Variación geográfica de la microbiota en cuatro especies del género Heliconius (Lepidoptera: Nymphalidae) en Colombia

Estudios en las mariposas del género de Heliconius (Lepidoptera: Nymphalidae) han permitido entender los mecanismos que promueven la especiación y adaptación en el neotrópico. Análisis de la microbiota en estos insectos reportan variaciones interespecíficas e intraespecíficas, las cuales no están as...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2021
Institución:
Universidad del Rosario
Repositorio:
Repositorio EdocUR - U. Rosario
Idioma:
spa
OAI Identifier:
oai:repository.urosario.edu.co:10336/30921
Acceso en línea:
https://doi.org/10.48713/10336_30921
https://repository.urosario.edu.co/handle/10336/30921
Palabra clave:
Estudios microbiológicos en mariposas
Mariposas del género de Heliconius (Lepidoptera: Nymphalidae)
Análisis de Microbiota en insectos
Commensalibacter, Enterococcus, Spiroplasma y Orbus en Mariposas
Microbiología
Microbiological studies in butterflies
Butterflies of the genus
Butterflies of the genus Heliconius (Lepidoptera: Nymphalidae)
Microbiota analysis in insects
Commensalibacter, Enterococcus, Spiroplasma and Orbus in Butterflies
Rights
License
Atribución-SinDerivadas 2.5 Colombia
id EDOCUR2_0175fa121b23d7bda5ff65b4661495c3
oai_identifier_str oai:repository.urosario.edu.co:10336/30921
network_acronym_str EDOCUR2
network_name_str Repositorio EdocUR - U. Rosario
repository_id_str
dc.title.spa.fl_str_mv Variación geográfica de la microbiota en cuatro especies del género Heliconius (Lepidoptera: Nymphalidae) en Colombia
dc.title.TranslatedTitle.eng.fl_str_mv Geographical variation of the microbiota in four species of the genus Heliconius (Lepidoptera: Nymphalidae) in Colombia
title Variación geográfica de la microbiota en cuatro especies del género Heliconius (Lepidoptera: Nymphalidae) en Colombia
spellingShingle Variación geográfica de la microbiota en cuatro especies del género Heliconius (Lepidoptera: Nymphalidae) en Colombia
Estudios microbiológicos en mariposas
Mariposas del género de Heliconius (Lepidoptera: Nymphalidae)
Análisis de Microbiota en insectos
Commensalibacter, Enterococcus, Spiroplasma y Orbus en Mariposas
Microbiología
Microbiological studies in butterflies
Butterflies of the genus
Butterflies of the genus Heliconius (Lepidoptera: Nymphalidae)
Microbiota analysis in insects
Commensalibacter, Enterococcus, Spiroplasma and Orbus in Butterflies
title_short Variación geográfica de la microbiota en cuatro especies del género Heliconius (Lepidoptera: Nymphalidae) en Colombia
title_full Variación geográfica de la microbiota en cuatro especies del género Heliconius (Lepidoptera: Nymphalidae) en Colombia
title_fullStr Variación geográfica de la microbiota en cuatro especies del género Heliconius (Lepidoptera: Nymphalidae) en Colombia
title_full_unstemmed Variación geográfica de la microbiota en cuatro especies del género Heliconius (Lepidoptera: Nymphalidae) en Colombia
title_sort Variación geográfica de la microbiota en cuatro especies del género Heliconius (Lepidoptera: Nymphalidae) en Colombia
dc.contributor.advisor.none.fl_str_mv Ramírez, Juan David
Salazar, Camilo
dc.contributor.none.fl_str_mv Herrera, Giovanny
Muñoz, Marina
Sánchez-Herrera, Melissa
Brown, Anya
Khazan, Emily
dc.subject.spa.fl_str_mv Estudios microbiológicos en mariposas
Mariposas del género de Heliconius (Lepidoptera: Nymphalidae)
Análisis de Microbiota en insectos
Commensalibacter, Enterococcus, Spiroplasma y Orbus en Mariposas
topic Estudios microbiológicos en mariposas
Mariposas del género de Heliconius (Lepidoptera: Nymphalidae)
Análisis de Microbiota en insectos
Commensalibacter, Enterococcus, Spiroplasma y Orbus en Mariposas
Microbiología
Microbiological studies in butterflies
