entomology, 53(4), 911-918. https://doi.org/10.1093/jme/tjw040
Graham, Catherine H., Ferrier, S., Huettman, F., Moritz, C., & Peterson, A. T. (2004). New developments in museum-based informatics and applications in biodiversity analysis. Trends in Ecology & Evolution, 19(9), 497-503. https://doi.org/10.1016/j.tree.2004.07.006
Guindon, S., Dufayard, J.-F., Lefort, V., Anisimova, M., Hordijk, W., & Gascuel, O. (2010). New Algorithms and Methods to Estimate Maximum-Likelihood Phylogenies: Assessing the Performance of PhyML 3.0. Systematic Biology, 59(3), 307-321. https://doi.org/10.1093/sysbio/syq010
Hijmans, R. J., Williams, E., Vennes, C., & Hijmans, M. R. J. (2017). Package ‘geosphere’. Spherical trigonometry, 1, 7.
Hoang, D. T., Chernomor, O., von Haeseler, A., Minh, B. Q., & Vinh, L. S. (2018). UFBoot2: Improving the Ultrafast Bootstrap Approximation. Molecular Biology and Evolution, 35(2), 518-522. https://doi.org/10.1093/molbev/msx281
Hudson, R. R., Boos, D. D., & Kaplan, N. L. (1992). A statistical test for detecting geographic subdivision. Molecular Biology and Evolution, 9(1), 138-151. https://doi.org/10.1093/oxfordjournals.molbev.a040703
Hwang, W. S., & Weirauch, C. (2012b). Evolutionary History of Assassin Bugs (Insecta: Hemiptera: Reduviidae): Insights from Divergence Dating and Ancestral State Reconstruction. PLOS ONE, 7(9), e45523. https://doi.org/10.1371/journal.pone.0045523
Hypša, V., Tietz, D. F., Zrzavý, J., Rego, R. O. M., Galvao, C., & Jurberg, J. (2002b). Phylogeny and biogeography of Triatominae (Hemiptera: Reduviidae): molecular evidence of a New World origin of the Asiatic clade. Molecular Phylogenetics and Evolution, 23(3), 447-457. https://doi.org/10.1016/S1055-7903(02)00023-4
Jakobsson, M., & Rosenberg, N. A. (2007). CLUMPP: A cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics, 23(14), 1801-1806. https://doi.org/10.1093/bioinformatics/btm233
Jombart, T., & Ahmed, I. (2011). adegenet 1.3-1: New tools for the analysis of genome-wide SNP data. Bioinformatics, 27(21), 3070-3071. https://doi.org/10.1093/bioinformatics/btr521
Justi, S. A., & Galvão, C. (2017). The Evolutionary Origin of Diversity in Chagas Disease Vectors. Trends in Parasitology, 33(1), 42-52. https://doi.org/10.1016/j.pt.2016.11.002
Justi, S. A., Galvão, C., & Schrago, C. G. (2016b). Geological Changes of the Americas and their Influence on the Diversification of the Neotropical Kissing Bugs (Hemiptera: Reduviidae: Triatominae). PLOS Neglected Tropical Diseases, 10(4), e0004527. https://doi.org/10.1371/journal.pntd.0004527
Kalyaanamoorthy, S., Minh, B. Q., Wong, T. K., von Haeseler, A., & Jermiin, L. S. (2017). ModelFinder: Fast Model Selection for Accurate Phylogenetic Estimates. Nature methods, 14(6), 587-589. https://doi.org/10.1038/nmeth.4285
Kapli, P., Lutteropp, S., Zhang, J., Kobert, K., Pavlidis, P., Stamatakis, A., & Flouri, T. (2017). Multi-rate Poisson tree processes for single-locus species delimitation under maximum likelihood and Markov chain Monte Carlo. Bioinformatics, 33(11), 1630-1638. https://doi.org/10.1093/bioinformatics/btx025
Karger, D. N., Conrad, O., Böhner, J., Kawohl, T., Kreft, H., Soria-Auza, R. W., Zimmermann, N. E., Linder, H. P., & Kessler, M. (2017). Climatologies at high resolution for the earth’s land surface areas. Scientific Data, 4(1), 170122. https://doi.org/10.1038/sdata.2017.122
Leigh, J. W., & Bryant, D. (2015). popart: Full-feature software for haplotype network construction. Methods in Ecology and Evolution, 6(9), 1110-1116. https://doi.org/10.1111/2041-210X.12410
Lemmon, A. R., Brown, J. M., Stanger-Hall, K., & Lemmon, E. M. (2009b). The Effect of Ambiguous Data on Phylogenetic Estimates Obtained by Maximum Likelihood and Bayesian Inference. Systematic Biology, 58(1), 130-145. https://doi.org/10.1093/sysbio/syp017
Lent, H., & Wygodzinsky, P. (1979). Revision of the Triatominae (Hemiptera, Reduviidae), and their significance as vectors of Chagas’ disease. Bulletin of the American Museum of Natural History, 163(3), 123-520.
Lischer, H. E. L., & Excoffier, L. (2012). PGDSpider: An automated data conversion tool for connecting population genetics and genomics programs. Bioinformatics, 28(2), 298-299. https://doi.org/10.1093/bioinformatics/btr642
Lobo, I. (2008b). Environmental Influences on Gene Expression. Nature Education, 39.
Lyman, D. F., Monteiro, F. A., Escalante, A. A., Cordon-Rosales, C., Wesson, D. M., Dujardin, J. P., & Beard, C. B. (1999). Mitochondrial DNA sequence variation among triatomine vectors of Chagas’ disease. The American Journal of Tropical Medicine and Hygiene, 60(3), 377-386. https://doi.org/10.4269/ajtmh.1999.60.377
Maddison, W. P., & Maddison, D. R. (2019). Mesquite: A modular system for evolutionary analysis. Version 3.51. 2018.
Maddison, Wayne P. (1997). Gene Trees in Species Trees. Systematic Biology, 46(3), 523-536. https://doi.org/10.1093/sysbio/46.3.523
Manni, F., Rard, E. G., & Heyer, E. (s. f.). Geographic Patterns of (Genetic, Morphologic, Linguistic) Variation: How Barriers Can Be Detected by Using Monmonier’s Algorithm. 18.
Mantel, N. (1967). The Detection of Disease Clustering and a Generalized Regression Approach. Cancer Research, 27(2 Part 1), 209-220.
McCullagh, P. (81). Nelder. JA (1989), Generalized Linear Models. CRC Monographs on Statistics & Applied Probability, Springer Verlag, New York.
