GABAergic neurotransmission and new strategies of neuromodulation to compensate synaptic dysfunction in early stages of Alzheimer’s disease
Alzheimer’s disease (AD) is a progressive neurodegenerative disease characterized by cognitive decline, brain atrophy due to neuronal and synapse loss, and formation of two pathological lesions: extracellular amyloid plaques, composed largely of amyloid-beta peptide (Aβ), and neurofibrillary tangles...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2014
- Institución:
- Universidad del Rosario
- Repositorio:
- Repositorio EdocUR - U. Rosario
- Idioma:
- eng
- OAI Identifier:
- oai:repository.urosario.edu.co:10336/19571
- Acceso en línea:
- https://doi.org/10.3389/fncel.2014.00167
http://repository.urosario.edu.co/handle/10336/19571
- Palabra clave:
- septohippocampal system
amyloid-β peptide
excitatory and inhibitory neurotransmission
Enfermedades
Sistema Septohipocampal
Péptido amiloide β
Neurotransmisión excitatoria e inhibitoria
- Rights
- License
- Abierto (Texto Completo)
id |
EDOCUR2_04657af60ba0b743db20331f18704779 |
---|---|
oai_identifier_str |
oai:repository.urosario.edu.co:10336/19571 |
network_acronym_str |
EDOCUR2 |
network_name_str |
Repositorio EdocUR - U. Rosario |
repository_id_str |
|
dc.title.spa.fl_str_mv |
GABAergic neurotransmission and new strategies of neuromodulation to compensate synaptic dysfunction in early stages of Alzheimer’s disease |
title |
GABAergic neurotransmission and new strategies of neuromodulation to compensate synaptic dysfunction in early stages of Alzheimer’s disease |
spellingShingle |
GABAergic neurotransmission and new strategies of neuromodulation to compensate synaptic dysfunction in early stages of Alzheimer’s disease septohippocampal system amyloid-β peptide excitatory and inhibitory neurotransmission Enfermedades Sistema Septohipocampal Péptido amiloide β Neurotransmisión excitatoria e inhibitoria |
title_short |
GABAergic neurotransmission and new strategies of neuromodulation to compensate synaptic dysfunction in early stages of Alzheimer’s disease |
title_full |
GABAergic neurotransmission and new strategies of neuromodulation to compensate synaptic dysfunction in early stages of Alzheimer’s disease |
title_fullStr |
GABAergic neurotransmission and new strategies of neuromodulation to compensate synaptic dysfunction in early stages of Alzheimer’s disease |
title_full_unstemmed |
GABAergic neurotransmission and new strategies of neuromodulation to compensate synaptic dysfunction in early stages of Alzheimer’s disease |
title_sort |
GABAergic neurotransmission and new strategies of neuromodulation to compensate synaptic dysfunction in early stages of Alzheimer’s disease |
dc.contributor.gruplac.spa.fl_str_mv |
Grupo de Investigación de Neurociencias de la Universidad del Rosario (NEUROS) |
dc.subject.spa.fl_str_mv |
septohippocampal system amyloid-β peptide excitatory and inhibitory neurotransmission |
topic |
septohippocampal system amyloid-β peptide excitatory and inhibitory neurotransmission Enfermedades Sistema Septohipocampal Péptido amiloide β Neurotransmisión excitatoria e inhibitoria |
dc.subject.ddc.spa.fl_str_mv |
Enfermedades |
dc.subject.lemb.spa.fl_str_mv |
Sistema Septohipocampal Péptido amiloide β Neurotransmisión excitatoria e inhibitoria |
description |
Alzheimer’s disease (AD) is a progressive neurodegenerative disease characterized by cognitive decline, brain atrophy due to neuronal and synapse loss, and formation of two pathological lesions: extracellular amyloid plaques, composed largely of amyloid-beta peptide (Aβ), and neurofibrillary tangles formed by intracellular aggregates of hyperphosphorylated tau protein. Lesions mainly accumulate in brain regions that modulate cognitive functions such as the hippocampus, septum or amygdala. These brain structures have dense reciprocal glutamatergic, cholinergic, and GABAergic connections and their relationships directly affect learning and memory