Butterflies of the genus
Butterflies of the genus Heliconius (Lepidoptera: Nymphalidae)
Microbiota analysis in insects
Commensalibacter, Enterococcus, Spiroplasma and Orbus in Butterflies
dc.subject.ddc.spa.fl_str_mv Microbiología
dc.subject.keyword.spa.fl_str_mv Microbiological studies in butterflies
Butterflies of the genus
Butterflies of the genus Heliconius (Lepidoptera: Nymphalidae)
Microbiota analysis in insects
Commensalibacter, Enterococcus, Spiroplasma and Orbus in Butterflies
description Estudios en las mariposas del género de Heliconius (Lepidoptera: Nymphalidae) han permitido entender los mecanismos que promueven la especiación y adaptación en el neotrópico. Análisis de la microbiota en estos insectos reportan variaciones interespecíficas e intraespecíficas, las cuales no están asociadas directamente a la depredación de polen. Además, se desconoce si los ecosistemas geográficos donde cohabitan mariposas con diferentes anillos miméticos afectan la microbiota de estos individuo. Este estudio utilizó amplicon-based sequencing del gen ARNr-16S en 66 muestras que corresponden a 4 especies de distintas regiones biogeográficas de Colombia: Heliconius clysonymus (n = 4), Heliconius erato (n = 24), Heliconius melpomene (n = 19) y Heliconius cydno (n = 19). La microbiota de Heliconius está dominada por los géneros Commensalibacter, Enterococcus, Spiroplasma y Orbus, donde sus abundancias difieren entre especies y subespecies, las cuales habitan diferentes provincias biogeográficas de Colombia. También, las agrupaciones de la microbiota por especie no reflejan totalmente sus relaciones filogenéticas. A pesar de la amplia diversidad de especies y subespecies de Heliconius en Colombia, este estudio encontró que las abundancias de las comunidades de su microbiota varían a partir de las condiciones ambientales de los ecosistemas en los que habitan y no presentan un patrón especie-específico
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2021-02-16T20:32:40Z
dc.date.available.none.fl_str_mv 2021-02-16T20:32:40Z
dc.date.created.none.fl_str_mv 2021-01-18
dc.type.eng.fl_str_mv bachelorThesis
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.document.spa.fl_str_mv Artículo
dc.type.spa.spa.fl_str_mv Trabajo de grado
dc.identifier.doi.none.fl_str_mv https://doi.org/10.48713/10336_30921
dc.identifier.uri.none.fl_str_mv https://repository.urosario.edu.co/handle/10336/30921
url https://doi.org/10.48713/10336_30921
https://repository.urosario.edu.co/handle/10336/30921
dc.language.iso.spa.fl_str_mv spa
language spa
dc.rights.spa.fl_str_mv Atribución-SinDerivadas 2.5 Colombia
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.acceso.spa.fl_str_mv Abierto (Texto Completo)
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-nd/2.5/co/
rights_invalid_str_mv Atribución-SinDerivadas 2.5 Colombia
Abierto (Texto Completo)
http://creativecommons.org/licenses/by-nd/2.5/co/
http://purl.org/coar/access_right/c_abf2
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad del Rosario
dc.publisher.department.spa.fl_str_mv Facultad de Ciencias Naturales y Matemáticas
dc.publisher.program.spa.fl_str_mv Biología
institution Universidad del Rosario
dc.source.bibliographicCitation.spa.fl_str_mv Marchesi, J. R. & Ravel, J. The vocabulary of microbiome research: a proposal. Microbiome 1–3 (2015) doi:10.1186/s40168-015-0094-5.
Pascoe, E. L., Hauffe, H. C., Marchesi, J. R. & Perkins, S. E. Network analysis of gut microbiota literature: an overview of the research landscape in non-human animal studies. ISME J. 11, 2644–2651 (2017).
Trivedi, P., Leach, J. E., Tringe, S. G., Sa, T. & Singh, B. K. Plant–microbiome interactions: from community assembly to plant health. Nat. Rev. Microbiol. 18, 607–621 (2020).