Minh, B. Q., Schmidt, H. A., Chernomor, O., Schrempf, D., Woodhams, M. D., von Haeseler, A., & Lanfear, R. (2020). IQ-TREE 2: New Models and Efficient Methods for Phylogenetic Inference in the Genomic Era. Molecular Biology and Evolution, 37(5), 1530-1534. https://doi.org/10.1093/molbev/msaa015
Monteiro, F. A., Wesson, D. M., Dotson, E. M., Schofield, C. J., & Beard, C. B. (2000b). Phylogeny and molecular taxonomy of the Rhodniini derived from mitochondrial and nuclear DNA sequences. The American Journal of Tropical Medicine and Hygiene, 62(4), 460-465. https://doi.org/10.4269/ajtmh.2000.62.460
Monteiro, Fernando Araujo, Weirauch, C., Felix, M., Lazoski, C., & Abad-Franch, F. (2018b). Chapter Five—Evolution, Systematics, and Biogeography of the Triatominae, Vectors of Chagas Disease. En D. Rollinson & J. R. Stothard (Eds.), Advances in Parasitology (Vol. 99, pp. 265-344). Academic Press. https://doi.org/10.1016/bs.apar.2017.12.002
Nascimento, J. D., Rosa, J. A. da, Salgado-Roa, F. C., Hernández, C., Pardo-Diaz, C., Alevi, K. C. C., Ravazi, A., Oliveira, J. de, Oliveira, M. T. V. de A., Salazar, C., & Ramírez, J. D. (2019). Taxonomical over splitting in the Rhodnius prolixus (Insecta: Hemiptera: Reduviidae) clade: Are R. taquarussuensis (da Rosa et al., 2017) and R. neglectus (Lent, 1954) the same species? PLOS ONE, 14(2), e0211285. https://doi.org/10.1371/journal.pone.0211285
Oliveira, J., Alevi, K. C. C., Ravazi, A., Herrera, H. M., Santos, F. M., Azeredo-Oliveira, M. T. V. de, & Rosa, J. A. da. (2018). New Evidence of the Monophyletic Relationship of the Genus Psammolestes Bergroth, 1911 (Hemiptera, Reduviidae, Triatominae). The American Journal of Tropical Medicine and Hygiene, 99(6), 1485-1488. https://doi.org/10.4269/ajtmh.18-0109
Patterson, J. S., & Gaunt, M. W. (2010b). Phylogenetic multi-locus codon models and molecular clocks reveal the monophyly of haematophagous reduviid bugs and their evolution at the formation of South America. Molecular Phylogenetics and Evolution, 56(2), 608-621. https://doi.org/10.1016/j.ympev.2010.04.038
Phillips, S. J., Anderson, R. P., & Schapire, R. E. (2006). Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190(3), 231-259. https://doi.org/10.1016/j.ecolmodel.2005.03.026
Pollock, D. D., Zwickl, D. J., McGuire, J. A., & Hillis, D. M. (2002b). Increased Taxon Sampling Is Advantageous for Phylogenetic Inference. Systematic biology, 51(4), 664-671. https://doi.org/10.1080/10635150290102357
Pritchard, J. K., Stephens, M., & Donnelly, P. (2000). Inference of Population Structure Using Multilocus Genotype Data. Genetics, 155(2), 945-959.
Ramos-Onsins, S. E., & Rozas, J. (2002). Statistical Properties of New Neutrality Tests Against Population Growth. Molecular Biology and Evolution, 19(12), 2092-2100. https://doi.org/10.1093/oxfordjournals.molbev.a004034
Reuter, H. I., Nelson, A., & Jarvis, A. (2007). An evaluation of void‐filling interpolation methods for SRTM data. International Journal of Geographical Information Science, 21(9), 983-1008. https://doi.org/10.1080/13658810601169899
Ripley, B. D., & Naylor, P. (1996). Pattern Recognition and Neural Networks. Nature, 381(6579), 206-206.
Rödder, D., & Engler, J. O. (2011). Quantitative metrics of overlaps in Grinnellian niches: Advances and possible drawbacks. Global Ecology and Biogeography, 20(6), 915-927. https://doi.org/10.1111/j.1466-8238.2011.00659.x
Rosenberg, N. A. (2004). distruct: A program for the graphical display of population structure. Molecular Ecology Notes, 4(1), 137-138. https://doi.org/10.1046/j.1471-8286.2003.00566.x
Roux, C., Fraïsse, C., Romiguier, J., Anciaux, Y., Galtier, N., & Bierne, N. (2016). Shedding Light on the Grey Zone of Speciation along a Continuum of Genomic Divergence. PLOS Biology, 14(12), e2000234. https://doi.org/10.1371/journal.pbio.2000234
Rozas, J., Ferrer-Mata, A., Sánchez-DelBarrio, J. C., Guirao-Rico, S., Librado, P., Ramos-Onsins, S. E., & Sánchez-Gracia, A. (2017). DnaSP 6: DNA Sequence Polymorphism Analysis of Large Data Sets. Molecular Biology and Evolution, 34(12), 3299-3302. https://doi.org/10.1093/molbev/msx248
Sanderson, M. J., McMahon, M. M., & Steel, M. (2010b). Phylogenomics with incomplete taxon coverage: The limits to inference. BMC Evolutionary Biology, 10(1), 155. https://doi.org/10.1186/1471-2148-10-155
Sandoval, C. M., Duarte, R., Gutíerrez, R., Rocha, D. da S., Angulo, V. M., Esteban, L., Reyes, M., Jurberg, J., & Galvão, C. (2004). Feeding sources and natural infection of Belminus herreri (Hemiptera, Reduviidae, Triatominae) from dwellings in Cesar, Colombia. Memórias do Instituto Oswaldo Cruz, 99(2), 137-140. https://doi.org/10.1590/S0074-02762004000200004
Schofield, C. J., & Galvão, C. (2009). Classification, evolution, and species groups within the Triatominae. Acta Tropica, 110(2), 88-100. https://doi.org/10.1016/j.actatropica.2009.01.010
Schofield, Chris J., Jannin, J., & Salvatella, R. (2006). The future of Chagas disease control. Trends in Parasitology, 22(12), 583-588. https://doi.org/10.1016/j.pt.2006.09.011
Schwarz, G. (1978). Estimating the Dimension of a Model. Annals of Statistics, 6(2), 461-464. https://doi.org/10.1214/aos/1176344136
Tajima, F. (1989). Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics, 123(3), 585-595.
Thuiller, Wilfried, Araújo, M. B., & Lavorel, S. (2003). Generalized models vs. classification tree analysis: Predicting spatial distributions of plant species at different scales. Journal of Vegetation Science, 14(5), 669-680. https://doi.org/10.1111/j.1654-1103.2003.tb02199.x
Thuiller, Wilfried, Lafourcade, B., Engler, R., & Araújo, M. B. (2009). BIOMOD – a platform for ensemble forecasting of species distributions. Ecography, 32(3), 369-373. https://doi.org/10.1111/j.1600-0587.2008.05742.x
Torre-Bárcena, J. E. de la, Kolokotronis, S.-O., Lee, E. K., Stevenson, D. W., Brenner, E. D., Katari, M. S., Coruzzi, G. M., & DeSalle, R. (2009). The Impact of Outgroup Choice and Missing Data on Major Seed Plant Phylogenetics Using Genome-Wide EST Data. PLOS ONE, 4(6), e5764. https://doi.org/10.1371/journal.pone.0005764
Townsend, T. M., Mulcahy, D. G., Noonan, B. P., Sites, J. W., Kuczynski, C. A., Wiens, J. J., & Reeder, T. W. (2011). Phylogeny of iguanian lizards inferred from 29 nuclear loci, and a comparison of concatenated and species-tree approaches for an ancient, rapid radiation. Molecular Phylogenetics and Evolution, 61(2), 363-380. https://doi.org/10.1016/j.ympev.2011.07.008
Townson, H., Nathan, M. B., Zaim, M., Guillet, P., Manga, L., Bos, R., & Kindhauser, M. (2005). Exploiting the potential of vector control for disease prevention. Bulletin of the World Health Organization, 83, 942-947. https://doi.org/10.1590/S0042-96862005001200017
Velásquez-Ortiz, N., Hernández, C., Herrera, G., Cruz-Saavedra, L., Higuera, A., Arias-Giraldo, L. M., Urbano, P., Cuervo, A., Teherán, A., & Ramírez, J. D. (2019b). Trypanosoma cruzi infection, discrete typing units and feeding sources among Psammolestes arthuri (Reduviidae: Triatominae) collected in eastern Colombia. Parasites & Vectors, 12(1), 157. https://doi.org/10.1186/s13071-019-3422-y
Waleckx, E., Gourbière, S., Dumonteil, E., Waleckx, E., Gourbière, S., & Dumonteil, E. (2015). Intrusive versus domiciliated triatomines and the challenge of adapting vector control practices against Chagas disease. Memórias do Instituto Oswaldo Cruz, 110(3), 324-338. https://doi.org/10.1590/0074-02760140409
Wei, T., Simko, V., Levy, M., Xie, Y., Jin, Y., & Zemla, J. (2017). Package ‘corrplot’. Statistician, 56(316), e24.
