On financial markets based on telegraph processes
The paper develops a new class of financial market models. These models are based on generalised telegraph processes: Markov random flows with alternating velocities and jumps occurring when the velocities are switching. While such markets may admit an arbitrage opportunity, the model under consider...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2008
- Institución:
- Universidad del Rosario
- Repositorio:
- Repositorio EdocUR - U. Rosario
- Idioma:
- eng
- OAI Identifier:
- oai:repository.urosario.edu.co:10336/23339
- Acceso en línea:
- https://doi.org/10.1080/17442500701841156
https://repository.urosario.edu.co/handle/10336/23339
- Palabra clave:
- Black-Scholes model
Hedging
Jump telegraph process
Option pricing
- Rights
- License
- Abierto (Texto Completo)
id |
EDOCUR2_01fcfd16a519d22e1e40644bf16b55b1 |
---|---|
oai_identifier_str |
oai:repository.urosario.edu.co:10336/23339 |
network_acronym_str |
EDOCUR2 |
network_name_str |
Repositorio EdocUR - U. Rosario |
repository_id_str |
|
spelling |
320352600b1a9bdd3-c808-4523-bb9b-8d9b89158c64-12020-05-26T00:01:15Z2020-05-26T00:01:15Z2008The paper develops a new class of financial market models. These models are based on generalised telegraph processes: Markov random flows with alternating velocities and jumps occurring when the velocities are switching. While such markets may admit an arbitrage opportunity, the model under consideration is arbitrage-free and complete if directions of jumps in stock prices are in a certain correspondence with their velocity and interest rate behaviour. An analog of the Black-Scholes fundamental differential equation is derived, but, in contrast with the Black-Scholes model, this equation is hyperbolic. Explicit formulas for prices of European options are obtained using perfect and quantile hedging.application/pdfhttps://doi.org/10.1080/174425007018411561744251617442508https://repository.urosario.edu.co/handle/10336/23339eng268No. 43892247StochasticsVol. 80Stochastics, ISSN:17442516, 17442508, Vol.80, No.43892 (2008); pp. 247-268https://www.scopus.com/inward/record.uri?eid=2-s2.0-40249102161&doi=10.1080%2f17442500701841156&partnerID=40&md5=0c77877a8a921a8ca2e86f5d12724ea4Abierto (Texto Completo)http://purl.org/coar/access_right/c_abf2instname:Universidad del Rosarioreponame:Repositorio Institucional EdocURBlack-Scholes modelHedgingJump telegraph processOption pricingOn financial markets based on telegraph processesarticleArtículohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501Ratanov, NikitaMelnikov, Alexander10336/23339oai:repository.urosario.edu.co:10336/233392022-05-02 07:37:20.932207https://repository.urosario.edu.coRepositorio institucional EdocURedocur@urosario.edu.co |
dc.title.spa.fl_str_mv |
On financial markets based on telegraph processes |
title |
On financial markets based on telegraph processes |
spellingShingle |
On financial markets based on telegraph processes Black-Scholes model Hedging Jump telegraph process Option pricing |
title_short |
On financial markets based on telegraph processes |
title_full |
On financial markets based on telegraph processes |
title_fullStr |
On financial markets based on telegraph processes |
title_full_unstemmed |
On financial markets based on telegraph processes |
title_sort |
On financial markets based on telegraph processes |
dc.subject.keyword.spa.fl_str_mv |
Black-Scholes model Hedging Jump telegraph process Option pricing |
topic |
Black-Scholes model Hedging Jump telegraph process Option pricing |
description |
The paper develops a new class of financial market models. These models are based on generalised telegraph processes: Markov random flows with alternating velocities and jumps occurring when the velocities are switching. While such markets may admit an arbitrage opportunity, the model under consideration is arbitrage-free and complete if directions of jumps in stock prices are in a certain correspondence with their velocity and interest rate behaviour. An analog of the Black-Scholes fundamental differential equation is derived, but, in contrast with the Black-Scholes model, this equation is hyperbolic. Explicit formulas for prices of European options are obtained using perfect and quantile hedging. |
publishDate |
2008 |
dc.date.created.spa.fl_str_mv |
2008 |
dc.date.accessioned.none.fl_str_mv |
2020-05-26T00:01:15Z |
dc.date.available.none.fl_str_mv |
2020-05-26T00:01:15Z |
dc.type.eng.fl_str_mv |
article |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.spa.spa.fl_str_mv |
Artículo |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.1080/17442500701841156 |
dc.identifier.issn.none.fl_str_mv |
17442516 17442508 |
dc.identifier.uri.none.fl_str_mv |
https://repository.urosario.edu.co/handle/10336/23339 |
url |
https://doi.org/10.1080/17442500701841156 https://repository.urosario.edu.co/handle/10336/23339 |
identifier_str_mv |
17442516 17442508 |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.relation.citationEndPage.none.fl_str_mv |
268 |
dc.relation.citationIssue.none.fl_str_mv |
No. 43892 |
dc.relation.citationStartPage.none.fl_str_mv |
247 |
dc.relation.citationTitle.none.fl_str_mv |
Stochastics |
dc.relation.citationVolume.none.fl_str_mv |
Vol. 80 |
dc.relation.ispartof.spa.fl_str_mv |
Stochastics, ISSN:17442516, 17442508, Vol.80, No.43892 (2008); pp. 247-268 |
dc.relation.uri.spa.fl_str_mv |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-40249102161&doi=10.1080%2f17442500701841156&partnerID=40&md5=0c77877a8a921a8ca2e86f5d12724ea4 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.acceso.spa.fl_str_mv |
Abierto (Texto Completo) |
rights_invalid_str_mv |
Abierto (Texto Completo) http://purl.org/coar/access_right/c_abf2 |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
institution |
Universidad del Rosario |
dc.source.instname.spa.fl_str_mv |
instname:Universidad del Rosario |
dc.source.reponame.spa.fl_str_mv |
reponame:Repositorio Institucional EdocUR |
repository.name.fl_str_mv |
Repositorio institucional EdocUR |
repository.mail.fl_str_mv |
edocur@urosario.edu.co |
_version_ |
1814167585705426944 |