Phylogenetic relationships and evolutionary patterns of the genus Psammolestes (Hemiptera: Reduviidae)
La familia Reduviidae (Hemiptera: Heteroptera) se encuentra entre las familias más diversas de los verdaderos insectos. La evolución y las relaciones filogenéticas de las tribus Rhodniini y Triatomini (Triatominae) están bien estudiadas debido a su relevancia epidemiológica como vectores de Trypanos...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2021
- Institución:
- Universidad del Rosario
- Repositorio:
- Repositorio EdocUR - U. Rosario
- Idioma:
- eng
- OAI Identifier:
- oai:repository.urosario.edu.co:10336/30865
- Acceso en línea:
- https://doi.org/10.48713/10336_30865
https://repository.urosario.edu.co/handle/10336/30865
- Palabra clave:
- Evolución geográfica
Nicho de desarrollo y proliferación de los Psammolestes
Genética de poblaciones del insecto
Variables ambientales
Análisis filogenético molecular
Invertebrados
Evolución & genética
Geographical evolution
Development and proliferation niche of the Psammolestes
Genetics of insect populations
Environmental variables
Molecular phylogenetic analysis
- Rights
- License
- Atribución-SinDerivadas 2.5 Colombia
id |
EDOCUR2_0c7f0a1d6bc1b19cd2abba285dfbfeca |
---|---|
oai_identifier_str |
oai:repository.urosario.edu.co:10336/30865 |
network_acronym_str |
EDOCUR2 |
network_name_str |
Repositorio EdocUR - U. Rosario |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Phylogenetic relationships and evolutionary patterns of the genus Psammolestes (Hemiptera: Reduviidae) |
dc.title.TranslatedTitle.spa.fl_str_mv |
Relaciones filogenéticas y patrones evolutivos del género Psammolestes (Hemiptera: Reduviidae). |
title |
Phylogenetic relationships and evolutionary patterns of the genus Psammolestes (Hemiptera: Reduviidae) |
spellingShingle |
Phylogenetic relationships and evolutionary patterns of the genus Psammolestes (Hemiptera: Reduviidae) Evolución geográfica Nicho de desarrollo y proliferación de los Psammolestes Genética de poblaciones del insecto Variables ambientales Análisis filogenético molecular Invertebrados Evolución & genética Geographical evolution Development and proliferation niche of the Psammolestes Genetics of insect populations Environmental variables Molecular phylogenetic analysis |
title_short |
Phylogenetic relationships and evolutionary patterns of the genus Psammolestes (Hemiptera: Reduviidae) |
title_full |
Phylogenetic relationships and evolutionary patterns of the genus Psammolestes (Hemiptera: Reduviidae) |
title_fullStr |
Phylogenetic relationships and evolutionary patterns of the genus Psammolestes (Hemiptera: Reduviidae) |
title_full_unstemmed |
Phylogenetic relationships and evolutionary patterns of the genus Psammolestes (Hemiptera: Reduviidae) |
title_sort |
Phylogenetic relationships and evolutionary patterns of the genus Psammolestes (Hemiptera: Reduviidae) |
dc.contributor.advisor.none.fl_str_mv |
Ramírez, Juan David Salazar, Camilo Salgado-Roa, Fabian Camilo Hernandez, Diana Carolina |
dc.contributor.none.fl_str_mv |
Ballesteros Chitiva, Nathalia Rueda, Nicol Oliveira, Jader Aristeu da Rosa, Joao Urbano, Plutarco |
dc.subject.spa.fl_str_mv |
Evolución geográfica Nicho de desarrollo y proliferación de los Psammolestes Genética de poblaciones del insecto Variables ambientales Análisis filogenético molecular |
topic |
Evolución geográfica Nicho de desarrollo y proliferación de los Psammolestes Genética de poblaciones del insecto Variables ambientales Análisis filogenético molecular Invertebrados Evolución & genética Geographical evolution Development and proliferation niche of the Psammolestes Genetics of insect populations Environmental variables Molecular phylogenetic analysis |
dc.subject.ddc.spa.fl_str_mv |
Invertebrados Evolución & genética |
dc.subject.keyword.spa.fl_str_mv |
Geographical evolution Development and proliferation niche of the Psammolestes Genetics of insect populations Environmental variables Molecular phylogenetic analysis |
description |
La familia Reduviidae (Hemiptera: Heteroptera) se encuentra entre las familias más diversas de los verdaderos insectos. La evolución y las relaciones filogenéticas de las tribus Rhodniini y Triatomini (Triatominae) están bien estudiadas debido a su relevancia epidemiológica como vectores de Trypanosoma cruzi, el parásito que causa la enfermedad de Chagas. Rhodniini está compuesto por los géneros Rhodnius y Psammolestes, donde queda por estudiar la diversidad genética del segundo en comparación con Rhodnius, principal vector de T. cruzi. Por lo tanto, reunimos 92 muestras en total, 38 de Psammolestes arthuri en Colombia, 24 de Psammolestes tertius y 30 de coreodas de Psammolestes en Brasil. Usamos cinco nuevos loci nucleares: tRNA guanina (37) -N (1) metil transferasa (TRNA), proteína inducible por hormona juvenil putativa (PJH), proteína de ensamblaje de proteína de azufre de hierro citosólico probable Ciao 1 (CISP), lipoil sintasa, mitocondrial ( LSM) y proteína no caracterizada para la adhesión celular (UPCA), junto con dos loci previamente informados: 28S y CYTB, para representar las relaciones filogenéticas y los patrones evolutivos del género Psammolestes. Cuatro de las siete topologías de genes no eran consistentes con la topología concatenada, mientras que las otras tres eran concordantes, pero el patrón general es claro: Psammolestes es un grupo monofilético, corroborando hipótesis previamente sugeridas para el género. El análisis de agrupamiento junto con las estadísticas resumidas de genética de poblaciones dio como resultado la delimitación de tres poblaciones diferentes. Estos tres clusters corresponden a cada una de las especies de Psammolestes conocidas a priori -definidas por morfología, ecología y métodos citogenéticos- lo que sugiere que las poblaciones de cada una de las especies tienen una estructura genética bien sustentada. En general, nuestros resultados corroboraron la existencia de las tres especies de Psammolestes descritas anteriormente, 4 mostrando que probablemente divergieron en alopatría, bajo la influencia del escudo de Guyana y la cuenca del Amazonas como barreras para la dispersión. |
publishDate |
2021 |
dc.date.accessioned.none.fl_str_mv |
2021-02-03T16:09:11Z |
dc.date.available.none.fl_str_mv |
2021-02-03T16:09:11Z |
dc.date.created.none.fl_str_mv |
2021-01-25 |
dc.type.eng.fl_str_mv |
bachelorThesis |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.document.spa.fl_str_mv |
Artículo |
dc.type.spa.spa.fl_str_mv |
Trabajo de grado |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.48713/10336_30865 |
dc.identifier.uri.none.fl_str_mv |
https://repository.urosario.edu.co/handle/10336/30865 |
url |
https://doi.org/10.48713/10336_30865 https://repository.urosario.edu.co/handle/10336/30865 |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.rights.spa.fl_str_mv |
Atribución-SinDerivadas 2.5 Colombia |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.acceso.spa.fl_str_mv |
Abierto (Texto Completo) |
dc.rights.uri.none.fl_str_mv |
http://creativecommons.org/licenses/by-nd/2.5/co/ |
rights_invalid_str_mv |
Atribución-SinDerivadas 2.5 Colombia Abierto (Texto Completo) http://creativecommons.org/licenses/by-nd/2.5/co/ http://purl.org/coar/access_right/c_abf2 |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad del Rosario |
dc.publisher.department.spa.fl_str_mv |
Facultad de Ciencias Naturales y Matemáticas |
dc.publisher.program.spa.fl_str_mv |
Biología |
institution |
Universidad del Rosario |
dc.source.bibliographicCitation.spa.fl_str_mv |