Wang, Y. & Rozen, D. E. Gut microbiota colonization and transmission in the burying beetle Nicrophorus vespilloides throughout development. Appl. Environ. Microbiol. 83, (2017).
Mao, M. & Bennett, G. M. Symbiont replacements reset the co-evolutionary relationship between insects and their heritable bacteria. ISME J. 14, 1384–1395 (2020).
Engel, P. & Moran, N. A. The gut microbiota of insects - diversity in structure and function. FEMS Microbiol. Rev. 37, 699–735 (2013).
Wang, Y., Gilbreath, T. M., Kukutla, P., Yan, G. & Xu, J. Dynamic gut microbiome across life history of the malaria mosquito Anopheles gambiae in Kenya. PLoS One 6, 1–9 (2011).
Anderson, K. E. et al. The queen’s gut refines with age: longevity phenotypes in a social insect model. Microbiome 6, 1–16 (2018).
Santos-Garcia, D., Mestre-Rincon, N., Zchori-Fein, E. & Morin, S. Inside out: microbiota dynamics during host-plant adaptation of whiteflies. ISME J. 14, 847–856 (2020).
Chu, C.-C., Spencer, J. L., Curzi, M. J., Zavala, J. A. & Seufferheld, M. J. Gut bacteria facilitate adaptation to crop rotation in the western corn rootworm. Proc. Natl. Acad. Sci. 110, 11917–11922 (2013).
Kim, J. M. et al. Effects of diet type, developmental stage, and gut compartment in the gut bacterial communities of two Cerambycidae species (Coleoptera). J. Microbiol. 55, 21–30 (2017).
Huang, S. & Zhang, H. The impact of environmental heterogeneity and life stage on the hindgut microbiota of Holotrichia parallela larvae (Coleoptera: Scarabaeidae). PLoS One 8, e57169 (2013).
Rocha, M. R., Barbosa dos Santos, L. M., Paulo Vicente, A. C. & Maciel-de-Freitas, R. Effects of environment, dietary regime and ageing on the dengue vector microbiota: evidence of a core microbiota throughout Aedes aegypti lifespan. Mem. Inst. Oswaldo Cruz 111, 577–587 (2016).
Ferguson, L. V. et al. Seasonal shifts in the insect gut microbiome are concurrent with changes in cold tolerance and immunity. Funct. Ecol. 32, 2357–2368 (2018).
Chen, B. et al. Gut microbiota metabolic potential correlates with body size between mulberry-feeding lepidopteran pest species. Pest Manag. Sci. 76, 1313–1323 (2020).
Shukla, S. P. & Beran, F. Gut microbiota degrades toxic isothiocyanates in a flea beetle pest. Mol. Ecol. 29, 4692–4705 (2020).
Prado, A., Marolleau, B., Vaissière, B. E., Barret, M. & Torres-Cortes, G. Insect pollination: an ecological process involved in the assembly of the seed microbiota. Sci. Rep. 10, 3575 (2020).
Schilder, R. J. & Stewart, H. Parasitic gut infection in Libellula pulchella causes functional and molecular resemblance of dragonfly flight muscle to skeletal muscle of obese vertebrates. J. Exp. Biol. 222, 1–10 (2019).
Feldhaar, H. Bacterial symbionts as mediators of ecologically. Ecol. Entomol. 36, 533–543 (2011).
Kešnerová, L. et al. Gut microbiota structure differs between honeybees in winter and summer. ISME J 14, 801–814 (2020).
Bosmans, L. et al. Hibernation leads to altered gut communities in bumblebee queens (Bombus terrestris). Insects 9, 1–14 (2018).
Hammer, T. J., Dickerson, J. C., McMillan, W. O. & Fierer, N. Heliconius butterflies host characteristic and phylogenetically structured adult-stage microbiomes. Appl. Environ. Microbiol. (2020) doi:10.1128/AEM.02007-20.
Jiggins, C. D. The Ecology and Evolution of Heliconius Butterflies. (2017). doi:10.1093/acprof:oso/9780199566570.001.0001.
Scoble, M. J. The Lepidoptera: Form, Function and Diversity. (Oxford University Press, 1995). doi:https://doi.org/10.1093/aesa/88.4.590.