Weirauch, C. (2008b). Cladistic analysis of Reduviidae (Heteroptera: Cimicomorpha) based on morphological characters. Systematic Entomology, 33(2), 229-274. https://doi.org/10.1111/j.1365-3113.2007.00417.x
Wilson, A. L., Courtenay, O., Kelly-Hope, L. A., Scott, T. W., Takken, W., Torr, S. J., & Lindsay, S. W. (2020). The importance of vector control for the control and elimination of vector-borne diseases. PLOS Neglected Tropical Diseases, 14(1), e0007831. https://doi.org/10.1371/journal.pntd.0007831
Wisz, M. S., & Guisan, A. (2009b). Do pseudo-absence selection strategies influence species distribution models and their predictions? An information-theoretic approach based on simulated data. BMC Ecology, 9(1), 8. https://doi.org/10.1186/1472-6785-9-8
Yang, Z. (2015). The BPP program for species tree estimation and species delimitation. Current Zoology, 61(5), 854-865. https://doi.org/10.1093/czoolo/61.5.854
Yang, Z., & Rannala, B. (2014b). Unguided Species Delimitation Using DNA Sequence Data from Multiple Loci. Molecular Biology and Evolution, 31(12), 3125-3135. https://doi.org/10.1093/molbev/msu279
Zwickl, D. J., & Hillis, D. M. (2002b). Increased Taxon Sampling Greatly Reduces Phylogenetic Error. Systematic Biology, 51(4), 588-598. https://doi.org/10.1080/10635150290102339
dc.source.instname.spa.fl_str_mv instname:Universidad del Rosario
dc.source.reponame.spa.fl_str_mv reponame:Repositorio Institucional EdocUR
bitstream.url.fl_str_mv https://repository.urosario.edu.co/bitstreams/9f9579b4-a1a2-43e3-aeb8-70c96b43b56b/download
https://repository.urosario.edu.co/bitstreams/e6fcea53-aaf8-403c-9423-ce20a764fc7c/download
https://repository.urosario.edu.co/bitstreams/8e995e55-999a-4db6-bf8d-cfa195989bcb/download
https://repository.urosario.edu.co/bitstreams/3155d351-84eb-4cb1-a508-d0e4f80de088/download
https://repository.urosario.edu.co/bitstreams/2dd9f85f-8f10-486b-b0fb-924b24227cb4/download
bitstream.checksum.fl_str_mv dab767be7a093b539031785b3bf95490
fab9d9ed61d64f6ac005dee3306ae77e
4fd49de755969580b0bce6f67d0d75fe
8135dc9cc21585847e2a68f2bec4a253
a19a5998231e63bbd35439bea7146b40
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio institucional EdocUR
repository.mail.fl_str_mv edocur@urosario.edu.co
_version_ 1814167529802694656
spelling Ballesteros Chitiva, NathaliaRueda, NicolOliveira, JaderAristeu da Rosa, JoaoUrbano, PlutarcoRamírez, Juan David1011716118600Salazar, Camilo79873757600Salgado-Roa, Fabian Camilod000986a-ad3e-4341-b650-23798d0bd876600Hernandez, Diana Carolina3de18c45-9f0e-4f44-a6d1-417cd6fc6586600Alvarado Lopez, Mateo AndrésBiólogoFull time891bb050-6eaf-4833-b8f4-ae9bf76f7d156002021-02-03T16:09:11Z2021-02-03T16:09:11Z2021-01-25La familia Reduviidae (Hemiptera: Heteroptera) se encuentra entre las familias más diversas de los verdaderos insectos. La evolución y las relaciones filogenéticas de las tribus Rhodniini y Triatomini (Triatominae) están bien estudiadas debido a su relevancia epidemiológica como vectores de Trypanosoma cruzi, el parásito que causa la enfermedad de Chagas. Rhodniini está compuesto por los géneros Rhodnius y Psammolestes, donde queda por estudiar la diversidad genética del segundo en comparación con Rhodnius, principal vector de T. cruzi. Por lo tanto, reunimos 92 muestras en total, 38 de Psammolestes arthuri en Colombia, 24 de Psammolestes tertius y 30 de coreodas de Psammolestes en Brasil. Usamos cinco nuevos loci nucleares: tRNA guanina (37) -N (1) metil transferasa (TRNA), proteína inducible por hormona juvenil putativa (PJH), proteína de ensamblaje de proteína de azufre de hierro citosólico probable Ciao 1 (CISP), lipoil sintasa, mitocondrial ( LSM) y proteína no caracterizada para la adhesión celular (UPCA), junto con dos loci previamente informados: 28S y CYTB, para representar las relaciones filogenéticas y los patrones evolutivos del género Psammolestes. Cuatro de las siete topologías de genes no eran consistentes con la topología concatenada, mientras que las otras tres eran concordantes, pero el patrón general es claro: Psammolestes es un grupo monofilético, corroborando hipótesis previamente sugeridas para el género. El análisis de agrupamiento junto con las estadísticas resumidas de genética de poblaciones dio como resultado la delimitación de tres poblaciones diferentes. Estos tres clusters corresponden a cada una de las especies de Psammolestes conocidas a priori -definidas por morfología, ecología y métodos citogenéticos- lo que sugiere que las poblaciones de cada una de las especies tienen una estructura genética bien sustentada. En general, nuestros resultados corroboraron la existencia de las tres especies de Psammolestes descritas anteriormente, 4 mostrando que probablemente divergieron en alopatría, bajo la influencia del escudo de Guyana y la cuenca del Amazonas como barreras para la dispersión.The family Reduviidae (Hemiptera: Heteroptera) is among the most diverse families of the true bugs. The evolution and phylogenetic relationships of Rhodniini and Triatomini tribes (Triatominae) are well studied due to their epidemiological relevance as vectors of Trypanosoma cruzi, the parasite that causes the Chagas disease. Rhodniini is composed by the genera Rhodnius and Psammolestes, where the genetic diversity of the second one remains to be studied in comparison with Rhodnius, the main vector of T. cruzi. Therefore, we gathered 92 samples in total, 38 for Psammolestes arthuri in Colombia, 24 for Psammolestes tertius and 30 for Psammolestes coreodes in Brazil. We used five novel nuclear loci: tRNA Guanine (37) -N (1) methyl transferase (TRNA), Putative juvenile hormone inducible protein (PJH), Probable cytosolic iron sulfur protein assembly protein Ciao 1 (CISP), Lipoyl synthase, mitochondrial (LSM) and Uncharacterized protein for cell adhesion (UPCA), along with two previously reported loci: 28S and CYTB, to depict the phylogenetic relationships and the evolutionary patterns of the genus Psammolestes. Four of the seven gene topologies were not consistent with the concatenated topology, while the other three were concordant, but the general pattern is clear: Psammolestes is a monophyletic group, corroborating hypotheses previously suggested for the genus. Clustering analysis along with population genetics summary statistics resulted in the delimitation of three different populations. These three clusters corresponded to each one of the Psammolestes species known a priori -defined by morphology, ecology and cytogenetic methods- which suggests that populations for each one of the species has a well-supported genetic structure. Overall, our results corroborated the existence of the three previously described Psammolestes species, 4 showing that they probably diverged in allopatry, under the influence of the Guyana shield and the Amazon basin as barriers to dispersalDirección de Investigación e Innovación (Big Grant) de la Universidad del Rosario.application/pdfhttps://doi.org/10.48713/10336_30865 https://repository.urosario.edu.co/handle/10336/30865engUniversidad del RosarioFacultad de Ciencias Naturales y MatemáticasBiologíaAtribución-SinDerivadas 2.5 ColombiaAbierto (Texto Completo)EL AUTOR, manifiesta que la obra objeto de la presente autorización es original y la realizó sin violar o usurpar derechos de autor de terceros, por lo tanto la obra es de exclusiva autoría y tiene la titularidad sobre la misma.http://creativecommons.org/licenses/by-nd/2.5/co/http://purl.org/coar/access_right/c_abf2Abad-Franch, F., Lima, M. M., Sarquis, O., Gurgel-Gonçalves, R., Sánchez-Martín, M., Calzada, J., Saldaña, A., Monteiro, F. A., Palomeque, F. S., Santos, W. S., Angulo, V. M., Esteban, L., Dias, F. B. S., Diotaiuti, L., Bar, M. E., & Gottdenker, N. L. (2015). On palms, bugs, and Chagas disease in the Americas. Acta Tropica, 151, 126-141. https://doi.org/10.1016/j.actatropica.2015.07.005Abad-Franch, F., & Monteiro, F. A. (2007b). Biogeography and evolution of Amazonian triatomines (Heteroptera: Reduviidae): implications for Chagas disease surveillance in humid forest ecoregions. Memórias Do Instituto Oswaldo Cruz, 102, 57-70. https://doi.org/10.1590/S0074-02762007005000108Abad-Franch, F., Monteiro, F. A., Jaramillo O., N., Gurgel-Gonçalves, R., Dias, F. B. S., & Diotaiuti, L. (2009b). Ecology, evolution, and the long-term surveillance of vector-borne Chagas disease: A multi-scale appraisal of the tribe Rhodniini (Triatominae). Acta Tropica, 110(2), 159-177. https://doi.org/10.1016/j.actatropica.2008.06.005Anisimova, M., Gil, M., Dufayard, J.-F., Dessimoz, C., & Gascuel, O. (2011). Survey of Branch Support Methods Demonstrates Accuracy, Power, and Robustness of Fast Likelihood-based Approximation Schemes. Systematic Biology, 60(5), 685-699. https://doi.org/10.1093/sysbio/syr041Asin, S., & Catalá, S. (1995). Development of Trypanosoma cruzi in Triatoma infestans: Influence of Temperature and Blood Consumption. The Journal of parasitology, 81, 1-7. https://doi.org/10.2307/3283997Barbet‐Massin, M., Jiguet, F., Albert, C. H., & Thuiller, W. (2012). Selecting pseudo-absences for species distribution models: How, where and how many? Methods in Ecology and Evolution, 3(2), 327-338. https://doi.org/10.1111/j.2041-210X.2011.00172.xBargues, M. D., Marcilla, A., Dujardin, J. P., & Mas-Coma, S. (2002c). Triatomine vectors of Trypanosoma cruzi: A molecular perspective based on nuclear ribosomal DNA markers. Transactions of the Royal Society of Tropical Medicine and Hygiene, 96, S159-S164. https://doi.org/10.1016/S0035-9203(02)90069-6Bern, C. (2015). Chagas’ Disease. New England Journal of Medicine, 373(5), 456-466. https://doi.org/10.1056/NEJMra1410150Bobrowski, M., & Schickhoff, U. (2017). Why input matters: Selection of climate data sets for modelling the potential distribution of a treeline species in the Himalayan region. Ecological Modelling, 359, 92-102. https://doi.org/10.1016/j.ecolmodel.2017.05.021Brown, J. L., & Carnaval, A. C. (2019). A tale of two niches: Methods, concepts, and evolution. Frontiers of Biogeography.Caicedo-Garzón, V., Salgado-Roa, F. C., Sánchez-Herrera, M., Hernández, C., Arias-Giraldo, L. M., García, L., Vallejo, G., Cantillo, O., Tovar, C., Rosa, J. A. da, Carrasco, H. J., Segovia, M., Salazar, C., & Ramírez, J. D. (2019). Genetic diversification of Panstrongylus geniculatus (Reduviidae: Triatominae) in northern South America. PLOS ONE, 14(10), e0223963. https://doi.org/10.1371/journal.pone.0223963Carstens, B. C., Pelletier, T. A., Reid, N. M., & Satler, J. D. (2013b). How to fail at species delimitation. Molecular Ecology, 22(17), 4369-4383. https://doi.org/10.1111/mec.12413Castillo-Neyra, R., Barbu, C. M., Salazar, R., Borrini, K., Naquira, C., & Levy, M. Z. (2015). Host-Seeking Behavior and Dispersal of Triatoma infestans, a Vector of Chagas Disease, under Semi-field Conditions. PLOS Neglected Tropical Diseases, 9(1), e3433. https://doi.org/10.1371/journal.pntd.0003433Ceccarelli, S., Balsalobre, A., Medone, P., Cano, M. E., Gurgel Gonçalves, R., Feliciangeli, D., Vezzani, D., Wisnivesky-Colli, C., Gorla, D. E., Marti, G. A., & Rabinovich, J. E. (2018). DataTri, a database of American triatomine species occurrence. Scientific Data, 5(1), 180071. https://doi.org/10.1038/sdata.2018.71Chagas, Carlos. (1909). Nova tripanozomiaze humana: Estudos sobre a morfolojia e o ciclo evolutivo do Schizotrypanum cruzi n. gen., n. sp., ajente etiolojico de nova entidade morbida do homem. Memórias do Instituto Oswaldo Cruz, 1(2), 159-218. https://doi.org/10.1590/S0074-02761909000200008Chefaoui, R. M., & Lobo, J. M. (2008b). Assessing the effects of pseudo-absences on predictive distribution model performance. Ecological Modelling, 210(4), 478-486. https://doi.org/10.1016/j.ecolmodel.2007.08.010Clement, M., Snell, Q., Walker, P., Posada, D., & Crandall, K. (s. f.). TCS: Estimating Gene Genealogies. 