Abad-Franch, F., Lima, M. M., Sarquis, O., Gurgel-Gonçalves, R., Sánchez-Martín, M., Calzada, J., Saldaña, A., Monteiro, F. A., Palomeque, F. S., Santos, W. S., Angulo, V. M., Esteban, L., Dias, F. B. S., Diotaiuti, L., Bar, M. E., & Gottdenker, N. L. (2015). On palms, bugs, and Chagas disease in the Americas. Acta Tropica, 151, 126-141. https://doi.org/10.1016/j.actatropica.2015.07.005 Abad-Franch, F., & Monteiro, F. A. (2007b). Biogeography and evolution of Amazonian triatomines (Heteroptera: Reduviidae): implications for Chagas disease surveillance in humid forest ecoregions. Memórias Do Instituto Oswaldo Cruz, 102, 57-70. https://doi.org/10.1590/S0074-02762007005000108 Abad-Franch, F., Monteiro, F. A., Jaramillo O., N., Gurgel-Gonçalves, R., Dias, F. B. S., & Diotaiuti, L. (2009b). Ecology, evolution, and the long-term surveillance of vector-borne Chagas disease: A multi-scale appraisal of the tribe Rhodniini (Triatominae). Acta Tropica, 110(2), 159-177. https://doi.org/10.1016/j.actatropica.2008.06.005 Anisimova, M., Gil, M., Dufayard, J.-F., Dessimoz, C., & Gascuel, O. (2011). Survey of Branch Support Methods Demonstrates Accuracy, Power, and Robustness of Fast Likelihood-based Approximation Schemes. Systematic Biology, 60(5), 685-699. https://doi.org/10.1093/sysbio/syr041 Asin, S., & Catalá, S. (1995). Development of Trypanosoma cruzi in Triatoma infestans: Influence of Temperature and Blood Consumption. The Journal of parasitology, 81, 1-7. https://doi.org/10.2307/3283997 Barbet‐Massin, M., Jiguet, F., Albert, C. H., & Thuiller, W. (2012). Selecting pseudo-absences for species distribution models: How, where and how many? Methods in Ecology and Evolution, 3(2), 327-338. https://doi.org/10.1111/j.2041-210X.2011.00172.x Bargues, M. D., Marcilla, A., Dujardin, J. P., & Mas-Coma, S. (2002c). Triatomine vectors of Trypanosoma cruzi: A molecular perspective based on nuclear ribosomal DNA markers. Transactions of the Royal Society of Tropical Medicine and Hygiene, 96, S159-S164. https://doi.org/10.1016/S0035-9203(02)90069-6 Bern, C. (2015). Chagas’ Disease. New England Journal of Medicine, 373(5), 456-466. https://doi.org/10.1056/NEJMra1410150 Bobrowski, M., & Schickhoff, U. (2017). Why input matters: Selection of climate data sets for modelling the potential distribution of a treeline species in the Himalayan region. Ecological Modelling, 359, 92-102. https://doi.org/10.1016/j.ecolmodel.2017.05.021 Brown, J. L., & Carnaval, A. C. (2019). A tale of two niches: Methods, concepts, and evolution. Frontiers of Biogeography. Caicedo-Garzón, V., Salgado-Roa, F. C., Sánchez-Herrera, M., Hernández, C., Arias-Giraldo, L. M., García, L., Vallejo, G., Cantillo, O., Tovar, C., Rosa, J. A. da, Carrasco, H. J., Segovia, M., Salazar, C., & Ramírez, J. D. (2019). Genetic diversification of Panstrongylus geniculatus (Reduviidae: Triatominae) in northern South America. PLOS ONE, 14(10), e0223963. https://doi.org/10.1371/journal.pone.0223963 Carstens, B. C., Pelletier, T. A., Reid, N. M., & Satler, J. D. (2013b). How to fail at species delimitation. Molecular Ecology, 22(17), 4369-4383. https://doi.org/10.1111/mec.12413 Castillo-Neyra, R., Barbu, C. M., Salazar, R., Borrini, K., Naquira, C., & Levy, M. Z. (2015). Host-Seeking Behavior and Dispersal of Triatoma infestans, a Vector of Chagas Disease, under Semi-field Conditions. PLOS Neglected Tropical Diseases, 9(1), e3433. https://doi.org/10.1371/journal.pntd.0003433 Ceccarelli, S., Balsalobre, A., Medone, P., Cano, M. E., Gurgel Gonçalves, R., Feliciangeli, D., Vezzani, D., Wisnivesky-Colli, C., Gorla, D. E., Marti, G. A., & Rabinovich, J. E. (2018). DataTri, a database of American triatomine species occurrence. Scientific Data, 5(1), 180071. https://doi.org/10.1038/sdata.2018.71 Chagas, Carlos. (1909). Nova tripanozomiaze humana: Estudos sobre a morfolojia e o ciclo evolutivo do Schizotrypanum cruzi n. gen., n. sp., ajente etiolojico de nova entidade morbida do homem. Memórias do Instituto Oswaldo Cruz, 1(2), 159-218. https://doi.org/10.1590/S0074-02761909000200008 Chefaoui, R. M., & Lobo, J. M. (2008b). Assessing the effects of pseudo-absences on predictive distribution model performance. Ecological Modelling, 210(4), 478-486. https://doi.org/10.1016/j.ecolmodel.2007.08.010 Clement, M., Snell, Q., Walker, P., Posada, D., & Crandall, K. (s. f.). TCS: Estimating Gene Genealogies. 7. Cruz-Guzmán, P. J., Morocoima, A., Chique, J. D., Ramonis-Quintero, J., Uzcátegui, M. T., & Carrasco, H. J. (s. f.). Psammolestes arthuri NATURALMENTE INFECTADO CON Trypanosoma cruzi ENCONTRADO EN SIMPATRÍA CON Rhodnius prolixus Y Triatoma maculata EN NIDOS DE AVES EN EL ESTADO ANZOÁTEGUI, VENEZUELA. 14. de Paula, A. S., Diotaiuti, L., & Galvão, C. (2007). Systematics and biogeography of Rhodniini (Heteroptera: Reduviidae: Triatominae) based on 16S mitochondrial rDNA sequences. Journal of Biogeography, 34(4), 699-712. https://doi.org/10.1111/j.1365-2699.2006.01628.x de Paula, A. S., Diotaiuti, L., & Scho, C. J. (2005). Testing the sister-group relationship of the Rhodniini and Triatomini (Insecta: Hemiptera: Reduviidae: Triatominae). Molecular Phylogenetics and Evolution, 8. Degnan, J. H., & Rosenberg, N. A. (2006b). Discordance of Species Trees with Their Most Likely Gene Trees. PLOS Genetics, 2(5), e68. https://doi.org/10.1371/journal.pgen.0020068 Dias, J. C. P., Silveira, A. C., & Schofield, C. J. (2002). The impact of Chagas disease control in Latin America: A review. Memórias do Instituto Oswaldo Cruz, 97(5), 603-612. https://doi.org/10.1590/S0074-02762002000500002 Dixon, P. (2003). VEGAN, a package of R functions for community ecology. Journal of Vegetation Science, 14(6), 927-930. https://doi.org/10.1111/j.1654-1103.2003.tb02228.x Dujardin, J. P., Chavez, T., Moreno, J. M., Machane, M., Noireau, F., & Schofield, C. J. (1999). Comparison of Isoenzyme Electrophoresis and Morphometric Analysis for Phylogenetic Reconstruction of the Rhodniini (Hemiptera: Reduviidae: Triatominae). Journal of Medical Entomology, 36(6), 653-659. https://doi.org/10.1093/jmedent/36.6.653 Dujardin, J.-P., Beard, C. B., & Ryckman, R. (2007). The relevance of wing geometry in entomological surveillance of Triatominae, vectors of Chagas disease. Infection, Genetics and Evolution, 7(2), 161-167. https://doi.org/10.1016/j.meegid.2006.07.005 Earl, D. A., & vonHoldt, B. M. (2012). STRUCTURE HARVESTER: A website and program for visualizing STRUCTURE output and implementing the Evanno method. Conservation Genetics Resources, 4(2), 359-361. https://doi.org/10.1007/s12686-011-9548-7 Edwards, S. V. (2009). Natural selection and phylogenetic analysis. Proceedings of the National Academy of Sciences, 106(22), 8799-8800. https://doi.org/10.1073/pnas.0904103106 Elith, J., Graham*, C. H., Anderson, R. P., Dudík, M., Ferrier, S., Guisan, A., Hijmans, R. J., Huettmann, F., Leathwick, J. R., Lehmann, A., Li, J., Lohmann, L. G., Loiselle, B. A., Manion, G., Moritz, C., Nakamura, M., Nakazawa, Y., Overton, J. M. M., Peterson, A. T., … Zimmermann, N. E. (2006). Novel methods improve prediction of species’ distributions from occurrence data. Ecography, 29(2), 129-151. https://doi.org/10.1111/j.2006.0906-7590.04596.x Ence, D. D., & Carstens, B. C. (2011b). SpedeSTEM: A rapid and accurate method for species delimitation. Molecular Ecology Resources, 11(3), 473-480. https://doi.org/10.1111/j.1755-0998.2010.02947.x Evanno, G., Regnaut, S., & Goudet, J. (2005). Detecting the number of clusters of individuals using the software structure: A simulation study. Molecular Ecology, 14(8), 2611-2620. https://doi.org/10.1111/j.1365-294X.2005.02553.x Friedman, J. H. (2006). Recent advances in predictive (machine) learning. Journal of classification, 23(2), 175-197. Fu, Y. X., & Li, W. H. (1993). Statistical tests of neutrality of mutations. Genetics, 133(3), 693-709. Funk, D. J., & Omland, K. E. (2003b). Species-Level Paraphyly and Polyphyly: Frequency, Causes, and Consequences, with Insights from Animal Mitochondrial DNA. Annual Review of Ecology, Evolution, and Systematics, 34(1), 397-423. https://doi.org/10.1146/annurev.ecolsys.34.011802.132421 Gadagkar, S. R., Rosenberg, M. S., & Kumar, S. (2005). Inferring species phylogenies from multiple genes: Concatenated sequence tree versus consensus gene tree. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 304B(1), 64-74. https://doi.org/10.1002/jez.b.21026 Galvão, C., Carcavallo, R., Rocha, D. D. S., & Jurberg, J. (2003). A checklist of the current valid species of the subfamily Triatominae Jeannel, 1919 (Hemiptera, Reduviidae) and their geographical distribution, with nomenclatural and taxonomic notes. Zootaxa, 202(1), 1-36. https://doi.org/10.11646/zootaxa.202.1.1 Golding, N., Wilson, A. L., Moyes, C. L., Cano, J., Pigott, D. M., Velayudhan, R., Brooker, S. J., Smith, D. L., Hay, S. I., & Lindsay, S. W. (2015). Integrating vector control across diseases. BMC Medicine, 13(1), 249. https://doi.org/10.1186/s12916-015-0491-4 Gorchakov, R., Trosclair, L. P., Wozniak, E. J., Feria, P. T., Garcia, M. N., Gunter, S. M., & Murray, K. O. (2016). Trypanosoma cruzi Infection Prevalence and Bloodmeal Analysis in Triatomine Vectors of Chagas Disease From Rural Peridomestic Locations in Texas, 2013–2014. Journal of Medical Entomology, 53(4), 911-918. https://doi.org/10.1093/jme/tjw040 Graham, Catherine H., Ferrier, S., Huettman, F., Moritz, C., & Peterson, A. T. (2004). New developments in museum-based informatics and applications in biodiversity analysis. Trends in Ecology & Evolution, 19(9), 497-503. https://doi.org/10.1016/j.tree.2004.07.006 Guindon, S., Dufayard, J.-F., Lefort, V., Anisimova, M., Hordijk, W., & Gascuel, O. (2010). New Algorithms and Methods to Estimate Maximum-Likelihood Phylogenies: Assessing the Performance of PhyML 3.0. Systematic Biology, 59(3), 307-321. https://doi.org/10.1093/sysbio/syq010 Hijmans, R. J., Williams, E., Vennes, C., & Hijmans, M. R. J. (2017). Package ‘geosphere’. Spherical trigonometry, 1, 7. Hoang, D. T., Chernomor, O., von Haeseler, A., Minh, B. Q., & Vinh, L. S. (2018). UFBoot2: Improving the Ultrafast Bootstrap Approximation. Molecular Biology and Evolution, 35(2), 518-522. https://doi.org/10.1093/molbev/msx281 Hudson, R. R., Boos, D. D., & Kaplan, N. L. (1992). A statistical test for detecting geographic subdivision. Molecular Biology and Evolution, 9(1), 138-151. https://doi.org/10.1093/oxfordjournals.molbev.a040703 Hwang, W. S., & Weirauch, C. (2012b). Evolutionary History of Assassin Bugs (Insecta: Hemiptera: Reduviidae): Insights from Divergence Dating and Ancestral State Reconstruction. PLOS ONE, 7(9), e45523. https://doi.org/10.1371/journal.pone.0045523 Hypša, V., Tietz, D. F., Zrzavý, J., Rego, R. O. M., Galvao, C., & Jurberg, J. (2002b). Phylogeny and biogeography of Triatominae (Hemiptera: Reduviidae): molecular evidence of a New World origin of the Asiatic clade. Molecular Phylogenetics and Evolution, 23(3), 447-457. https://doi.org/10.1016/S1055-7903(02)00023-4 Jakobsson, M., & Rosenberg, N. A. (2007). CLUMPP: A cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics, 23(14), 1801-1806. https://doi.org/10.1093/bioinformatics/btm233 Jombart, T., & Ahmed, I. (2011). adegenet 1.3-1: New tools for the analysis of genome-wide SNP data. Bioinformatics, 27(21), 3070-3071. https://doi.org/10.1093/bioinformatics/btr521 Justi, S. A., & Galvão, C. (2017). The Evolutionary Origin of Diversity in Chagas Disease Vectors. Trends in Parasitology, 33(1), 42-52. https://doi.org/10.1016/j.pt.2016.11.002 Justi, S. A., Galvão, C., & Schrago, C. G. (2016b). Geological Changes of the Americas and their Influence on the Diversification of the Neotropical Kissing Bugs (Hemiptera: Reduviidae: Triatominae). PLOS Neglected Tropical Diseases, 10(4), e0004527. https://doi.org/10.1371/journal.pntd.0004527 Kalyaanamoorthy, S., Minh, B. Q., Wong, T. K., von Haeseler, A., & Jermiin, L. S. (2017). ModelFinder: Fast Model Selection for Accurate Phylogenetic Estimates. Nature methods, 14(6), 587-589. https://doi.org/10.1038/nmeth.4285 Kapli, P., Lutteropp, S., Zhang, J., Kobert, K., Pavlidis, P., Stamatakis, A., & Flouri, T. (2017). Multi-rate Poisson tree processes for single-locus species delimitation under maximum likelihood and Markov chain Monte Carlo. Bioinformatics, 33(11), 1630-1638. https://doi.org/10.1093/bioinformatics/btx025 Karger, D. N., Conrad, O., Böhner, J., Kawohl, T., Kreft, H., Soria-Auza, R. W., Zimmermann, N. E., Linder, H. P., & Kessler, M. (2017). Climatologies at high resolution for the earth’s land surface areas. Scientific Data, 4(1), 170122. https://doi.org/10.1038/sdata.2017.122 Leigh, J. W., & Bryant, D. (2015). popart: Full-feature software for haplotype network construction. Methods in Ecology and Evolution, 6(9), 1110-1116. https://doi.org/10.1111/2041-210X.12410 Lemmon, A. R., Brown, J. M., Stanger-Hall, K., & Lemmon, E. M. (2009b). The Effect of Ambiguous Data on Phylogenetic Estimates Obtained by Maximum Likelihood and Bayesian Inference. Systematic Biology, 58(1), 130-145. https://doi.org/10.1093/sysbio/syp017 Lent, H., & Wygodzinsky, P. (1979). Revision of the Triatominae (Hemiptera, Reduviidae), and their significance as vectors of Chagas’ disease. Bulletin of the American Museum of Natural History, 163(3), 123-520. Lischer, H. E. L., & Excoffier, L. (2012). PGDSpider: An automated data conversion tool for connecting population genetics and genomics programs. Bioinformatics, 28(2), 298-299. https://doi.org/10.1093/bioinformatics/btr642 Lobo, I. (2008b). Environmental Influences on Gene Expression. Nature Education, 39. Lyman, D. F., Monteiro, F. A., Escalante, A. A., Cordon-Rosales, C., Wesson, D. M., Dujardin, J. P., & Beard, C. B. (1999). Mitochondrial DNA sequence variation among triatomine vectors of Chagas’ disease. The American Journal of Tropical Medicine and Hygiene, 60(3), 377-386. https://doi.org/10.4269/ajtmh.1999.60.377 Maddison, W. P., & Maddison, D. R. (2019). Mesquite: A modular system for evolutionary analysis. Version 3.51. 2018. Maddison, Wayne P. (1997). Gene Trees in Species Trees. Systematic Biology, 46(3), 523-536. https://doi.org/10.1093/sysbio/46.3.523 Manni, F., Rard, E. G., & Heyer, E. (s. f.). Geographic Patterns of (Genetic, Morphologic, Linguistic) Variation: How Barriers Can Be Detected by Using Monmonier’s Algorithm. 18. Mantel, N. (1967). The Detection of Disease Clustering and a Generalized Regression Approach. Cancer Research, 27(2 Part 1), 209-220. McCullagh, P. (81). Nelder. JA (1989), Generalized Linear Models. CRC Monographs on Statistics & Applied Probability, Springer Verlag, New York. Minh, B. Q., Schmidt, H. A., Chernomor, O., Schrempf, D., Woodhams, M. D., von Haeseler, A., & Lanfear, R. (2020). IQ-TREE 2: New Models and Efficient Methods for Phylogenetic Inference in the Genomic Era. Molecular Biology and Evolution, 37(5), 1530-1534. https://doi.org/10.1093/molbev/msaa015 Monteiro, F. A., Wesson, D. M., Dotson, E. M., Schofield, C. J., & Beard, C. B. (2000b). Phylogeny and molecular taxonomy of the Rhodniini derived from mitochondrial and nuclear DNA sequences. The American Journal of Tropical Medicine and Hygiene, 62(4), 460-465. https://doi.org/10.4269/ajtmh.2000.62.460 Monteiro, Fernando Araujo, Weirauch, C., Felix, M., Lazoski, C., & Abad-Franch, F. (2018b). Chapter Five—Evolution, Systematics, and Biogeography of the Triatominae, Vectors of Chagas Disease. En D. Rollinson & J. R. Stothard (Eds.), Advances in Parasitology (Vol. 99, pp. 265-344). Academic Press. https://doi.org/10.1016/bs.apar.2017.12.002 Nascimento, J. D., Rosa, J. A. da, Salgado-Roa, F. C., Hernández, C., Pardo-Diaz, C., Alevi, K. C. C., Ravazi, A., Oliveira, J. de, Oliveira, M. T. V. de A., Salazar, C., & Ramírez, J. D. (2019). Taxonomical over splitting in the Rhodnius prolixus (Insecta: Hemiptera: Reduviidae) clade: Are R. taquarussuensis (da Rosa et al., 2017) and R. neglectus (Lent, 1954) the same species? PLOS ONE, 14(2), e0211285. https://doi.org/10.1371/journal.pone.0211285 Oliveira, J., Alevi, K. C. C., Ravazi, A., Herrera, H. M., Santos, F. M., Azeredo-Oliveira, M. T. V. de, & Rosa, J. A. da. (2018). New Evidence of the Monophyletic Relationship of the Genus Psammolestes Bergroth, 1911 (Hemiptera, Reduviidae, Triatominae). The American Journal of Tropical Medicine and Hygiene, 99(6), 1485-1488. https://doi.org/10.4269/ajtmh.18-0109 Patterson, J. S., & Gaunt, M. W. (2010b). Phylogenetic multi-locus codon models and molecular clocks reveal the monophyly of haematophagous reduviid bugs and their evolution at the formation of South America. Molecular Phylogenetics and Evolution, 56(2), 608-621. https://doi.org/10.1016/j.ympev.2010.04.038 Phillips, S. J., Anderson, R. P., & Schapire, R. E. (2006). Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190(3), 231-259. https://doi.org/10.1016/j.ecolmodel.2005.03.026 Pollock, D. D., Zwickl, D. J., McGuire, J. A., & Hillis, D. M. (2002b). Increased Taxon Sampling Is Advantageous for Phylogenetic Inference. Systematic biology, 51(4), 664-671. https://doi.org/10.1080/10635150290102357 Pritchard, J. K., Stephens, M., & Donnelly, P. (2000). Inference of Population Structure Using Multilocus Genotype Data. Genetics, 155(2), 945-959. Ramos-Onsins, S. E., & Rozas, J. (2002). Statistical Properties of New Neutrality Tests Against Population Growth. Molecular Biology and Evolution, 19(12), 2092-2100. https://doi.org/10.1093/oxfordjournals.molbev.a004034 Reuter, H. I., Nelson, A., & Jarvis, A. (2007). An evaluation of void‐filling interpolation methods for SRTM data. International Journal of Geographical Information Science, 21(9), 983-1008. https://doi.org/10.1080/13658810601169899 Ripley, B. D., & Naylor, P. (1996). Pattern Recognition and Neural Networks. Nature, 381(6579), 206-206. Rödder, D., & Engler, J. O. (2011). Quantitative metrics of overlaps in Grinnellian niches: Advances and possible drawbacks. Global Ecology and Biogeography, 20(6), 915-927. https://doi.org/10.1111/j.1466-8238.2011.00659.x Rosenberg, N. A. (2004). distruct: A program for the graphical display of population structure. Molecular Ecology Notes, 4(1), 137-138. https://doi.org/10.1046/j.1471-8286.2003.00566.x Roux, C., Fraïsse, C., Romiguier, J., Anciaux, Y., Galtier, N., & Bierne, N. (2016). Shedding Light on the Grey Zone of Speciation along a Continuum of Genomic Divergence. PLOS Biology, 14(12), e2000234. https://doi.org/10.1371/journal.pbio.2000234 Rozas, J., Ferrer-Mata, A., Sánchez-DelBarrio, J. C., Guirao-Rico, S., Librado, P., Ramos-Onsins, S. E., & Sánchez-Gracia, A. (2017). DnaSP 6: DNA Sequence Polymorphism Analysis of Large Data Sets. Molecular Biology and Evolution, 34(12), 3299-3302. https://doi.org/10.1093/molbev/msx248 Sanderson, M. J., McMahon, M. M., & Steel, M. (2010b). Phylogenomics with incomplete taxon coverage: The limits to inference. BMC Evolutionary Biology, 10(1), 155. https://doi.org/10.1186/1471-2148-10-155 Sandoval, C. M., Duarte, R., Gutíerrez, R., Rocha, D. da S., Angulo, V. M., Esteban, L., Reyes, M., Jurberg, J., & Galvão, C. (2004). Feeding sources and natural infection of Belminus herreri (Hemiptera, Reduviidae, Triatominae) from dwellings in Cesar, Colombia. Memórias do Instituto Oswaldo Cruz, 99(2), 137-140. https://doi.org/10.1590/S0074-02762004000200004 Schofield, C. J., & Galvão, C. (2009). Classification, evolution, and species groups within the Triatominae. Acta Tropica, 110(2), 88-100. https://doi.org/10.1016/j.actatropica.2009.01.010 Schofield, Chris J., Jannin, J., & Salvatella, R. (2006). The future of Chagas disease control. Trends in Parasitology, 22(12), 583-588. https://doi.org/10.1016/j.pt.2006.09.011 Schwarz, G. (1978). Estimating the Dimension of a Model. Annals of Statistics, 6(2), 461-464. https://doi.org/10.1214/aos/1176344136 Tajima, F. (1989). Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics, 123(3), 585-595. Thuiller, Wilfried, Araújo, M. B., & Lavorel, S. (2003). Generalized models vs. classification tree analysis: Predicting spatial distributions of plant species at different scales. Journal of Vegetation Science, 14(5), 669-680. https://doi.org/10.1111/j.1654-1103.2003.tb02199.x Thuiller, Wilfried, Lafourcade, B., Engler, R., & Araújo, M. B. (2009). BIOMOD – a platform for ensemble forecasting of species distributions. Ecography, 32(3), 369-373. https://doi.org/10.1111/j.1600-0587.2008.05742.x Torre-Bárcena, J. E. de la, Kolokotronis, S.-O., Lee, E. K., Stevenson, D. W., Brenner, E. D., Katari, M. S., Coruzzi, G. M., & DeSalle, R. (2009). The Impact of Outgroup Choice and Missing Data on Major Seed Plant Phylogenetics Using Genome-Wide EST Data. PLOS ONE, 4(6), e5764. https://doi.org/10.1371/journal.pone.0005764 Townsend, T. M., Mulcahy, D. G., Noonan, B. P., Sites, J. W., Kuczynski, C. A., Wiens, J. J., & Reeder, T. W. (2011). Phylogeny of iguanian lizards inferred from 29 nuclear loci, and a comparison of concatenated and species-tree approaches for an ancient, rapid radiation. Molecular Phylogenetics and Evolution, 61(2), 363-380. https://doi.org/10.1016/j.ympev.2011.07.008 Townson, H., Nathan, M. B., Zaim, M., Guillet, P., Manga, L., Bos, R., & Kindhauser, M. (2005). Exploiting the potential of vector control for disease prevention. Bulletin of the World Health Organization, 83, 942-947. https://doi.org/10.1590/S0042-96862005001200017 Velásquez-Ortiz, N., Hernández, C., Herrera, G., Cruz-Saavedra, L., Higuera, A., Arias-Giraldo, L. M., Urbano, P., Cuervo, A., Teherán, A., & Ramírez, J. D. (2019b). Trypanosoma cruzi infection, discrete typing units and feeding sources among Psammolestes arthuri (Reduviidae: Triatominae) collected in eastern Colombia. Parasites & Vectors, 12(1), 157. https://doi.org/10.1186/s13071-019-3422-y Waleckx, E., Gourbière, S., Dumonteil, E., Waleckx, E., Gourbière, S., & Dumonteil, E. (2015). Intrusive versus domiciliated triatomines and the challenge of adapting vector control practices against Chagas disease. Memórias do Instituto Oswaldo Cruz, 110(3), 324-338. https://doi.org/10.1590/0074-02760140409 Wei, T., Simko, V., Levy, M., Xie, Y., Jin, Y., & Zemla, J. (2017). Package ‘corrplot’. Statistician, 56(316), e24. Weirauch, C. (2008b). Cladistic analysis of Reduviidae (Heteroptera: Cimicomorpha) based on morphological characters. Systematic Entomology, 33(2), 229-274. https://doi.org/10.1111/j.1365-3113.2007.00417.x Wilson, A. L., Courtenay, O., Kelly-Hope, L. A., Scott, T. W., Takken, W., Torr, S. J., & Lindsay, S. W. (2020). The importance of vector control for the control and elimination of vector-borne diseases. PLOS Neglected Tropical Diseases, 14(1), e0007831. https://doi.org/10.1371/journal.pntd.0007831 Wisz, M. S., & Guisan, A. (2009b). Do pseudo-absence selection strategies influence species distribution models and their predictions? An information-theoretic approach based on simulated data. BMC Ecology, 9(1), 8. https://doi.org/10.1186/1472-6785-9-8 Yang, Z. (2015). The BPP program for species tree estimation and species delimitation. Current Zoology, 61(5), 854-865. https://doi.org/10.1093/czoolo/61.5.854 Yang, Z., & Rannala, B. (2014b). Unguided Species Delimitation Using DNA Sequence Data from Multiple Loci. Molecular Biology and Evolution, 31(12), 3125-3135. https://doi.org/10.1093/molbev/msu279 Zwickl, D. J., & Hillis, D. M. (2002b). Increased Taxon Sampling Greatly Reduces Phylogenetic Error. Systematic Biology, 51(4), 588-598. https://doi.org/10.1080/10635150290102339 |
dc.source.instname.spa.fl_str_mv |
instname:Universidad del Rosario |
dc.source.reponame.spa.fl_str_mv |
reponame:Repositorio Institucional EdocUR |
bitstream.url.fl_str_mv |
https://repository.urosario.edu.co/bitstreams/9f9579b4-a1a2-43e3-aeb8-70c96b43b56b/download https://repository.urosario.edu.co/bitstreams/e6fcea53-aaf8-403c-9423-ce20a764fc7c/download https://repository.urosario.edu.co/bitstreams/8e995e55-999a-4db6-bf8d-cfa195989bcb/download https://repository.urosario.edu.co/bitstreams/3155d351-84eb-4cb1-a508-d0e4f80de088/download https://repository.urosario.edu.co/bitstreams/2dd9f85f-8f10-486b-b0fb-924b24227cb4/download |
bitstream.checksum.fl_str_mv |
dab767be7a093b539031785b3bf95490 fab9d9ed61d64f6ac005dee3306ae77e 4fd49de755969580b0bce6f67d0d75fe 8135dc9cc21585847e2a68f2bec4a253 a19a5998231e63bbd35439bea7146b40 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio institucional EdocUR |
repository.mail.fl_str_mv |
edocur@urosario.edu.co |
_version_ |
1814167529802694656 |
spelling |