Young, F. J. & Montgomery, S. H. Pollen feeding in Heliconius butterflies: the singular evolution of an adaptive suite. Proc. R. Soc. B Biol. Sci. 287, 20201304 (2020).
Opitz, S. E. W. & Müller, C. Plant chemistry and insect sequestration. Chemoecology 19, 117–154 (2009).
Hammer, T. J., McMillan, W. O. & Fierer, N. Metamorphosis of a butterfly-associated bacterial community. PLoS One 9, e86995 (2014).
van Schooten, B., Godoy-Vitorino, F., McMillan, W. O. & Papa, R. Conserved microbiota among young Heliconius butterfly species. PeerJ 6, e5502 (2018).
Ravenscraft, A., Berry, M., Hammer, T., Peay, K. & Boggs, C. Structure and function of the bacterial and fungal gut microbiota of Neotropical butterflies. Ecol. Monogr. 89, e01346 (2019).
Pernice, M., Simpson, S. J. & Ponton, F. Towards an integrated understanding of gut microbiota using insects as model systems. J. Insect Physiol. (2014) doi:10.1016/j.jinsphys.2014.05.016.
Jordan, H. R. & Tomberlin, J. K. Abiotic and biotic factors regulating inter-kingdom engagement between insects and microbe activity on vertebrate remains. Insects 8, (2017).
Donkersley, P., Rhodes, G., Pickup, R. W., Jones, K. C. & Wilson, K. Bacterial communities associated with honeybee food stores are correlated with land use. Ecol. Evol. 8, 4743–4756 (2018).
Li, P., Liang, H., Lin, W.-T., Feng, F. & Luo, L. Microbiota dynamics associated with environmental conditions and potential roles of cellulolytic communities in traditional Chinese cereal starter solid-state fermentation. Appl. Environ. Microbiol. 81, 5144–5156 (2015).
Andrews, S. FastQC: a quality control tool for high throughput sequence data. (2010).
Ewels, P., Magnusson, M., Lundin, S. & Käller, M. MultiQC: summarize analysis results for multiple tools and samples in a single report. Bioinformatics 32, 3047–3048 (2016).
Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).
Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2012).
McMurdie, P. J. & Holmes, S. phyloseq: An R Package for reproducible interactive analysis and graphics of microbiome census data. PLoS One 8, e61217 (2013).
R Core Team. R: A Language and environment for statistical computing. (2020)
Morrone, J. J. Biogeographical regionalisation of the Neotropical region. vol. 3782 (2014).
Lahti, L. & Shetty, S. Tools for microbiome analysis in R. Version 2.1.28. (2017).
Martijn, G. & Teunisse. Fantaxtic plots from phyloseq data. (2017).
Haynes, W. Benjamini–Hochberg Method. in Encyclopedia of Systems Biology 78–78 (Springer New York, 2013). doi:10.1007/978-1-4419-9863-7_1215.
Paradis, E. & Schliep, K. ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35, 526–528 (2019).
Kozak, K. R. M. K., Ahlberg, N. I. W., Eild, A. N. F. E. N. & Asmahapatra, K. A. K. D. Multilocus species trees show the recent adaptive radiation of the mimetic Heliconius butterflies. Syst. Biol. 64, 505–524 (2015).
Galili, T. dendextend: an R package for visualizing, adjusting and comparing trees of hierarchical clustering. Bioinformatics 31, 3718–3720 (2015).
Revell, L. J. phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3, 217–223 (2012).
Yun, J.-H. et al. Insect gut bacterial diversity determined by environmental habitat, diet, developmental stage, and phylogeny of host. Appl. Environ. Microbiol. 80, 5254–5264 (2014).
Paniagua, L. R., Frago, E., Kaltenpoth, M., Hilker, M. & Fatouros, N. E. Bacterial symbionts in Lepidoptera: their diversity, transmission, and impact on the host. Front. Microbiol. 9, 1–14 (2018).
Tagliavia, M., Messina, E., Manachini, B., Cappello, S. & Quatrini, P. The gut microbiota of larvae of Rhynchophorus ferrugineus Oliver ( Coleoptera: Curculionidae). 1–11 (2014).
Muratore, M., Sun, Y. & Prather, C. Environmental nutrients alter bacterial and fungal gut microbiomes in the common meadow katydid, Orchelimum vulgare. Front. Microbiol. 11, (2020).