processes, so they have been proposed as highly susceptible regions to suffer damage by Aβ during AD course. Last findings support the emerging concept that soluble Aβ peptides, inducing an initial stage of synaptic dysfunction which probably starts 20–30 years before the clinical onset of AD, can perturb the excitatory–inhibitory balance of neural circuitries. In turn, neurotransmission imbalance will result in altered network activity that might be responsible of cognitive deficits in AD. Therefore, Aβ interactions on neurotransmission systems in memory-related brain regions such as amygdaloid complex, medial septum or hippocampus are critical in cognitive functions and appear as a pivotal target for drug design to improve learning and dysfunctions that manifest with age. Since treatments based on glutamatergic and cholinergic pharmacology in AD have shown limited success, therapies combining modulators of different neurotransmission systems including recent findings regarding the GABAergic system, emerge as a more useful tool for the treatment, and overall prevention, of this dementia. In this review, focused on inhibitory systems, we will analyze pharmacological strategies to compensate neurotransmission imbalance that might be considered as potential therapeutic interventions in AD. |
publishDate |
2014 |
dc.date.created.none.fl_str_mv |
2014 |
dc.date.issued.none.fl_str_mv |
2014 |
dc.date.accessioned.none.fl_str_mv |
2019-05-06T14:56:03Z |
dc.date.available.none.fl_str_mv |
2019-05-06T14:56:03Z |
dc.type.eng.fl_str_mv |
article |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.spa.spa.fl_str_mv |
Artículo |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.3389/fncel.2014.00167 |
dc.identifier.issn.none.fl_str_mv |
1662-5102 |
dc.identifier.uri.none.fl_str_mv |
http://repository.urosario.edu.co/handle/10336/19571 |
url |
https://doi.org/10.3389/fncel.2014.00167 http://repository.urosario.edu.co/handle/10336/19571 |
identifier_str_mv |
1662-5102 |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.relation.citationEndPage.none.fl_str_mv |
19 |
dc.relation.citationStartPage.none.fl_str_mv |
1 |
dc.relation.citationTitle.none.fl_str_mv |
Frontiers in Cellular Neuroscience |
dc.relation.citationVolume.none.fl_str_mv |
Vol. 8 |
dc.relation.ispartof.spa.fl_str_mv |
Frontiers in Cellular Neuroscience, ISSN: 1662-5102, Vol. 8 Article 167 (2014), pp 1-19 |
dc.relation.uri.spa.fl_str_mv |
https://www.frontiersin.org/articles/10.3389/fncel.2014.00167/full |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.acceso.spa.fl_str_mv |
Abierto (Texto Completo) |
dc.rights.uri.none.fl_str_mv |
http://www.sherpa.ac.uk/romeo/search.php?issn=1662-5102&la=es |
rights_invalid_str_mv |
Abierto (Texto Completo) http://www.sherpa.ac.uk/romeo/search.php?issn=1662-5102&la=es http://purl.org/coar/access_right/c_abf2 |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
institution |
Universidad del Rosario |
dc.source.instname.none.fl_str_mv |
instname:Universidad del Rosario |
dc.source.reponame.none.fl_str_mv |
reponame:Repositorio Institucional EdocUR |
bitstream.url.fl_str_mv |
https://repository.urosario.edu.co/bitstreams/21a64c85-850b-4b59-98d9-89c15ae3b6bc/download https://repository.urosario.edu.co/bitstreams/8b7722ba-9978-4646-8ad0-844c7172be90/download https://repository.urosario.edu.co/bitstreams/f360fda5-70e1-4301-a8c5-2cb3004ae256/download |
bitstream.checksum.fl_str_mv |
653f48c15840218b59744becc7b6fce9 2b75c201825ed74b2615fc6eb7ce3e6b 9145fd5e0b69e2583adb8ebb28f7bc2c |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio institucional EdocUR |
repository.mail.fl_str_mv |
edocur@urosario.edu.co |
_version_ |
1814167689453633536 |
spelling |