7.Cruz-Guzmán, P. J., Morocoima, A., Chique, J. D., Ramonis-Quintero, J., Uzcátegui, M. T., & Carrasco, H. J. (s. f.). Psammolestes arthuri NATURALMENTE INFECTADO CON Trypanosoma cruzi ENCONTRADO EN SIMPATRÍA CON Rhodnius prolixus Y Triatoma maculata EN NIDOS DE AVES EN EL ESTADO ANZOÁTEGUI, VENEZUELA. 14.de Paula, A. S., Diotaiuti, L., & Galvão, C. (2007). Systematics and biogeography of Rhodniini (Heteroptera: Reduviidae: Triatominae) based on 16S mitochondrial rDNA sequences. Journal of Biogeography, 34(4), 699-712. https://doi.org/10.1111/j.1365-2699.2006.01628.xde Paula, A. S., Diotaiuti, L., & Scho, C. J. (2005). Testing the sister-group relationship of the Rhodniini and Triatomini (Insecta: Hemiptera: Reduviidae: Triatominae). Molecular Phylogenetics and Evolution, 8.Degnan, J. H., & Rosenberg, N. A. (2006b). Discordance of Species Trees with Their Most Likely Gene Trees. PLOS Genetics, 2(5), e68. https://doi.org/10.1371/journal.pgen.0020068Dias, J. C. P., Silveira, A. C., & Schofield, C. J. (2002). The impact of Chagas disease control in Latin America: A review. Memórias do Instituto Oswaldo Cruz, 97(5), 603-612. https://doi.org/10.1590/S0074-02762002000500002Dixon, P. (2003). VEGAN, a package of R functions for community ecology. Journal of Vegetation Science, 14(6), 927-930. https://doi.org/10.1111/j.1654-1103.2003.tb02228.xDujardin, J. P., Chavez, T., Moreno, J. M., Machane, M., Noireau, F., & Schofield, C. J. (1999). Comparison of Isoenzyme Electrophoresis and Morphometric Analysis for Phylogenetic Reconstruction of the Rhodniini (Hemiptera: Reduviidae: Triatominae). Journal of Medical Entomology, 36(6), 653-659. https://doi.org/10.1093/jmedent/36.6.653Dujardin, J.-P., Beard, C. B., & Ryckman, R. (2007). The relevance of wing geometry in entomological surveillance of Triatominae, vectors of Chagas disease. Infection, Genetics and Evolution, 7(2), 161-167. https://doi.org/10.1016/j.meegid.2006.07.005Earl, D. A., & vonHoldt, B. M. (2012). STRUCTURE HARVESTER: A website and program for visualizing STRUCTURE output and implementing the Evanno method. Conservation Genetics Resources, 4(2), 359-361. https://doi.org/10.1007/s12686-011-9548-7Edwards, S. V. (2009). Natural selection and phylogenetic analysis. Proceedings of the National Academy of Sciences, 106(22), 8799-8800. https://doi.org/10.1073/pnas.0904103106Elith, J., Graham*, C. H., Anderson, R. P., Dudík, M., Ferrier, S., Guisan, A., Hijmans, R. J., Huettmann, F., Leathwick, J. R., Lehmann, A., Li, J., Lohmann, L. G., Loiselle, B. A., Manion, G., Moritz, C., Nakamura, M., Nakazawa, Y., Overton, J. M. M., Peterson, A. T., … Zimmermann, N. E. (2006). Novel methods improve prediction of species’ distributions from occurrence data. Ecography, 29(2), 129-151. https://doi.org/10.1111/j.2006.0906-7590.04596.xEnce, D. D., & Carstens, B. C. (2011b). SpedeSTEM: A rapid and accurate method for species delimitation. Molecular Ecology Resources, 11(3), 473-480. https://doi.org/10.1111/j.1755-0998.2010.02947.xEvanno, G., Regnaut, S., & Goudet, J. (2005). Detecting the number of clusters of individuals using the software structure: A simulation study. Molecular Ecology, 14(8), 2611-2620. https://doi.org/10.1111/j.1365-294X.2005.02553.xFriedman, J. H. (2006). Recent advances in predictive (machine) learning. Journal of classification, 23(2), 175-197.Fu, Y. X., & Li, W. H. (1993). Statistical tests of neutrality of mutations. Genetics, 133(3), 693-709.Funk, D. J., & Omland, K. E. (2003b). Species-Level Paraphyly and Polyphyly: Frequency, Causes, and Consequences, with Insights from Animal Mitochondrial DNA. Annual Review of Ecology, Evolution, and Systematics, 34(1), 397-423. https://doi.org/10.1146/annurev.ecolsys.34.011802.132421Gadagkar, S. R., Rosenberg, M. S., & Kumar, S. (2005). Inferring species phylogenies from multiple genes: Concatenated sequence tree versus consensus gene tree. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 304B(1), 64-74. https://doi.org/10.1002/jez.b.21026Galvão, C., Carcavallo, R., Rocha, D. D. S., & Jurberg, J. (2003). A checklist of the current valid species of the subfamily Triatominae Jeannel, 1919 (Hemiptera, Reduviidae) and their geographical distribution, with nomenclatural and taxonomic notes. Zootaxa, 202(1), 1-36. https://doi.org/10.11646/zootaxa.202.1.1Golding, N., Wilson, A. L., Moyes, C. L., Cano, J., Pigott, D. M., Velayudhan, R., Brooker, S. J., Smith, D. L., Hay, S. I., & Lindsay, S. W. (2015). Integrating vector control across diseases. BMC Medicine, 13(1), 249. https://doi.org/10.1186/s12916-015-0491-4Gorchakov, R., Trosclair, L. P., Wozniak, E. J., Feria, P. T., Garcia, M. N., Gunter, S. M., & Murray, K. O. (2016). Trypanosoma cruzi Infection Prevalence and Bloodmeal Analysis in Triatomine Vectors of Chagas Disease From Rural Peridomestic Locations in Texas, 2013–2014. Journal of Medical Entomology, 53(4), 911-918. https://doi.org/10.1093/jme/tjw040Graham, Catherine H., Ferrier, S., Huettman, F., Moritz, C., & Peterson, A. T. (2004). New developments in museum-based informatics and applications in biodiversity analysis. Trends in Ecology & Evolution, 19(9), 497-503. https://doi.org/10.1016/j.tree.2004.07.006Guindon, S., Dufayard, J.