Ballesteros Chitiva, NathaliaRueda, NicolOliveira, JaderAristeu da Rosa, JoaoUrbano, PlutarcoRamírez, Juan David1011716118600Salazar, Camilo79873757600Salgado-Roa, Fabian Camilod000986a-ad3e-4341-b650-23798d0bd876600Hernandez, Diana Carolina3de18c45-9f0e-4f44-a6d1-417cd6fc6586600Alvarado Lopez, Mateo AndrésBiólogoFull time891bb050-6eaf-4833-b8f4-ae9bf76f7d156002021-02-03T16:09:11Z2021-02-03T16:09:11Z2021-01-25La familia Reduviidae (Hemiptera: Heteroptera) se encuentra entre las familias más diversas de los verdaderos insectos. La evolución y las relaciones filogenéticas de las tribus Rhodniini y Triatomini (Triatominae) están bien estudiadas debido a su relevancia epidemiológica como vectores de Trypanosoma cruzi, el parásito que causa la enfermedad de Chagas. Rhodniini está compuesto por los géneros Rhodnius y Psammolestes, donde queda por estudiar la diversidad genética del segundo en comparación con Rhodnius, principal vector de T. cruzi. Por lo tanto, reunimos 92 muestras en total, 38 de Psammolestes arthuri en Colombia, 24 de Psammolestes tertius y 30 de coreodas de Psammolestes en Brasil. Usamos cinco nuevos loci nucleares: tRNA guanina (37) -N (1) metil transferasa (TRNA), proteína inducible por hormona juvenil putativa (PJH), proteína de ensamblaje de proteína de azufre de hierro citosólico probable Ciao 1 (CISP), lipoil sintasa, mitocondrial ( LSM) y proteína no caracterizada para la adhesión celular (UPCA), junto con dos loci previamente informados: 28S y CYTB, para representar las relaciones filogenéticas y los patrones evolutivos del género Psammolestes. Cuatro de las siete topologías de genes no eran consistentes con la topología concatenada, mientras que las otras tres eran concordantes, pero el patrón general es claro: Psammolestes es un grupo monofilético, corroborando hipótesis previamente sugeridas para el género. El análisis de agrupamiento junto con las estadísticas resumidas de genética de poblaciones dio como resultado la delimitación de tres poblaciones diferentes. Estos tres clusters corresponden a cada una de las especies de Psammolestes conocidas a priori -definidas por morfología, ecología y métodos citogenéticos- lo que sugiere que las poblaciones de cada una de las especies tienen una estructura genética bien sustentada. En general, nuestros resultados corroboraron la existencia de las tres especies de Psammolestes descritas anteriormente, 4 mostrando que probablemente divergieron en alopatría, bajo la influencia del escudo de Guyana y la cuenca del Amazonas como barreras para la dispersión.The family Reduviidae (Hemiptera: Heteroptera) is among the most diverse families of the true bugs. The evolution and phylogenetic relationships of Rhodniini and Triatomini tribes (Triatominae) are well studied due to their epidemiological relevance as vectors of Trypanosoma cruzi, the parasite that causes the Chagas disease. Rhodniini is composed by the genera Rhodnius and Psammolestes, where the genetic diversity of the second one remains to be studied in comparison with Rhodnius, the main vector of T. cruzi. Therefore, we gathered 92 samples in total, 38 for Psammolestes arthuri in Colombia, 24 for Psammolestes tertius and 30 for Psammolestes coreodes in Brazil. We used five novel nuclear loci: tRNA Guanine (37) -N (1) methyl transferase (TRNA), Putative juvenile hormone inducible protein (PJH), Probable cytosolic iron sulfur protein assembly protein Ciao 1 (CISP), Lipoyl synthase, mitochondrial (LSM) and Uncharacterized protein for cell adhesion (UPCA), along with two previously reported loci: 28S and CYTB, to depict the phylogenetic relationships and the evolutionary patterns of the genus Psammolestes. Four of the seven gene topologies were not consistent with the concatenated topology, while the other three were concordant, but the general pattern is clear: Psammolestes is a monophyletic group, corroborating hypotheses previously suggested for the genus. Clustering analysis along with population genetics summary statistics resulted in the delimitation of three different populations. These three clusters corresponded to each one of the Psammolestes species known a priori -defined by morphology, ecology and cytogenetic methods- which suggests that populations for each one of the species has a well-supported genetic structure. Overall, our results corroborated the existence of the three previously described Psammolestes species, 4 showing that they probably diverged in allopatry, under the influence of the Guyana shield and the Amazon basin as barriers to dispersalDirección de Investigación e Innovación (Big Grant) de la Universidad del Rosario.application/pdfhttps://doi.org/10.48713/10336_30865 https://repository.urosario.edu.co/handle/10336/30865engUniversidad del RosarioFacultad de Ciencias Naturales y MatemáticasBiologíaAtribución-SinDerivadas 2.5 ColombiaAbierto (Texto Completo)EL AUTOR, manifiesta que la obra objeto de la presente autorización es original y la realizó sin violar o usurpar derechos de autor de terceros, por lo tanto la obra es de exclusiva autoría y tiene la titularidad sobre la misma.http://creativecommons.org/licenses/by-nd/2.5/co/http://purl.org/coar/access_right/c_abf2Abad-Franch, F., Lima, M. M., Sarquis, O., Gurgel-Gonçalves, R., Sánchez-Martín, M., Calzada, J., Saldaña, A., Monteiro, F. A., Palomeque, F. S., Santos, W. S., Angulo, V. M., Esteban, L., Dias, F. B. S., Diotaiuti, L., Bar, M. E., & Gottdenker, N. L. (2015). On palms, bugs, and Chagas disease in the Americas. Acta Tropica, 151, 126-141. https://doi.org/10.1016/j.actatropica.2015.07.005Abad-Franch, F., & Monteiro, F. A. (2007b). Biogeography and evolution of Amazonian triatomines (Heteroptera: Reduviidae): implications for Chagas disease surveillance in humid forest ecoregions. Memórias Do Instituto Oswaldo Cruz, 102, 57-70. https://doi.org/10.1590/S0074-02762007005000108Abad-Franch, F., Monteiro, F. A., Jaramillo O., N., Gurgel-Gonçalves, R., Dias, F. B. S., & Diotaiuti, L. (2009b). Ecology, evolution, and the long-term surveillance of vector-borne Chagas disease: A multi-scale appraisal of the tribe Rhodniini (Triatominae). Acta Tropica, 110(2), 159-177. https://doi.org/10.1016/j.actatropica.2008.06.005Anisimova, M., Gil, M., Dufayard, J.-F., Dessimoz, C., & Gascuel, O. (2011). Survey of Branch Support Methods Demonstrates Accuracy, Power, and Robustness of Fast Likelihood-based Approximation Schemes. Systematic Biology, 60(5), 685-699. https://doi.org/10.1093/sysbio/syr041Asin, S., & Catalá, S. (1995). Development of Trypanosoma cruzi in Triatoma infestans: Influence of Temperature and Blood Consumption. The Journal of parasitology, 81, 1-7. https://doi.org/10.2307/3283997Barbet‐Massin, M., Jiguet, F., Albert, C. H., & Thuiller, W. (2012). Selecting pseudo-absences for species distribution models: How, where and how many? Methods in Ecology and Evolution, 3(2), 327-338. https://doi.org/10.1111/j.2041-210X.2011.00172.xBargues, M. D., Marcilla, A., Dujardin, J. P., & Mas-Coma, S. (2002c). Triatomine vectors of Trypanosoma cruzi: A molecular perspective based on nuclear ribosomal DNA markers. Transactions of the Royal Society of Tropical Medicine and Hygiene, 96, S159-S164. https://doi.org/10.1016/S0035-9203(02)90069-6Bern, C. (2015). Chagas’ Disease. New England Journal of Medicine, 373(5), 456-466. https://doi.org/10.1056/NEJMra1410150Bobrowski, M., & Schickhoff, U. (2017). Why input matters: Selection of climate data sets for modelling the potential distribution of a treeline species in the Himalayan region. Ecological Modelling, 359, 92-102. https://doi.org/10.1016/j.ecolmodel.2017.05.021Brown, J. L., & Carnaval, A. C. (2019). A tale of two niches: Methods, concepts, and evolution. Frontiers of Biogeography.Caicedo-Garzón, V., Salgado-Roa, F. C., Sánchez-Herrera, M., Hernández, C., Arias-Giraldo, L. M., García, L., Vallejo, G., Cantillo, O., Tovar, C., Rosa, J. A. da, Carrasco, H. J., Segovia, M., Salazar, C., & Ramírez, J. D. (2019). Genetic diversification of Panstrongylus geniculatus (Reduviidae: Triatominae) in northern South America. PLOS ONE, 14(10), e0223963. https://doi.org/10.1371/journal.pone.0223963Carstens, B. C., Pelletier, T. A., Reid, N. M., & Satler, J. D. (2013b). How to fail at species delimitation. Molecular Ecology, 22(17), 