Classifying spatially heterogeneous wetland communities using machine learning algorithms and spectral and textural features

Mapping of wetlands (marsh vs. swamp vs. upland) is a common remote sensing application.Yet, discriminating between similar freshwater communities such as graminoid/sedge from remotely sensed imagery is more difficult. Most of this activity has been performed using medium to low resolution imagery....

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2015
Institución:
Universidad del Rosario
Repositorio:
Repositorio EdocUR - U. Rosario
Idioma:
eng
OAI Identifier:
oai:repository.urosario.edu.co:10336/26050
Acceso en línea:
https://doi.org/10.1007/s10661-015-4426-5
https://repository.urosario.edu.co/handle/10336/26050
Palabra clave:
wetlands
marsh swamp upland
graminoid communities
Rights
License
Restringido (Acceso a grupos específicos)
id EDOCUR2_0639a452d51c55fba1550e5ffd334286
oai_identifier_str oai:repository.urosario.edu.co:10336/26050
network_acronym_str EDOCUR2
network_name_str Repositorio EdocUR - U. Rosario
repository_id_str
spelling b8420d3d-ae5e-4153-9ef6-a87a2a6e2bc9-12d7c8bf2-67a1-46d2-a8e0-b82768ad86d9-182d396e1-afc0-4022-a6a9-50d6e8030bf6-1dd96ba5b-574e-45f3-a9e7-47e4c4a4385d-10e1432a8-a298-4f21-a051-5ab80ca77cdc-1c0a2c37a-ed2c-442b-957b-a93788108155-12020-08-06T16:20:32Z2020-08-06T16:20:32Z2015Mapping of wetlands (marsh vs. swamp vs. upland) is a common remote sensing application.Yet, discriminating between similar freshwater communities such as graminoid/sedge from remotely sensed imagery is more difficult. Most of this activity has been performed using medium to low resolution imagery. There are only a few studies using high spatial resolution imagery and machine learning image classification algorithms for mapping heterogeneous wetland plant communities. This study addresses this void by analyzing whether machine learning classifiers such as decision trees (DT) and artificial neural networks (ANN) can accurately classify graminoid/sedge communities using high resolution aerial imagery and image texture data in the Everglades National Park, Florida. In addition to spectral bands, the normalized difference vegetation index, and first- and second-order texture features derived from the near-infrared band were analyzed. Classifier accuracies were assessed using confusion tables and the calculated kappa coefficients of the resulting maps. The results indicated that an ANN (multilayer perceptron based on back propagation) algorithm produced a statistically significantly higher accuracy (82.04 %) than the DT (QUEST) algorithm (80.48 %) or the maximum likelihood (80.56 %) classifier (?<0.05). Findings show that using multiple window sizes provided the best results. First-order texture features also provided computational advantages and results that were not significantly different from those using second-order texture features.application/pdfhttps://doi.org/10.1007/s10661-015-4426-5IISN: 0167-6369EISSN: 1573-2959https://repository.urosario.edu.co/handle/10336/26050engSpringer NatureNo. 187Environmental Monitoring and AssessmentEnvironmental Monitoring and Assessment, IISN:0167-6369;EISSN:1573-2959, No.187 (2015);262 pp.https://link.springer.com/article/10.1007/s10661-015-4426-5Restringido (Acceso a grupos específicos)http://purl.org/coar/access_right/c_16ecEnvironmental Monitoring and Assessmentinstname:Universidad del Rosarioreponame:Repositorio Institucional EdocURwetlandsmarsh swamp uplandgraminoid communitiesClassifying spatially heterogeneous wetland communities using machine learning algorithms and spectral and textural featuresClasificación de comunidades de humedales espacialmente heterogéneas utilizando algoritmos de aprendizaje automático y características espectrales y texturalesarticleArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501Szantoi,ZoltanEscobedo,Francisco JAbd-Elrahman,AmrPearlstine, LeonardDewitt,BonSmith,Scot10336/26050oai:repository.urosario.edu.co:10336/260502021-06-03 00:50:24.899https://repository.urosario.edu.coRepositorio institucional EdocURedocur@urosario.edu.co
dc.title.spa.fl_str_mv Classifying spatially heterogeneous wetland communities using machine learning algorithms and spectral and textural features
dc.title.TranslatedTitle.spa.fl_str_mv Clasificación de comunidades de humedales espacialmente heterogéneas utilizando algoritmos de aprendizaje automático y características espectrales y texturales