-F., Lefort, V., Anisimova, M., Hordijk, W., & Gascuel, O. (2010). New Algorithms and Methods to Estimate Maximum-Likelihood Phylogenies: Assessing the Performance of PhyML 3.0. Systematic Biology, 59(3), 307-321. https://doi.org/10.1093/sysbio/syq010Hijmans, R. J., Williams, E., Vennes, C., & Hijmans, M. R. J. (2017). Package ‘geosphere’. Spherical trigonometry, 1, 7.Hoang, D. T., Chernomor, O., von Haeseler, A., Minh, B. Q., & Vinh, L. S. (2018). UFBoot2: Improving the Ultrafast Bootstrap Approximation. Molecular Biology and Evolution, 35(2), 518-522. https://doi.org/10.1093/molbev/msx281Hudson, R. R., Boos, D. D., & Kaplan, N. L. (1992). A statistical test for detecting geographic subdivision. Molecular Biology and Evolution, 9(1), 138-151. https://doi.org/10.1093/oxfordjournals.molbev.a040703Hwang, W. S., & Weirauch, C. (2012b). Evolutionary History of Assassin Bugs (Insecta: Hemiptera: Reduviidae): Insights from Divergence Dating and Ancestral State Reconstruction. PLOS ONE, 7(9), e45523. https://doi.org/10.1371/journal.pone.0045523Hypša, V., Tietz, D. F., Zrzavý, J., Rego, R. O. M., Galvao, C., & Jurberg, J. (2002b). Phylogeny and biogeography of Triatominae (Hemiptera: Reduviidae): molecular evidence of a New World origin of the Asiatic clade. Molecular Phylogenetics and Evolution, 23(3), 447-457. https://doi.org/10.1016/S1055-7903(02)00023-4Jakobsson, M., & Rosenberg, N. A. (2007). CLUMPP: A cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics, 23(14), 1801-1806. https://doi.org/10.1093/bioinformatics/btm233Jombart, T., & Ahmed, I. (2011). adegenet 1.3-1: New tools for the analysis of genome-wide SNP data. Bioinformatics, 27(21), 3070-3071. https://doi.org/10.1093/bioinformatics/btr521Justi, S. A., & Galvão, C. (2017). The Evolutionary Origin of Diversity in Chagas Disease Vectors. Trends in Parasitology, 33(1), 42-52. https://doi.org/10.1016/j.pt.2016.11.002Justi, S. A., Galvão, C., & Schrago, C. G. (2016b). Geological Changes of the Americas and their Influence on the Diversification of the Neotropical Kissing Bugs (Hemiptera: Reduviidae: Triatominae). PLOS Neglected Tropical Diseases, 10(4), e0004527. https://doi.org/10.1371/journal.pntd.0004527Kalyaanamoorthy, S., Minh, B. Q., Wong, T. K., von Haeseler, A., & Jermiin, L. S. (2017). ModelFinder: Fast Model Selection for Accurate Phylogenetic Estimates. Nature methods, 14(6), 587-589. https://doi.org/10.1038/nmeth.4285Kapli, P., Lutteropp, S., Zhang, J., Kobert, K., Pavlidis, P., Stamatakis, A., & Flouri, T. (2017). Multi-rate Poisson tree processes for single-locus species delimitation under maximum likelihood and Markov chain Monte Carlo. Bioinformatics, 33(11), 1630-1638. https://doi.org/10.1093/bioinformatics/btx025Karger, D. N., Conrad, O., Böhner, J., Kawohl, T., Kreft, H., Soria-Auza, R. W., Zimmermann, N. E., Linder, H. P., & Kessler, M. (2017). Climatologies at high resolution for the earth’s land surface areas. Scientific Data, 4(1), 170122. https://doi.org/10.1038/sdata.2017.122Leigh, J. W., & Bryant, D. (2015). popart: Full-feature software for haplotype network construction. Methods in Ecology and Evolution, 6(9), 1110-1116. https://doi.org/10.1111/2041-210X.12410Lemmon, A. R., Brown, J. M., Stanger-Hall, K., & Lemmon, E. M. (2009b). The Effect of Ambiguous Data on Phylogenetic Estimates Obtained by Maximum Likelihood and Bayesian Inference. Systematic Biology, 58(1), 130-145. https://doi.org/10.1093/sysbio/syp017Lent, H., & Wygodzinsky, P. (1979). Revision of the Triatominae (Hemiptera, Reduviidae), and their significance as vectors of Chagas’ disease. Bulletin of the American Museum of Natural History, 163(3), 123-520.Lischer, H. E. L., & Excoffier, L. (2012). PGDSpider: An automated data conversion tool for connecting population genetics and genomics programs. Bioinformatics, 28(2), 298-299. https://doi.org/10.1093/bioinformatics/btr642Lobo, I. (2008b). Environmental Influences on Gene Expression. Nature Education, 39.Lyman, D. F., Monteiro, F. A., Escalante, A. A., Cordon-Rosales, C., Wesson, D. M., Dujardin, J. P., & Beard, C. B. (1999). Mitochondrial DNA sequence variation among triatomine vectors of Chagas’ disease. The American Journal of Tropical Medicine and Hygiene, 60(3), 377-386. https://doi.org/10.4269/ajtmh.1999.60.377Maddison, W. P., & Maddison, D. R. (2019). Mesquite: A modular system for evolutionary analysis. Version 3.51. 2018.Maddison, Wayne P. (1997). Gene Trees in Species Trees. Systematic Biology, 46(3), 523-536. https://doi.org/10.1093/sysbio/46.3.523Manni, F., Rard, E. G., & Heyer, E. (s. f.). Geographic Patterns of (Genetic, Morphologic, Linguistic) Variation: How Barriers Can Be Detected by Using Monmonier’s Algorithm. 18.Mantel, N. (1967). The Detection of Disease Clustering and a Generalized Regression Approach. Cancer Research, 27(2 Part 1), 209-220.McCullagh, P. (81). Nelder. JA (1989), Generalized Linear Models. CRC Monographs on Statistics & Applied Probability, Springer Verlag, New York.Minh, B. Q., Schmidt, H. A., Chernomor, O., Schrempf, D., Woodhams, M. D., von Haeseler, A., & Lanfear, R. (2020). IQ-TREE 2: New Models and Efficient Methods for Phylogenetic Inference in the Genomic Era. Molecular Biology and Evolution, 37(5), 1530-1534. https://doi.org/10.1093/molbev/msaa015Monteiro, F. A., Wesson, D. M., Dotson, E. M., Schofield, C. J., & Beard, C. B. (2000b). Phylogeny and molecular taxonomy of the Rhodniini derived from mitochondrial and nuclear DNA sequences. The American Journal of Tropical Medicine and Hygiene, 62(4), 460-465. https://doi.org/10.4269/ajtmh.2000.62.460Monteiro, Fernando Araujo, Weirauch, C., Felix, M., Lazoski, C., & Abad-Franch, F. (2018b). Chapter Five—Evolution, Systematics, and Biogeography of the Triatominae, Vectors of Chagas Disease. En D. Rollinson & J. R. Stothard (Eds.), Advances in Parasitology (Vol. 99, pp. 265-344). Academic Press. https://doi.org/10.1016/bs.apar.2017.12.002Nascimento, J. D., Rosa, J. A. da, Salgado-Roa, F. C., Hernández, C., Pardo-Diaz, C., Alevi, K. C. C., Ravazi, A., Oliveira, J. de, Oliveira, M. T. V. de A., Salazar, C., & Ramírez, J. D. (2019). Taxonomical