4369-4383. https://doi.org/10.1111/mec.12413Castillo-Neyra, R., Barbu, C. M., Salazar, R., Borrini, K., Naquira, C., & Levy, M. Z. (2015). Host-Seeking Behavior and Dispersal of Triatoma infestans, a Vector of Chagas Disease, under Semi-field Conditions. PLOS Neglected Tropical Diseases, 9(1), e3433. https://doi.org/10.1371/journal.pntd.0003433Ceccarelli, S., Balsalobre, A., Medone, P., Cano, M. E., Gurgel Gonçalves, R., Feliciangeli, D., Vezzani, D., Wisnivesky-Colli, C., Gorla, D. E., Marti, G. A., & Rabinovich, J. E. (2018). DataTri, a database of American triatomine species occurrence. Scientific Data, 5(1), 180071. https://doi.org/10.1038/sdata.2018.71Chagas, Carlos. (1909). Nova tripanozomiaze humana: Estudos sobre a morfolojia e o ciclo evolutivo do Schizotrypanum cruzi n. gen., n. sp., ajente etiolojico de nova entidade morbida do homem. Memórias do Instituto Oswaldo Cruz, 1(2), 159-218. https://doi.org/10.1590/S0074-02761909000200008Chefaoui, R. M., & Lobo, J. M. (2008b). Assessing the effects of pseudo-absences on predictive distribution model performance. Ecological Modelling, 210(4), 478-486. https://doi.org/10.1016/j.ecolmodel.2007.08.010Clement, M., Snell, Q., Walker, P., Posada, D., & Crandall, K. (s. f.). TCS: Estimating Gene Genealogies. 7.Cruz-Guzmán, P. J., Morocoima, A., Chique, J. D., Ramonis-Quintero, J., Uzcátegui, M. T., & Carrasco, H. J. (s. f.). Psammolestes arthuri NATURALMENTE INFECTADO CON Trypanosoma cruzi ENCONTRADO EN SIMPATRÍA CON Rhodnius prolixus Y Triatoma maculata EN NIDOS DE AVES EN EL ESTADO ANZOÁTEGUI, VENEZUELA. 14.de Paula, A. S., Diotaiuti, L., & Galvão, C. (2007). Systematics and biogeography of Rhodniini (Heteroptera: Reduviidae: Triatominae) based on 16S mitochondrial rDNA sequences. Journal of Biogeography, 34(4), 699-712. https://doi.org/10.1111/j.1365-2699.2006.01628.xde Paula, A. S., Diotaiuti, L., & Scho, C. J. (2005). Testing the sister-group relationship of the Rhodniini and Triatomini (Insecta: Hemiptera: Reduviidae: Triatominae). Molecular Phylogenetics and Evolution, 8.Degnan, J. H., & Rosenberg, N. A. (2006b). Discordance of Species Trees with Their Most Likely Gene Trees. PLOS Genetics, 2(5), e68. https://doi.org/10.1371/journal.pgen.0020068Dias, J. C. P., Silveira, A. C., & Schofield, C. J. (2002). The impact of Chagas disease control in Latin America: A review. Memórias do Instituto Oswaldo Cruz, 97(5), 603-612. https://doi.org/10.1590/S0074-02762002000500002Dixon, P. (2003). VEGAN, a package of R functions for community ecology. Journal of Vegetation Science, 14(6), 927-930. https://doi.org/10.1111/j.1654-1103.2003.tb02228.xDujardin, J. P., Chavez, T., Moreno, J. M., Machane, M., Noireau, F., & Schofield, C. J. (1999). Comparison of Isoenzyme Electrophoresis and Morphometric Analysis for Phylogenetic Reconstruction of the Rhodniini (Hemiptera: Reduviidae: Triatominae). Journal of Medical Entomology, 36(6), 653-659. https://doi.org/10.1093/jmedent/36.6.653Dujardin, J.-P., Beard, C. B., & Ryckman, R. (2007). The relevance of wing geometry in entomological surveillance of Triatominae, vectors of Chagas disease. Infection, Genetics and Evolution, 7(2), 161-167. https://doi.org/10.1016/j.meegid.2006.07.005Earl, D. A., & vonHoldt, B. M. (2012). STRUCTURE HARVESTER: A website and program for visualizing STRUCTURE output and implementing the Evanno method. Conservation Genetics Resources, 4(2), 359-361. https://doi.org/10.1007/s12686-011-9548-7Edwards, S. V. (2009). Natural selection and phylogenetic analysis. Proceedings of the National Academy of Sciences, 106(22), 8799-8800. https://doi.org/10.1073/pnas.0904103106Elith, J., Graham*, C. H., Anderson, R. P., Dudík, M., Ferrier, S., Guisan, A., Hijmans, R. J., Huettmann, F., Leathwick, J. R., Lehmann, A., Li, J., Lohmann, L. G., Loiselle, B. A., Manion, G., Moritz, C., Nakamura, M., Nakazawa, Y., Overton, J. M. M., Peterson, A. T., … Zimmermann, N. E. (2006). Novel methods improve prediction of species’ distributions from occurrence data. Ecography, 29(2), 129-151. https://doi.org/10.1111/j.2006.0906-7590.04596.xEnce, D. D., & Carstens, B. C. (2011b). SpedeSTEM: A rapid and accurate method for species delimitation. Molecular Ecology Resources, 11(3), 473-480. https://doi.org/10.1111/j.1755-0998.2010.02947.xEvanno, G., Regnaut, S., & Goudet, J. (2005). Detecting the number of clusters of individuals using the software structure: A simulation study. Molecular Ecology, 14(8), 2611-2620. https://doi.org/10.1111/j.1365-294X.2005.02553.xFriedman, J. H. (2006). Recent advances in predictive (machine) learning. Journal of classification, 23(2), 175-197.Fu, Y. X., & Li, W. H. (1993). Statistical tests of neutrality of mutations. Genetics, 133(3), 693-709.Funk, D. J., & Omland, K. E. (2003b). Species-Level Paraphyly and Polyphyly: Frequency, Causes, and Consequences, with Insights from Animal Mitochondrial DNA. Annual Review of Ecology, Evolution, and Systematics, 34(1), 397-423. https://doi.org/10.1146/annurev.ecolsys.34.011802.132421Gadagkar, S. R., Rosenberg, M. S., & Kumar, S. (2005). Inferring species phylogenies from multiple genes: Concatenated sequence tree versus consensus gene tree. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 304B(1), 64-74. https://doi.org/10.1002/jez.b.21026Galvão, C., Carcavallo, R., Rocha, D. D. S., & Jurberg, J. (2003). A checklist of the current valid species of the subfamily Triatominae Jeannel, 1919 (Hemiptera, Reduviidae) and their geographical distribution, with nomenclatural and taxonomic notes. Zootaxa, 202(1), 1-36. https://doi.org/10.11646/zootaxa.202.1.1Golding, N., Wilson, A. L., Moyes, C. L., Cano, J., Pigott, D. M., Velayudhan, R., Brooker, S. J., Smith, D. L., Hay, S. I., & Lindsay, S. W. (2015). Integrating vector control across diseases. BMC Medicine, 13(1), 249. https://doi.org/10.1186/s12916-015-0491-4Gorchakov, R., Trosclair, L. P., Wozniak, E. J., Feria, P. T., Garcia, M. N., Gunter, S. M., & Murray, K. O. (2016). Trypanosoma cruzi Infection Prevalence and Bloodmeal Analysis in Triatomine Vectors of Chagas Disease From Rural Peridomestic Locations in Texas, 2013–2014. Journal of Medical Entomology, 53(4), 911-918. https://doi.org/10.1093/jme/tjw040Graham, Catherine H., Ferrier, S., Huettman, F., Moritz, C., & Peterson, A. T. (2004). New developments in museum-based informatics and applications in biodiversity analysis. Trends in Ecology & Evolution, 19(9), 497-503. https://doi.org/10.1016/j.tree.2004.07.006Guindon, S., Dufayard, J.-F., Lefort, V., Anisimova, M., Hordijk, W., & Gascuel, O. (2010). New Algorithms and Methods to Estimate Maximum-Likelihood Phylogenies: Assessing the Performance of PhyML 3.0. Systematic Biology, 59(3), 307-321. https://doi.org/10.1093/sysbio/syq010Hijmans, R. J., Williams, E., Vennes, C., & Hijmans, M. R. J. (2017). Package ‘geosphere’. Spherical trigonometry, 1, 7.Hoang, D. T., Chernomor, O., von Haeseler, A., Minh, B. Q., & Vinh, L. S. (2018). UFBoot2: Improving the Ultrafast Bootstrap Approximation. Molecular Biology and Evolution, 35(2), 518-522. https://doi.org/10.1093/molbev/msx281Hudson, R. R., Boos, D. D., & Kaplan, N. L. (1992). A statistical test for detecting geographic subdivision. Molecular Biology and Evolution, 9(1), 138-151. https://doi.org/10.1093/oxfordjournals.molbev.a040703Hwang, W. S., & Weirauch, C. (2012b). Evolutionary History of Assassin Bugs (Insecta: Hemiptera: Reduviidae): Insights from Divergence Dating and Ancestral State Reconstruction. PLOS ONE, 7(9), e45523. https://doi.org/10.1371/journal.pone.0045523Hypša, V., Tietz, D. F., Zrzavý, J., Rego, R. O. M., Galvao, C., & Jurberg, J. (2002b). Phylogeny and biogeography of Triatominae (Hemiptera: Reduviidae): molecular evidence of a New World origin of the Asiatic clade. Molecular Phylogenetics and Evolution, 23(3), 447-457. https://doi.org/10.1016/S1055-7903(02)00023-4Jakobsson, M., & Rosenberg, N. A. (2007). CLUMPP: A cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics, 23(14), 1801-1806. https://doi.org/10.1093/bioinformatics/btm233Jombart, T., & Ahmed, I. (2011). adegenet 