Optimization under uncertainty of the pharmaceutical supply chain in hospitals

In this paper, a simulation-optimization approach based on the stochastic counterpart or sample path method is used for optimizing tactical and operative decisions in the pharmaceutical supply chain. This approach focuses on the pharmacy-hospital echelon, and it takes into account random elements re...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2020
Institución:
Universidad del Rosario
Repositorio:
Repositorio EdocUR - U. Rosario
Idioma:
eng
OAI Identifier:
oai:repository.urosario.edu.co:10336/23768
Acceso en línea:
https://doi.org/10.1016/j.compchemeng.2019.106689
https://repository.urosario.edu.co/handle/10336/23768
Palabra clave:
Hospitals
Inventory control
Mathematical programming
Medicine
Stochastic models
Stochastic systems
Supply chains
Bi-objective optimization
Epsilon-constraint method
Mixed integer programming model
Optimization under uncertainty
Pharmaceutical supply chains
Sample path
Simulation optimization
Stochastic counterpart
Integer programming
Mathematical programming
Medicine replenishment
Pharmaceutical supply chain
Sample Path
Simulation-optimization
Stochastic counterpart
Rights
License
Abierto (Texto Completo)
id EDOCUR2_0a2c8f61ea0508ed61e2b4e1dbeef82a
oai_identifier_str oai:repository.urosario.edu.co:10336/23768
network_acronym_str EDOCUR2
network_name_str Repositorio EdocUR - U. Rosario
repository_id_str
spelling 10305377266009c268325-90cd-49ab-80c8-b0e78a0a371b-12020-05-26T00:05:13Z2020-05-26T00:05:13Z2020In this paper, a simulation-optimization approach based on the stochastic counterpart or sample path method is used for optimizing tactical and operative decisions in the pharmaceutical supply chain. This approach focuses on the pharmacy-hospital echelon, and it takes into account random elements related to demand, costs and the lead times of medicines. Based on this approach, two mixed integer programming (MIP) models are formulated, these models correspond to the stochastic counterpart approximating problems. The first model considers expiration dates, the service level required, perishability, aged-based inventory levels and emergency purchases; the optimal policy support decisions related to the replenishment, supplier selection and the inventory management of medicines. The results of this model have been evaluated over real data and simulated scenarios. The findings show that the optimal policy can reduce the current hospital supply and managing costs in medicine planning by 16% considering 22 types of medicines. The second model is a bi-objective optimization model solved with the epsilon-constraint method. This model determines the maximum acceptable expiration date, thereby minimizing the total amount of expired medicines. © 2019 Elsevier Ltdapplication/pdfhttps://doi.org/10.1016/j.compchemeng.2019.106689981354https://repository.urosario.edu.co/handle/10336/23768engElsevier LtdComputers and Chemical EngineeringVol. 135Computers and Chemical Engineering, ISSN:981354, Vol.135,(2020)https://www.scopus.com/inward/record.uri?eid=2-s2.0-85081236702&doi=10.1016%2fj.compchemeng.2019.106689&partnerID=40&md5=432be97781b244eb0f460bd7bab68c61Abierto (Texto Completo)http://purl.org/coar/access_right/c_abf2instname:Universidad del Rosarioreponame:Repositorio Institucional EdocURHospitalsInventory controlMathematical programmingMedicineStochastic modelsStochastic systemsSupply chainsBi-objective optimizationEpsilon-constraint methodMixed integer programming modelOptimization under uncertaintyPharmaceutical supply chainsSample pathSimulation optimizationStochastic counterpartInteger programmingMathematical programmingMedicine replenishmentPharmaceutical supply chainSample PathSimulation-optimizationStochastic counterpartOptimization under uncertainty of the pharmaceutical supply chain in hospitalsarticleArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501Franco Franco, Carlos AlbertoAlfonso-Lizarazo, Edgar10336/23768oai:repository.urosario.edu.co:10336/237682022-05-02 07:37:14.657235https://repository.urosario.edu.coRepositorio institucional EdocURedocur@urosario.edu.co
dc.title.spa.fl_str_mv Optimization under uncertainty of the pharmaceutical supply chain in hospitals
title Optimization under uncertainty of the pharmaceutical supply chain in hospitals
spellingShingle Optimization under uncertainty of the pharmaceutical supply chain in hospitals
Hospitals
Inventory control
Mathematical programming
Medicine
Stochastic models
Stochastic systems
Supply chains
Bi-objective optimization
Epsilon-constraint method
Mixed integer programming model