over splitting in the Rhodnius prolixus (Insecta: Hemiptera: Reduviidae) clade: Are R. taquarussuensis (da Rosa et al., 2017) and R. neglectus (Lent, 1954) the same species? PLOS ONE, 14(2), e0211285. https://doi.org/10.1371/journal.pone.0211285Oliveira, J., Alevi, K. C. C., Ravazi, A., Herrera, H. M., Santos, F. M., Azeredo-Oliveira, M. T. V. de, & Rosa, J. A. da. (2018). New Evidence of the Monophyletic Relationship of the Genus Psammolestes Bergroth, 1911 (Hemiptera, Reduviidae, Triatominae). The American Journal of Tropical Medicine and Hygiene, 99(6), 1485-1488. https://doi.org/10.4269/ajtmh.18-0109Patterson, J. S., & Gaunt, M. W. (2010b). Phylogenetic multi-locus codon models and molecular clocks reveal the monophyly of haematophagous reduviid bugs and their evolution at the formation of South America. Molecular Phylogenetics and Evolution, 56(2), 608-621. https://doi.org/10.1016/j.ympev.2010.04.038Phillips, S. J., Anderson, R. P., & Schapire, R. E. (2006). Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190(3), 231-259. https://doi.org/10.1016/j.ecolmodel.2005.03.026Pollock, D. D., Zwickl, D. J., McGuire, J. A., & Hillis, D. M. (2002b). Increased Taxon Sampling Is Advantageous for Phylogenetic Inference. Systematic biology, 51(4), 664-671. https://doi.org/10.1080/10635150290102357Pritchard, J. K., Stephens, M., & Donnelly, P. (2000). Inference of Population Structure Using Multilocus Genotype Data. Genetics, 155(2), 945-959.Ramos-Onsins, S. E., & Rozas, J. (2002). Statistical Properties of New Neutrality Tests Against Population Growth. Molecular Biology and Evolution, 19(12), 2092-2100. https://doi.org/10.1093/oxfordjournals.molbev.a004034Reuter, H. I., Nelson, A., & Jarvis, A. (2007). An evaluation of void‐filling interpolation methods for SRTM data. International Journal of Geographical Information Science, 21(9), 983-1008. https://doi.org/10.1080/13658810601169899Ripley, B. D., & Naylor, P. (1996). Pattern Recognition and Neural Networks. Nature, 381(6579), 206-206.Rödder, D., & Engler, J. O. (2011). Quantitative metrics of overlaps in Grinnellian niches: Advances and possible drawbacks. Global Ecology and Biogeography, 20(6), 915-927. https://doi.org/10.1111/j.1466-8238.2011.00659.xRosenberg, N. A. (2004). distruct: A program for the graphical display of population structure. Molecular Ecology Notes, 4(1), 137-138. https://doi.org/10.1046/j.1471-8286.2003.00566.xRoux, C., Fraïsse, C., Romiguier, J., Anciaux, Y., Galtier, N., & Bierne, N. (2016). Shedding Light on the Grey Zone of Speciation along a Continuum of Genomic Divergence. PLOS Biology, 14(12), e2000234. https://doi.org/10.1371/journal.pbio.2000234Rozas, J., Ferrer-Mata, A., Sánchez-DelBarrio, J. C., Guirao-Rico, S., Librado, P., Ramos-Onsins, S. E., & Sánchez-Gracia, A. (2017). DnaSP 6: DNA Sequence Polymorphism Analysis of Large Data Sets. Molecular Biology and Evolution, 34(12), 3299-3302. https://doi.org/10.1093/molbev/msx248Sanderson, M. J., McMahon, M. M., & Steel, M. (2010b). Phylogenomics with incomplete taxon coverage: The limits to inference. BMC Evolutionary Biology, 10(1), 155. https://doi.org/10.1186/1471-2148-10-155Sandoval, C. M., Duarte, R., Gutíerrez, R., Rocha, D. da S., Angulo, V. M., Esteban, L., Reyes, M., Jurberg, J., & Galvão, C. (2004). Feeding sources and natural infection of Belminus herreri (Hemiptera, Reduviidae, Triatominae) from dwellings in Cesar, Colombia. Memórias do Instituto Oswaldo Cruz, 99(2), 137-140. https://doi.org/10.1590/S0074-02762004000200004Schofield, C. J., & Galvão, C. (2009). Classification, evolution, and species groups within the Triatominae. Acta Tropica, 110(2), 88-100. https://doi.org/10.1016/j.actatropica.2009.01.010Schofield, Chris J., Jannin, J., & Salvatella, R. (2006). The future of Chagas disease control. Trends in Parasitology, 22(12), 583-588. https://doi.org/10.1016/j.pt.2006.09.011Schwarz, G. (1978). Estimating the Dimension of a Model. Annals of Statistics, 6(2), 461-464. https://doi.org/10.1214/aos/1176344136Tajima, F. (1989). Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics, 123(3), 585-595.Thuiller, Wilfried, Araújo, M. B., & Lavorel, S. (2003). Generalized models vs. classification tree analysis: Predicting spatial distributions of plant species at different scales. Journal of Vegetation Science, 14(5), 669-680. https://doi.org/10.1111/j.1654-1103.2003.tb02199.xThuiller, Wilfried, Lafourcade, B., Engler, R., & Araújo, M. B. (2009). BIOMOD – a platform for ensemble forecasting of species distributions. Ecography, 32(3), 369-373. https://doi.org/10.1111/j.1600-0587.2008.05742.xTorre-Bárcena, J. E. de la, Kolokotronis, S.-O., Lee, E. K., Stevenson, D. W., Brenner, E. D., Katari, M. S., Coruzzi, G. M., & DeSalle, R. (2009). The Impact of Outgroup Choice and Missing Data on Major Seed Plant Phylogenetics Using Genome-Wide EST Data. PLOS ONE, 4(6), e5764. https://doi.org/10.1371/journal.pone.0005764Townsend, T. M., Mulcahy, D. G., Noonan, B. P., Sites, J. W., Kuczynski, C. A., Wiens, J. J., & Reeder, T. W. (2011). Phylogeny of iguanian lizards inferred from 29 nuclear loci, and a comparison of concatenated and species-tree approaches for an ancient, rapid radiation. Molecular Phylogenetics and Evolution, 61(2), 363-380. https://doi.org/10.1016/j.ympev.2011.07.008Townson, H., Nathan, M. B., Zaim, M., Guillet, P., Manga, L., Bos, R., & Kindhauser, M. (2005). Exploiting the potential of vector control for disease prevention. Bulletin of the World Health Organization, 83, 942-947. https://doi.org/10.1590/S0042-96862005001200017Velásquez-Ortiz, N., Hernández, C., Herrera, G., Cruz-Saavedra, L., Higuera, A., Arias-Giraldo, L. M., Urbano, P., Cuervo, A., Teherán, A., & Ramírez, J. D. (2019b). Trypanosoma cruzi infection, discrete typing units and feeding sources