1.3-1: New tools for the analysis of genome-wide SNP data. Bioinformatics, 27(21), 3070-3071. https://doi.org/10.1093/bioinformatics/btr521Justi, S. A., & Galvão, C. (2017). The Evolutionary Origin of Diversity in Chagas Disease Vectors. Trends in Parasitology, 33(1), 42-52. https://doi.org/10.1016/j.pt.2016.11.002Justi, S. A., Galvão, C., & Schrago, C. G. (2016b). Geological Changes of the Americas and their Influence on the Diversification of the Neotropical Kissing Bugs (Hemiptera: Reduviidae: Triatominae). PLOS Neglected Tropical Diseases, 10(4), e0004527. https://doi.org/10.1371/journal.pntd.0004527Kalyaanamoorthy, S., Minh, B. Q., Wong, T. K., von Haeseler, A., & Jermiin, L. S. (2017). ModelFinder: Fast Model Selection for Accurate Phylogenetic Estimates. Nature methods, 14(6), 587-589. https://doi.org/10.1038/nmeth.4285Kapli, P., Lutteropp, S., Zhang, J., Kobert, K., Pavlidis, P., Stamatakis, A., & Flouri, T. (2017). Multi-rate Poisson tree processes for single-locus species delimitation under maximum likelihood and Markov chain Monte Carlo. Bioinformatics, 33(11), 1630-1638. https://doi.org/10.1093/bioinformatics/btx025Karger, D. N., Conrad, O., Böhner, J., Kawohl, T., Kreft, H., Soria-Auza, R. W., Zimmermann, N. E., Linder, H. P., & Kessler, M. (2017). Climatologies at high resolution for the earth’s land surface areas. Scientific Data, 4(1), 170122. https://doi.org/10.1038/sdata.2017.122Leigh, J. W., & Bryant, D. (2015). popart: Full-feature software for haplotype network construction. Methods in Ecology and Evolution, 6(9), 1110-1116. https://doi.org/10.1111/2041-210X.12410Lemmon, A. R., Brown, J. M., Stanger-Hall, K., & Lemmon, E. M. (2009b). The Effect of Ambiguous Data on Phylogenetic Estimates Obtained by Maximum Likelihood and Bayesian Inference. Systematic Biology, 58(1), 130-145. https://doi.org/10.1093/sysbio/syp017Lent, H., & Wygodzinsky, P. (1979). Revision of the Triatominae (Hemiptera, Reduviidae), and their significance as vectors of Chagas’ disease. Bulletin of the American Museum of Natural History, 163(3), 123-520.Lischer, H. E. L., & Excoffier, L. (2012). PGDSpider: An automated data conversion tool for connecting population genetics and genomics programs. Bioinformatics, 28(2), 298-299. https://doi.org/10.1093/bioinformatics/btr642Lobo, I. (2008b). Environmental Influences on Gene Expression. Nature Education, 39.Lyman, D. F., Monteiro, F. A., Escalante, A. A., Cordon-Rosales, C., Wesson, D. M., Dujardin, J. P., & Beard, C. B. (1999). Mitochondrial DNA sequence variation among triatomine vectors of Chagas’ disease. The American Journal of Tropical Medicine and Hygiene, 60(3), 377-386. https://doi.org/10.4269/ajtmh.1999.60.377Maddison, W. P., & Maddison, D. R. (2019). Mesquite: A modular system for evolutionary analysis. Version 3.51. 2018.Maddison, Wayne P. (1997). Gene Trees in Species Trees. Systematic Biology, 46(3), 523-536. https://doi.org/10.1093/sysbio/46.3.523Manni, F., Rard, E. G., & Heyer, E. (s. f.). Geographic Patterns of (Genetic, Morphologic, Linguistic) Variation: How Barriers Can Be Detected by Using Monmonier’s Algorithm. 18.Mantel, N. (1967). The Detection of Disease Clustering and a Generalized Regression Approach. Cancer Research, 27(2 Part 1), 209-220.McCullagh, P. (81). Nelder. JA (1989), Generalized Linear Models. CRC Monographs on Statistics & Applied Probability, Springer Verlag, New York.Minh, B. Q., Schmidt, H. A., Chernomor, O., Schrempf, D., Woodhams, M. D., von Haeseler, A., & Lanfear, R. (2020). IQ-TREE 2: New Models and Efficient Methods for Phylogenetic Inference in the Genomic Era. Molecular Biology and Evolution, 37(5), 1530-1534. https://doi.org/10.1093/molbev/msaa015Monteiro, F. A., Wesson, D. M., Dotson, E. M., Schofield, C. J., & Beard, C. B. (2000b). Phylogeny and molecular taxonomy of the Rhodniini derived from mitochondrial and nuclear DNA sequences. The American Journal of Tropical Medicine and Hygiene, 62(4), 460-465. https://doi.org/10.4269/ajtmh.2000.62.460Monteiro, Fernando Araujo, Weirauch, C., Felix, M., Lazoski, C., & Abad-Franch, F. (2018b). Chapter Five—Evolution, Systematics, and Biogeography of the Triatominae, Vectors of Chagas Disease. En D. Rollinson & J. R. Stothard (Eds.), Advances in Parasitology (Vol. 99, pp. 265-344). Academic Press. https://doi.org/10.1016/bs.apar.2017.12.002Nascimento, J. D., Rosa, J. A. da, Salgado-Roa, F. C., Hernández, C., Pardo-Diaz, C., Alevi, K. C. C., Ravazi, A., Oliveira, J. de, Oliveira, M. T. V. de A., Salazar, C., & Ramírez, J. D. (2019). Taxonomical over splitting in the Rhodnius prolixus (Insecta: Hemiptera: Reduviidae) clade: Are R. taquarussuensis (da Rosa et al., 2017) and R. neglectus (Lent, 1954) the same species? PLOS ONE, 14(2), e0211285. https://doi.org/10.1371/journal.pone.0211285Oliveira, J., Alevi, K. C. C., Ravazi, A., Herrera, H. M., Santos, F. M., Azeredo-Oliveira, M. T. V. de, & Rosa, J. A. da. (2018). New Evidence of the Monophyletic Relationship of the Genus Psammolestes Bergroth, 1911 (Hemiptera, Reduviidae, Triatominae). The American Journal of Tropical Medicine and Hygiene, 99(6), 1485-1488. https://doi.org/10.4269/ajtmh.18-0109Patterson, J. S., & Gaunt, M. W. (2010b). Phylogenetic multi-locus codon models and molecular clocks reveal the monophyly of haematophagous reduviid bugs and their evolution at the formation of South America. Molecular Phylogenetics and Evolution, 56(2), 608-621. https://doi.org/10.1016/j.ympev.2010.04.038Phillips, S. J., Anderson, R. P., & Schapire, R. E. (2006). Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190(3), 231-259. https://doi.org/10.1016/j.ecolmodel.2005.03.026Pollock, D. D., Zwickl, D. J., McGuire, J. A., & Hillis, D. M. (2002b). Increased Taxon Sampling Is Advantageous for Phylogenetic Inference. Systematic biology, 51(4), 664-671. https://doi.org/10.1080/10635150290102357Pritchard, J. K., Stephens, M., & Donnelly, P. (2000). Inference of Population Structure Using Multilocus Genotype Data. Genetics, 155(2), 945-959.Ramos-Onsins, S. E., & Rozas, J. (2002). Statistical Properties of New Neutrality Tests Against Population Growth. Molecular Biology and Evolution, 19(12), 2092-2100. https://doi.org/10.1093/oxfordjournals.molbev.a004034Reuter, H. I., Nelson, A., & Jarvis, A. (2007). An evaluation of void‐filling interpolation methods for SRTM data. International Journal of Geographical Information Science, 21(9), 983-1008. https://doi.org/10.1080/13658810601169899Ripley, B. D., & Naylor, P. (1996). Pattern Recognition and Neural Networks. Nature, 381(6579), 206-206.Rödder, D., & Engler, J. O. (2011). Quantitative metrics of overlaps in Grinnellian niches: Advances and possible drawbacks. Global Ecology and Biogeography, 20(6), 915-927. https://doi.org/10.1111/j.1466-8238.2011.00659.xRosenberg, N. A. (2004). distruct: A program for the graphical display of population structure. Molecular Ecology Notes, 4(1), 137-138. https://doi.org/10.1046/j.1471-8286.2003.00566.xRoux, C., Fraïsse, C., Romiguier, J., Anciaux, Y., Galtier, N., & Bierne, N. (2016). Shedding Light on the Grey Zone of Speciation along a Continuum of Genomic Divergence. PLOS Biology, 14(12), e2000234. https://doi.org/10.1371/journal.pbio.2000234Rozas, J., Ferrer-Mata, A., Sánchez-DelBarrio, J. C., Guirao-Rico, S., Librado, P., Ramos-Onsins, S. E., & Sánchez-Gracia, A. (2017). DnaSP 6: DNA Sequence Polymorphism Analysis of Large Data Sets. Molecular Biology and Evolution, 34(12), 3299-3302. https://doi.org/10.1093/molbev/msx248Sanderson, M. J., McMahon, M. M., & Steel, M. (2010b). Phylogenomics with incomplete taxon coverage: The limits to inference. BMC Evolutionary Biology, 10(1), 155. https://doi.org/10.1186/1471-2148-10-155Sandoval, C. M., Duarte, R., Gutíerrez, R., Rocha, D. da S., Angulo, V. M., Esteban, L., Reyes, M., Jurberg, J., & Galvão, C. (2004). Feeding sources and natural infection of Belminus herreri (Hemiptera, Reduviidae, Triatominae) from dwellings in Cesar, Colombia. Memórias do Instituto Oswaldo Cruz, 99(2), 137-140. https://doi.org/10.1590/S0074-02762004000200004Schofield, C. J., & Galvão, C. (2009). Classification, evolution, and species groups within the Triatominae. Acta Tropica, 110(2), 88-100. https://doi.org/10.1016/j.actatropica.2009.01.010Schofield, Chris J., Jannin, J., & Salvatella, R. (2006). The future of Chagas disease control. Trends in Parasitology, 22(12), 583-588. https://doi.org/10.1016/j.pt.2006.09.011Schwarz, G. (1978). Estimating the Dimension of a Model. Annals of Statistics, 6(2), 461-464. https://doi.org/10.1214/aos/1176344136Tajima, F. (1989). Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics, 123(3), 585-595.Thuiller, Wilfried, Araújo, M. B., & Lavorel, S. (2003). Generalized models vs. classification tree analysis: Predicting spatial distributions of plant species at different scales. Journal of Vegetation Science, 14(5), 669-680. https://doi.org/10.1111/j.1654-1103.2003.tb02199.xThuiller, Wilfried, Lafourcade, B., Engler, R., & Araújo, M. B. (2009). BIOMOD – a platform for ensemble forecasting of species distributions. Ecography, 32(3), 369-373. https://doi.org/10.1111/j.1600-0587.2008.05742.xTorre-Bárcena, J. E. de la, Kolokotronis, S.-O., Lee, E. K., Stevenson, D. W., Brenner, E. D., Katari, M. S., Coruzzi, G. M., & DeSalle, R. (2009). The Impact of Outgroup Choice and Missing Data on Major Seed Plant Phylogenetics Using Genome-Wide EST Data. PLOS ONE, 4(6), e5764. https://doi.org/10.1371/journal.pone.0005764Townsend, T. M., Mulcahy, D. G., Noonan, B. P., Sites, J. W., Kuczynski, C. A., Wiens, J. J., & Reeder, T. W. (2011). Phylogeny of iguanian lizards inferred from 29 nuclear loci, and a comparison of concatenated and species-tree approaches for an ancient, rapid radiation. Molecular Phylogenetics and Evolution, 61(2), 363-380. https://doi.org/10.1016/j.ympev.2011.07.008Townson, H., Nathan, M. B., Zaim, M., Guillet, P., Manga, L., Bos, R., & Kindhauser, M. (2005). Exploiting the potential of vector control for disease prevention. Bulletin of the World Health Organization, 83, 942-947. https://doi.org/10.1590/S0042-96862005001200017Velásquez-Ortiz, N., Hernández, C., Herrera, G., Cruz-Saavedra, L., Higuera, A., Arias-Giraldo, L. M., Urbano, P., Cuervo, A., Teherán, A., & Ramírez, J. D. (2019b). Trypanosoma cruzi infection, discrete typing units and feeding sources among Psammolestes arthuri (Reduviidae: Triatominae) collected in eastern Colombia. Parasites & Vectors, 12(1), 157. https://doi.org/10.1186/s13071-019-3422-yWaleckx, E., Gourbière, S., Dumonteil, E., Waleckx, E., Gourbière, S., & Dumonteil, E. (2015). Intrusive versus domiciliated triatomines and the challenge of adapting vector control practices against Chagas disease. Memórias do Instituto Oswaldo Cruz, 110(3), 324-338. https://doi.org/10.1590/0074-02760140409Wei, T., Simko, V., Levy, M., Xie, Y., Jin, Y., & Zemla, J. (2017). Package ‘corrplot’. Statistician, 56(316), e24.Weirauch, C. (2008b). Cladistic analysis of Reduviidae (Heteroptera: Cimicomorpha) based on morphological characters. Systematic Entomology, 33(2), 229-274. https://doi.org/10.1111/j.1365-3113.2007.00417.xWilson, A. L., Courtenay, O., Kelly-Hope, L. A., Scott, T. W., Takken, W., Torr, S. J., & Lindsay, S. W. (2020). The importance of vector control for the control and elimination of vector-borne diseases. PLOS Neglected Tropical Diseases, 14(1), e0007831. https://doi.org/10.1371/journal.pntd.0007831Wisz, M. S., & Guisan, A. (2009b). Do pseudo-absence selection strategies influence species distribution models and their predictions? An information-theoretic approach based on simulated data. BMC Ecology, 9(1), 8. https://doi.org/10.1186/1472-6785-9-8Yang, Z. (2015). The BPP program for species tree estimation and species delimitation. Current Zoology, 61(5), 854-865. https://doi.org/10.1093/czoolo/61.5.854Yang, Z., & Rannala, B. (2014b). Unguided Species Delimitation Using DNA Sequence Data from Multiple Loci. Molecular Biology and Evolution, 31(12), 3125-3135. https://doi.org/10.1093/molbev/msu279Zwickl, D. J., & Hillis, D. M. (2002b). Increased Taxon Sampling Greatly Reduces Phylogenetic Error. Systematic Biology, 51(4), 588-598. https://doi.org/10.1080/10635150290102339instname:Universidad del Rosarioreponame:Repositorio Institucional EdocUREvolución geográficaNicho de desarrollo y proliferación de los PsammolestesGenética de poblaciones del insectoVariables ambientalesAnálisis filogenético molecularInvertebrados592600Evolución & genética575600Geographical evolutionDevelopment and proliferation niche of the PsammolestesGenetics of insect populationsEnvironmental variablesMolecular phylogenetic analysisPhylogenetic relationships and evolutionary patterns of the genus Psammolestes (Hemiptera: Reduviidae)Relaciones filogenéticas y patrones evolutivos del género Psammolestes (Hemiptera: Reduviidae).bachelorThesisArtículoTrabajo de gradohttp://purl.org/coar/resource_type/c_7a1fCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repository.urosario.edu.co/bitstreams/9f9579b4-a1a2-43e3-aeb8-70c96b43b56b/downloaddab767be7a093b539031785b3bf95490MD53LICENSElicense.txtlicense.txttext/plain1475https://repository.urosario.edu.co/bitstreams/e6fcea53-aaf8-403c-9423-ce20a764fc7c/downloadfab9d9ed61d64f6ac005dee3306ae77eMD52ORIGINALAlvaradoLopez-MateoAndres-2021.pdfAlvaradoLopez-MateoAndres-2021.pdfDocumento principal.application/pdf3053310https://repository.urosario.edu.co/bitstreams/8e995e55-999a-4db6-bf8d-cfa195989bcb/download4fd49de755969580b0bce6f67d0d75feMD51TEXTAlvaradoLopez-MateoAndres-2021.pdf.txtAlvaradoLopez-MateoAndres-2021.pdf.txtExtracted texttext/plain87636https://repository.urosario.edu.co/bitstreams/3155d351-84eb-4cb1-a508-d0e4f80de088/download8135dc9cc21585847e2a68f2bec4a253MD54THUMBNAILAlvaradoLopez-MateoAndres-2021.pdf.jpgAlvaradoLopez-MateoAndres-2021.pdf.jpgGenerated Thumbnailimage/jpeg3071https://repository.urosario.edu.co/bitstreams/2dd9f85f-8f10-486b-b0fb-924b24227cb4/downloada19a5998231e63bbd35439bea7146b40MD5510336/30865oai:repository.urosario.edu.co:10336/308652021-02-04 03:03:00.08http://creativecommons.org/licenses/by-nd/2.5/co/Atribución-SinDerivadas 2.5 Colombiahttps://repository.urosario.edu.coRepositorio institucional EdocURedocur@urosario.edu.coRUwoTE9TKSBBVVRPUihFUyksIG1hbmlmaWVzdGEobWFuaWZlc3RhbW9zKSBxdWUgbGEgb2JyYSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIHJlYWxpesOzIHNpbiB2aW9sYXIgbyB1c3VycGFyIGRlcmVjaG9zIGRlIGF1dG9yIGRlIHRlcmNlcm9zLCBwb3IgbG8gdGFudG8gbGEgb2JyYSBlcyBkZSBleGNsdXNpdmEgYXV0b3LDrWEgeSB0aWVuZSBsYSB0aXR1bGFyaWRhZCBzb2JyZSBsYSBtaXNtYS4gCgpQQVJHUkFGTzogRW4gY2FzbyBkZSBwcmVzZW50YXJzZSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybyBlbiBjdWFudG8gYSBsb3MgZGVyZWNob3MgZGUgYXV0b3Igc29icmUgbGEgb2JyYSBlbiBjdWVzdGnDs24sIEVMIEFVVE9SLCBhc3VtaXLDoSB0b2RhIGxhIHJlc3BvbnNhYmlsaWRhZCwgeSBzYWxkcsOhIGVuIGRlZmVuc2EgZGUgbG9zIGRlcmVjaG9zIGFxdcOtIGF1dG9yaXphZG9zOyBwYXJhIHRvZG9zIGxvcyBlZmVjdG9zIGxhIHVuaXZlcnNpZGFkIGFjdMO6YSBjb21vIHVuIHRlcmNlcm8gZGUgYnVlbmEgZmUuIAoKRUwgQVVUT1IsIGF1dG9yaXphIGEgTEEgVU5JVkVSU0lEQUQgREVMIFJPU0FSSU8sICBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgTGV5IDQ0IGRlIDE5OTMsIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbm9ybWFzIGdlbmVyYWxlcyBzb2JyZSBsYSBtYXRlcmlhLCAgdXRpbGljZSB5IHVzZSBsYSBvYnJhIG9iamV0byBkZSBsYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuLgoKLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0KClBPTElUSUNBIERFIFRSQVRBTUlFTlRPIERFIERBVE9TIFBFUlNPTkFMRVMuIERlY2xhcm8gcXVlIGF1dG9yaXpvIHByZXZpYSB5IGRlIGZvcm1hIGluZm9ybWFkYSBlbCB0cmF0YW1pZW50byBkZSBtaXMgZGF0b3MgcGVyc29uYWxlcyBwb3IgcGFydGUgZGUgTEEgVU5JVkVSU0lEQUQgREVMIFJPU0FSSU8gIHBhcmEgZmluZXMgYWNhZMOpbWljb3MgeSBlbiBhcGxpY2FjacOzbiBkZSBjb252ZW5pb3MgY29uIHRlcmNlcm9zIG8gc2VydmljaW9zIGNvbmV4b3MgY29uIGFjdGl2aWRhZGVzIHByb3BpYXMgZGUgbGEgYWNhZGVtaWEsIGNvbiBlc3RyaWN0byBjdW1wbGltaWVudG8gZGUgbG9zIHByaW5jaXBpb3MgZGUgbGV5LiBQYXJhIGVsIGNvcnJlY3RvIGVqZXJjaWNpbyBkZSBtaSBkZXJlY2hvIGRlIGhhYmVhcyBkYXRhICBjdWVudG8gY29uIGxhIGN1ZW50YSBkZSBjb3JyZW8gaGFiZWFzZGF0YUB1cm9zYXJpby5lZHUuY28sIGRvbmRlIHByZXZpYSBpZGVudGlmaWNhY2nDs24gIHBvZHLDqSBzb2xpY2l0YXIgbGEgY29uc3VsdGEsIGNvcnJlY2Npw7NuIHkgc3VwcmVzacOzbiBkZSBtaXMgZGF0b3MuCgo= |