Grupo de Investigación de Neurociencias de la Universidad del Rosario (NEUROS)Nava Mesa, Mauricio OrlandoJiménez-Díaz, LydiaYajeya, JavierNavarro-Lopez, Juan D.Nava-Mesa, Mauricio O.Jiménez-Díaz, LydiaYajeya, JavierNavarro-Lopez, Juan D.802165716003d00c7ea-5cc0-4e29-ac69-5fb2e3d950fd60010951671-8e80-4fe9-8600-a25fe31c4a56600f0abfbb6-3686-4b0c-a24e-768ded800a696002019-05-06T14:56:03Z2019-05-06T14:56:03Z20142014Alzheimer’s disease (AD) is a progressive neurodegenerative disease characterized by cognitive decline, brain atrophy due to neuronal and synapse loss, and formation of two pathological lesions: extracellular amyloid plaques, composed largely of amyloid-beta peptide (Aβ), and neurofibrillary tangles formed by intracellular aggregates of hyperphosphorylated tau protein. Lesions mainly accumulate in brain regions that modulate cognitive functions such as the hippocampus, septum or amygdala. These brain structures have dense reciprocal glutamatergic, cholinergic, and GABAergic connections and their relationships directly affect learning and memory processes, so they have been proposed as highly susceptible regions to suffer damage by Aβ during AD course. Last findings support the emerging concept that soluble Aβ peptides, inducing an initial stage of synaptic dysfunction which probably starts 20–30 years before the clinical onset of AD, can perturb the excitatory–inhibitory balance of neural circuitries. In turn, neurotransmission imbalance will result in altered network activity that might be responsible of cognitive deficits in AD. Therefore, Aβ interactions on neurotransmission systems in memory-related brain regions such as amygdaloid complex, medial septum or hippocampus are critical in cognitive functions and appear as a pivotal target for drug design to improve learning and dysfunctions that manifest with age. Since treatments based on glutamatergic and cholinergic pharmacology in AD have shown limited success, therapies combining modulators of different neurotransmission systems including recent findings regarding the GABAergic system, emerge as a more useful tool for the treatment, and overall prevention, of this dementia. In this review, focused on inhibitory systems, we will analyze pharmacological strategies to compensate neurotransmission imbalance that might be considered as potential therapeutic interventions in AD.application/pdfhttps://doi.org/10.3389/fncel.2014.001671662-5102http://repository.urosario.edu.co/handle/10336/19571eng191Frontiers in Cellular NeuroscienceVol. 8Frontiers in Cellular Neuroscience, ISSN: 1662-5102, Vol. 8 Article 167 (2014), pp 1-19https://www.frontiersin.org/articles/10.3389/fncel.2014.00167/fullAbierto (Texto Completo)http://www.sherpa.ac.uk/romeo/search.php?issn=1662-5102&la=eshttp://purl.org/coar/access_right/c_abf2instname:Universidad del Rosarioreponame:Repositorio Institucional EdocURseptohippocampal systemamyloid-β peptideexcitatory and inhibitory neurotransmissionEnfermedades616600Sistema SeptohipocampalPéptido amiloide βNeurotransmisión excitatoria e inhibitoriaGABAergic neurotransmission and new strategies of neuromodulation to compensate synaptic dysfunction in early stages of Alzheimer’s diseasearticleArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501ORIGINALGABAergic_neurotransmission_and_new_strategies.pdfapplication/pdf1092031https://repository.urosario.edu.co/bitstreams/21a64c85-850b-4b59-98d9-89c15ae3b6bc/download653f48c15840218b59744becc7b6fce9MD51TEXTGABAergic_neurotransmission_and_new_strategies.pdf.txtGABAergic_neurotransmission_and_new_strategies.pdf.txtExtracted texttext/plain147330https://repository.urosario.edu.co/bitstreams/8b7722ba-9978-4646-8ad0-844c7172be90/download2b75c201825ed74b2615fc6eb7ce3e6bMD52THUMBNAILGABAergic_neurotransmission_and_new_strategies.pdf.jpgGABAergic_neurotransmission_and_new_strategies.pdf.jpgGenerated Thumbnailimage/jpeg4868https://repository.urosario.edu.co/bitstreams/f360fda5-70e1-4301-a8c5-2cb3004ae256/download9145fd5e0b69e2583adb8ebb28f7bc2cMD5310336/19571oai:repository.urosario.edu.co:10336/195712020-05-06 00:15:46.769http://www.sherpa.ac.uk/romeo/search.php?issn=1662-5102&la=eshttps://repository.urosario.edu.coRepositorio institucional EdocURedocur@urosario.edu.co |