among Psammolestes arthuri (Reduviidae: Triatominae) collected in eastern Colombia. Parasites & Vectors, 12(1), 157. https://doi.org/10.1186/s13071-019-3422-yWaleckx, E., Gourbière, S., Dumonteil, E., Waleckx, E., Gourbière, S., & Dumonteil, E. (2015). Intrusive versus domiciliated triatomines and the challenge of adapting vector control practices against Chagas disease. Memórias do Instituto Oswaldo Cruz, 110(3), 324-338. https://doi.org/10.1590/0074-02760140409Wei, T., Simko, V., Levy, M., Xie, Y., Jin, Y., & Zemla, J. (2017). Package ‘corrplot’. Statistician, 56(316), e24.Weirauch, C. (2008b). Cladistic analysis of Reduviidae (Heteroptera: Cimicomorpha) based on morphological characters. Systematic Entomology, 33(2), 229-274. https://doi.org/10.1111/j.1365-3113.2007.00417.xWilson, A. L., Courtenay, O., Kelly-Hope, L. A., Scott, T. W., Takken, W., Torr, S. J., & Lindsay, S. W. (2020). The importance of vector control for the control and elimination of vector-borne diseases. PLOS Neglected Tropical Diseases, 14(1), e0007831. https://doi.org/10.1371/journal.pntd.0007831Wisz, M. S., & Guisan, A. (2009b). Do pseudo-absence selection strategies influence species distribution models and their predictions? An information-theoretic approach based on simulated data. BMC Ecology, 9(1), 8. https://doi.org/10.1186/1472-6785-9-8Yang, Z. (2015). The BPP program for species tree estimation and species delimitation. Current Zoology, 61(5), 854-865. https://doi.org/10.1093/czoolo/61.5.854Yang, Z., & Rannala, B. (2014b). Unguided Species Delimitation Using DNA Sequence Data from Multiple Loci. Molecular Biology and Evolution, 31(12), 3125-3135. https://doi.org/10.1093/molbev/msu279Zwickl, D. J., & Hillis, D. M. (2002b). Increased Taxon Sampling Greatly Reduces Phylogenetic Error. Systematic Biology, 51(4), 588-598. https://doi.org/10.1080/10635150290102339instname:Universidad del Rosarioreponame:Repositorio Institucional EdocUREvolución geográficaNicho de desarrollo y proliferación de los PsammolestesGenética de poblaciones del insectoVariables ambientalesAnálisis filogenético molecularInvertebrados592600Evolución & genética575600Geographical evolutionDevelopment and proliferation niche of the PsammolestesGenetics of insect populationsEnvironmental variablesMolecular phylogenetic analysisPhylogenetic relationships and evolutionary patterns of the genus Psammolestes (Hemiptera: Reduviidae)Relaciones filogenéticas y patrones evolutivos del género Psammolestes (Hemiptera: Reduviidae).bachelorThesisArtículoTrabajo de gradohttp://purl.org/coar/resource_type/c_7a1fCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repository.urosario.edu.co/bitstreams/9f9579b4-a1a2-43e3-aeb8-70c96b43b56b/downloaddab767be7a093b539031785b3bf95490MD53LICENSElicense.txtlicense.txttext/plain1475https://repository.urosario.edu.co/bitstreams/e6fcea53-aaf8-403c-9423-ce20a764fc7c/downloadfab9d9ed61d64f6ac005dee3306ae77eMD52ORIGINALAlvaradoLopez-MateoAndres-2021.pdfAlvaradoLopez-MateoAndres-2021.pdfDocumento principal.application/pdf3053310https://repository.urosario.edu.co/bitstreams/8e995e55-999a-4db6-bf8d-cfa195989bcb/download4fd49de755969580b0bce6f67d0d75feMD51TEXTAlvaradoLopez-MateoAndres-2021.pdf.txtAlvaradoLopez-MateoAndres-2021.pdf.txtExtracted texttext/plain87636https://repository.urosario.edu.co/bitstreams/3155d351-84eb-4cb1-a508-d0e4f80de088/download8135dc9cc21585847e2a68f2bec4a253MD54THUMBNAILAlvaradoLopez-MateoAndres-2021.pdf.jpgAlvaradoLopez-MateoAndres-2021.pdf.jpgGenerated Thumbnailimage/jpeg3071https://repository.urosario.edu.co/bitstreams/2dd9f85f-8f10-486b-b0fb-924b24227cb4/downloada19a5998231e63bbd35439bea7146b40MD5510336/30865oai:repository.urosario.edu.co:10336/308652021-02-04 03:03:00.08http://creativecommons.org/licenses/by-nd/2.5/co/Atribución-SinDerivadas 2.5 Colombiahttps://repository.urosario.edu.coRepositorio institucional EdocURedocur@urosario.edu.coRUwoTE9TKSBBVVRPUihFUyksIG1hbmlmaWVzdGEobWFuaWZlc3RhbW9zKSBxdWUgbGEgb2JyYSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIHJlYWxpesOzIHNpbiB2aW9sYXIgbyB1c3VycGFyIGRlcmVjaG9zIGRlIGF1dG9yIGRlIHRlcmNlcm9zLCBwb3IgbG8gdGFudG8gbGEgb2JyYSBlcyBkZSBleGNsdXNpdmEgYXV0b3LDrWEgeSB0aWVuZSBsYSB0aXR1bGFyaWRhZCBzb2JyZSBsYSBtaXNtYS4gCgpQQVJHUkFGTzogRW4gY2FzbyBkZSBwcmVzZW50YXJzZSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybyBlbiBjdWFudG8gYSBsb3MgZGVyZWNob3MgZGUgYXV0b3Igc29icmUgbGEgb2JyYSBlbiBjdWVzdGnDs24sIEVMIEFVVE9SLCBhc3VtaXLDoSB0b2RhIGxhIHJlc3BvbnNhYmlsaWRhZCwgeSBzYWxkcsOhIGVuIGRlZmVuc2EgZGUgbG9zIGRlcmVjaG9zIGFxdcOtIGF1dG9yaXphZG9zOyBwYXJhIHRvZG9zIGxvcyBlZmVjdG9zIGxhIHVuaXZlcnNpZGFkIGFjdMO6YSBjb21vIHVuIHRlcmNlcm8gZGUgYnVlbmEgZmUuIAoKRUwgQVVUT1IsIGF1dG9yaXphIGEgTEEgVU5JVkVSU0lEQUQgREVMIFJPU0FSSU8sICBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgTGV5IDQ0IGRlIDE5OTMsIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbm9ybWFzIGdlbmVyYWxlcyBzb2JyZSBsYSBtYXRlcmlhLCAgdXRpbGljZSB5IHVzZSBsYSBvYnJhIG9iamV0byBkZSBsYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuLgoKLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0KClBPTElUSUNBIERFIFRSQVRBTUlFTlRPIERFIERBVE9TIFBFUlNPTkFMRVMuIERlY2xhcm8gcXVlIGF1dG9yaXpvIHByZXZpYSB5IGRlIGZvcm1hIGluZm9ybWFkYSBlbCB0cmF0YW1pZW50byBkZSBtaXMgZGF0b3MgcGVyc29uYWxlcyBwb3IgcGFydGUgZGUgTEEgVU5JVkVSU0lEQUQgREVMIFJPU0FSSU8gIHBhcmEgZmluZXMgYWNhZMOpbWljb3MgeSBlbiBhcGxpY2FjacOzbiBkZSBjb252ZW5pb3MgY29uIHRlcmNlcm9zIG8gc2VydmljaW9zIGNvbmV4b3MgY29uIGFjdGl2aWRhZGVzIHByb3BpYXMgZGUgbGEgYWNhZGVtaWEsIGNvbiBlc3RyaWN0byBjdW1wbGltaWVudG8gZGUgbG9zIHByaW5jaXBpb3MgZGUgbGV5LiBQYXJhIGVsIGNvcnJlY3RvIGVqZXJjaWNpbyBkZSBtaSBkZXJlY2hvIGRlIGhhYmVhcyBkYXRhICBjdWVudG8gY29uIGxhIGN1ZW50YSBkZSBjb3JyZW8gaGFiZWFzZGF0YUB1cm9zYXJpby5lZHUuY28sIGRvbmRlIHByZXZpYSBpZGVudGlmaWNhY2nDs24gIHBvZHLDqSBzb2xpY2l0YXIgbGEgY29uc3VsdGEsIGNvcnJlY2Npw7NuIHkgc3VwcmVzacOzbiBkZSBtaXMgZGF0b3MuCgo=