title Classifying spatially heterogeneous wetland communities using machine learning algorithms and spectral and textural features
spellingShingle Classifying spatially heterogeneous wetland communities using machine learning algorithms and spectral and textural features
wetlands
marsh swamp upland
graminoid communities
title_short Classifying spatially heterogeneous wetland communities using machine learning algorithms and spectral and textural features
title_full Classifying spatially heterogeneous wetland communities using machine learning algorithms and spectral and textural features
title_fullStr Classifying spatially heterogeneous wetland communities using machine learning algorithms and spectral and textural features
title_full_unstemmed Classifying spatially heterogeneous wetland communities using machine learning algorithms and spectral and textural features
title_sort Classifying spatially heterogeneous wetland communities using machine learning algorithms and spectral and textural features
dc.subject.keyword.spa.fl_str_mv wetlands
marsh swamp upland
graminoid communities
topic wetlands
marsh swamp upland
graminoid communities
description Mapping of wetlands (marsh vs. swamp vs. upland) is a common remote sensing application.Yet, discriminating between similar freshwater communities such as graminoid/sedge from remotely sensed imagery is more difficult. Most of this activity has been performed using medium to low resolution imagery. There are only a few studies using high spatial resolution imagery and machine learning image classification algorithms for mapping heterogeneous wetland plant communities. This study addresses this void by analyzing whether machine learning classifiers such as decision trees (DT) and artificial neural networks (ANN) can accurately classify graminoid/sedge communities using high resolution aerial imagery and image texture data in the Everglades National Park, Florida. In addition to spectral bands, the normalized difference vegetation index, and first- and second-order texture features derived from the near-infrared band were analyzed. Classifier accuracies were assessed using confusion tables and the calculated kappa coefficients of the resulting maps. The results indicated that an ANN (multilayer perceptron based on back propagation) algorithm produced a statistically significantly higher accuracy (82.04 %) than the DT (QUEST) algorithm (80.48 %) or the maximum likelihood (80.56 %) classifier (?<0.05). Findings show that using multiple window sizes provided the best results. First-order texture features also provided computational advantages and results that were not significantly different from those using second-order texture features.
publishDate 2015
dc.date.created.spa.fl_str_mv 2015
dc.date.accessioned.none.fl_str_mv 2020-08-06T16:20:32Z
dc.date.available.none.fl_str_mv 2020-08-06T16:20:32Z
dc.type.eng.fl_str_mv article
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.spa.spa.fl_str_mv Artículo
dc.identifier.doi.none.fl_str_mv https://doi.org/10.1007/s10661-015-4426-5
dc.identifier.issn.none.fl_str_mv IISN: 0167-6369
EISSN: 1573-2959
dc.identifier.uri.none.fl_str_mv https://repository.urosario.edu.co/handle/10336/26050
url https://doi.org/10.1007/s10661-015-4426-5
https://repository.urosario.edu.co/handle/10336/26050
identifier_str_mv IISN: 0167-6369
EISSN: 1573-2959
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.citationIssue.none.fl_str_mv No. 187
dc.relation.citationTitle.none.fl_str_mv Environmental Monitoring and Assessment
dc.relation.ispartof.spa.fl_str_mv Environmental Monitoring and Assessment, IISN:0167-6369;EISSN:1573-2959, No.187 (2015);262 pp.
dc.relation.uri.spa.fl_str_mv https://link.springer.com/article/10.1007/s10661-015-4426-5
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
dc.rights.acceso.spa.fl_str_mv Restringido (Acceso a grupos específicos)
rights_invalid_str_mv Restringido (Acceso a grupos específicos)
http://purl.org/coar/access_right/c_16ec
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Springer Nature
dc.source.spa.fl_str_mv Environmental Monitoring and Assessment
institution Universidad del Rosario
dc.source.instname.none.fl_str_mv instname:Universidad del Rosario
dc.source.reponame.none.fl_str_mv reponame:Repositorio Institucional EdocUR
repository.name.fl_str_mv Repositorio institucional EdocUR
repository.mail.fl_str_mv edocur@urosario.edu.co
_version_ 1814167709114433536