González-Serrano, F. et al. The gut microbiota composition of the moth Brithys crini reflects insect metamorphosis. Microb. Ecol. 79, 960–970 (2020).
Anbutsu, H. & Fukatsu, T. Spiroplasma as a model insect endosymbiont. Environ. Microbiol. Rep. 3, 144–153 (2011).
Bi, J. & Wang, Y. The effect of the endosymbiont Wolbachia on the behavior of insect hosts. 846–858 (2020) doi:10.1111/1744-7917.12731.
Kautz, S., Rubin, B. E. R. & Moreau, C. S. Bacterial infections across the ants: frequency and prevalence of Wolbachia, Spiroplasma, and Asaia. Psyche A J. Entomol. 2013, 1–11 (2013).
Ballinger, M. J. & Perlman, S. J. The defensive Spiroplasma. Curr. Opin. Insect Sci. 32, 36–41 (2019).
Sanada-Morimura, S., Matsumura, M. & Noda, H. Male killing caused by a Spiroplasma symbiont in the small brown planthopper, Laodelphax striatellus. J. Hered. 104, 821–829 (2013).
Tabata, J. et al. Male killing and incomplete inheritance of a novel Spiroplasma in the moth Ostrinia zaguliaevi. Microb. Ecol. 61, 254–263 (2011).
Telschow, A., Flor, M., Kobayashi, Y., Hammerstein, P. & Werren, J. H. Wolbachia-induced unidirectional cytoplasmic incompatibility and speciation: mainland-island model. PLoS One 2, e701 (2007).
Muñoz, A. G., Salazar, C., Castaño, J., Jiggings, C. D. & Linares, M. Multiple sources of reproductive isolation in a bimodal butterfly hybrid zone. J. Evol. Biol. 23, 1312–1320 (2010).
Crotti, E. et al. Acetic acid bacteria as symbionts of insects. in Acetic Acid Bacteria 121–142 (Springer Japan, 2016). doi:10.1007/978-4-431-55933-7_5.
Servin-Garciduenas, L. E., Sanchez-Quinto, A. & Martinez-Romero, E. Draft genome sequence of Commensalibacter papalotli MX01, a symbiont identified from the guts of overwintering monarch butterflies. Genome Announc. 2, (2014).
Schmid, R. B., Lehman, R. M., Brözel, V. S. & Lundgren, J. G. An indigenous gut bacterium, Enterococcus faecalis (Lactobacillales: Enterococcaceae), increases seed consumption by Harpalus pensylvanicus (Coleoptera: Carabidae). Florida Entomol. 97, 575–584 (2014).
Lee, J.-H., Lee, K.-A. & Lee, W.-J. Microbiota, gut physiology, and insect immunity. in Advances in Insect Physiology (ed. Ligoxygakis, P.) 111–138 (2017). doi:10.1016/bs.aiip.2016.11.001.
Chouaia, B. et al. Acetic acid bacteria genomes reveal functional traits for adaptation to life in insect guts. Genome Biol. Evol. 6, 912–920 (2014).
Vilanova, C., Baixeras, J., Latorre, A. & Porcar, M. The generalist inside the specialist: Gut bacterial communities of two insect species feeding on toxic plants are dominated by Enterococcus sp. Front. Microbiol. 7, (2016).
Alves, J. M. P. et al. Genome evolution and phylogenomic analysis of Candidatus Kinetoplastibacterium, the betaproteobacterial endosymbionts of Strigomonas and Angomonas. Genome Biol. Evol. 5, 338–350 (2013).
Kostygov, A. Y. et al. Novel trypanosomatid-bacterium association: evolution of endosymbiosis in action. MBio 7, (2016).
Palomino-Ángel, S., Anaya-Acevedo, J. A. & Botero, B. A. Evaluation of 3B42V7 and IMERG daily-precipitation products for a very high-precipitation region in northwestern South America. Atmos. Res. 217, 37–48 (2019).
Morrone, J. J. Biogeografía de América Latina y el Caribe. (Zaragoza, 2001).
