Transformación de la industria retail en centros comerciales: modelos avanzados de clasificación y predicción

Parque Arauco es una empresa dedicada al sector de rentas inmobiliarias, enfocada en maximizar las ventas en sus centros comerciales y outlets mediante la oferta de productos, servicios y experiencias adaptadas a los nuevos hábitos de consumo de sus visitantes. Este trabajo se centra en dos pilares...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2024
Institución:
Universidad del Rosario
Repositorio:
Repositorio EdocUR - U. Rosario
Idioma:
spa
OAI Identifier:
oai:repository.urosario.edu.co:10336/43067
Acceso en línea:
https://repository.urosario.edu.co/handle/10336/43067
Palabra clave:
Modelo predictivo
Perfilamiento de clientes
Maximización de utilidad
Parque Arauco
Centros Comerciales
Compra en centros comerciales
Visita a centros comperciales
Predictive model
Customer profiling
Utility maximization
Purchase
Parque Arauco
Shopping Centers
Rights
License
Attribution-NonCommercial-NoDerivatives 4.0 International
Description
Summary:Parque Arauco es una empresa dedicada al sector de rentas inmobiliarias, enfocada en maximizar las ventas en sus centros comerciales y outlets mediante la oferta de productos, servicios y experiencias adaptadas a los nuevos hábitos de consumo de sus visitantes. Este trabajo se centra en dos pilares organizacionales: aumentar la rentabilidad de los activos inmobiliarios y ser el operador de Real Estate recomendado por clientes y locatarios. La pandemia ha generado cambios significativos en los patrones de consumo, impulsando el desarrollo de nuevos canales de compra. Utilizando datos de una encuesta aplicada en 2023 a cinco de sus centros comerciales, Parque Arauco busca crear modelos predictivos para identificar a los clientes con mayor probabilidad de compra. Se emplearán técnicas de análisis de datos, como el análisis de correspondencias múltiples, para proporcionar recomendaciones estratégicas basadas en el perfilamiento de los visitantes, optimizando esfuerzos e inversiones y mejorando la experiencia del cliente. El proyecto integrará metodologías como CRISP-DM y Scrum, identificando la regresión logística binomial como el modelo más efectivo basado en la validación estadística mediante indicadores como el R² de McFadden, VIF, curva ROC y AUC. Los resultados validados informarán recomendaciones accionables para la empresa