Optimization under uncertainty
Pharmaceutical supply chains
Sample path
Simulation optimization
Stochastic counterpart
Integer programming
Mathematical programming
Medicine replenishment
Pharmaceutical supply chain
Sample Path
Simulation-optimization
Stochastic counterpart
title_short Optimization under uncertainty of the pharmaceutical supply chain in hospitals
title_full Optimization under uncertainty of the pharmaceutical supply chain in hospitals
title_fullStr Optimization under uncertainty of the pharmaceutical supply chain in hospitals
title_full_unstemmed Optimization under uncertainty of the pharmaceutical supply chain in hospitals
title_sort Optimization under uncertainty of the pharmaceutical supply chain in hospitals
dc.subject.keyword.spa.fl_str_mv Hospitals
Inventory control
Mathematical programming
Medicine
Stochastic models
Stochastic systems
Supply chains
Bi-objective optimization
Epsilon-constraint method
Mixed integer programming model
Optimization under uncertainty
Pharmaceutical supply chains
Sample path
Simulation optimization
Stochastic counterpart
Integer programming
Mathematical programming
Medicine replenishment
Pharmaceutical supply chain
Sample Path
Simulation-optimization
Stochastic counterpart
topic Hospitals
Inventory control
Mathematical programming
Medicine
Stochastic models
Stochastic systems
Supply chains
Bi-objective optimization
Epsilon-constraint method
Mixed integer programming model
Optimization under uncertainty
Pharmaceutical supply chains
Sample path
Simulation optimization
Stochastic counterpart
Integer programming
Mathematical programming
Medicine replenishment
Pharmaceutical supply chain
Sample Path
Simulation-optimization
Stochastic counterpart
description In this paper, a simulation-optimization approach based on the stochastic counterpart or sample path method is used for optimizing tactical and operative decisions in the pharmaceutical supply chain. This approach focuses on the pharmacy-hospital echelon, and it takes into account random elements related to demand, costs and the lead times of medicines. Based on this approach, two mixed integer programming (MIP) models are formulated, these models correspond to the stochastic counterpart approximating problems. The first model considers expiration dates, the service level required, perishability, aged-based inventory levels and emergency purchases; the optimal policy support decisions related to the replenishment, supplier selection and the inventory management of medicines. The results of this model have been evaluated over real data and simulated scenarios. The findings show that the optimal policy can reduce the current hospital supply and managing costs in medicine planning by 16% considering 22 types of medicines. The second model is a bi-objective optimization model solved with the epsilon-constraint method. This model determines the maximum acceptable expiration date, thereby minimizing the total amount of expired medicines. © 2019 Elsevier Ltd
publishDate 2020
dc.date.accessioned.none.fl_str_mv 2020-05-26T00:05:13Z
dc.date.available.none.fl_str_mv 2020-05-26T00:05:13Z
dc.date.created.spa.fl_str_mv 2020
dc.type.eng.fl_str_mv article
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.spa.spa.fl_str_mv Artículo
dc.identifier.doi.none.fl_str_mv https://doi.org/10.1016/j.compchemeng.2019.106689
dc.identifier.issn.none.fl_str_mv 981354
dc.identifier.uri.none.fl_str_mv https://repository.urosario.edu.co/handle/10336/23768
url https://doi.org/10.1016/j.compchemeng.2019.106689
https://repository.urosario.edu.co/handle/10336/23768
identifier_str_mv 981354
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.citationTitle.none.fl_str_mv Computers and Chemical Engineering
dc.relation.citationVolume.none.fl_str_mv Vol. 135
dc.relation.ispartof.spa.fl_str_mv Computers and Chemical Engineering, ISSN:981354, Vol.135,(2020)
dc.relation.uri.spa.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-85081236702&doi=10.1016%2fj.compchemeng.2019.106689&partnerID=40&md5=432be97781b244eb0f460bd7bab68c61
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.acceso.spa.fl_str_mv Abierto (Texto Completo)
rights_invalid_str_mv Abierto (Texto Completo)
http://purl.org/coar/access_right/c_abf2
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Elsevier Ltd
institution Universidad del Rosario
dc.source.instname.spa.fl_str_mv instname:Universidad del Rosario
dc.source.reponame.spa.fl_str_mv reponame:Repositorio Institucional EdocUR
repository.name.fl_str_mv Repositorio institucional EdocUR
repository.mail.fl_str_mv edocur@urosario.edu.co
_version_ 1814167711567052800