Londoño-Murcia, M. C., Tellez-Valdés, O. & Sánchez-Cordero, V. Environmental heterogeneity of World Wildlife Fund for Nature ecoregions and implications for conservation in Neotropical biodiversity hotspots. Environ. Conserv. 37, 116–127 (2010).
Ruiz Rodríguez, S. L. et al. Diversidad biológica y cultural del sur de la Amazonia colombiana - Diagnóstico. (Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, Corpoamazonia, Instituto Sinchi, Parques Nacionales Naturales, 2007).
Killeen, T. J., Douglas, M., Consiglio, T., Jørgensen, P. M. & Mejia, J. Dry spots and wet spots in the Andean hotspot. J. Biogeogr. 34, 1357–1373 (2007).
López, C. E. Landscapes variability and the early peopling of the inter-Andean Magdalena Valley, Colombia (South America). Quat. Int. (2020) doi:10.1016/j.quaint.2020.10.012.
Kattan, G. H., Franco, P., Rojas, V. & Morales, G. Biological diversification in a complex region: a spatial analysis of faunistic diversity and biogeography of the Andes of Colombia. J. Biogeogr. 31, 1829–1839 (2004).
Steele, P. R. Taxonomic revision of the Neotropical genus Psiguria (Cucurbitaceae). Syst. Bot. 35, 341–357 (2010).
Kieran, T. J. et al. Regional biogeography of microbiota composition in the Chagas disease vector Rhodnius pallescens. Parasit. Vectors 12, 1–13 (2019)
Koskinioti, P. et al. The effects of geographic origin and antibiotic treatment on the gut symbiotic communities of Bactrocera oleae populations. Entomol. Exp. Appl. 1–12 (2019) doi:10.1111/eea.12764.
Seabourn, P., Spafford, H. & Yoneishi, N. The Aedes albopictus (Diptera: Culicidae) microbiome varies spatially and with Ascogregarine infection. PLoS Nefleted Trop. Dis. 14, 1–21 (2020).
Palacios-Mayoral, V. D., Palacios-Mosquera, L. & Jiménez-Ortega, A. M. Diversidad de mariposas diurnas (Lepidoptera: Papilionoidea) asociadas con tres hábitats en el corregimiento de Pacurita, municipio de Quibdó, Chocó, Colombia. Rev. la Acad. Colomb. Ciencias Exactas, Físicas y Nat. 42, 237 (2018).
Muñoz, A. G., Baxter, S. W., Linares, M. & Jiggins, C. D. Deep mitochondrial divergence within a Heliconius butterfly species is not explained by cryptic speciation or endosymbiotic bacteria. BMC Evol. Biol. 11, 358 (2011).
Brooks, A. W., Kohl, K. D., Brucker, R. M., van Opstal, E. J. & Bordenstein, S. R. Phylosymbiosis: relationships and functional effects of microbial communities across host evolutionary history. PLOS Biol. 14, e2000225 (2016).
Tinker, K. A. & Ottesen, E. A. Phylosymbiosis across deeply diverging lineages of omnivorous cockroaches (Order Blattodea). Appl. Environ. Microbiol. 86, (2020).
dc.source.instname.spa.fl_str_mv instname:Universidad del Rosario
dc.source.reponame.spa.fl_str_mv reponame:Repositorio Institucional EdocUR
bitstream.url.fl_str_mv https://repository.urosario.edu.co/bitstreams/13249749-61e0-46e5-b0c5-5b4d1e9358c0/download
https://repository.urosario.edu.co/bitstreams/0dc7a083-193e-4c20-ba68-633e54a3e86e/download
https://repository.urosario.edu.co/bitstreams/5bb08a24-4de1-4a4c-9fd1-59b342f412d7/download
https://repository.urosario.edu.co/bitstreams/aab0abc6-10ba-4538-8024-74adf80cdfc2/download
https://repository.urosario.edu.co/bitstreams/49c305fa-6859-4e5e-bdb5-c409db040e32/download
https://repository.urosario.edu.co/bitstreams/4bfcedc7-6e2c-477a-85a8-4feede99c7a0/download
bitstream.checksum.fl_str_mv 3ca50db151c3bc5d171245fac6c3b524
d083f2eb95a6133f17a2332cd6d2e4b4
fab9d9ed61d64f6ac005dee3306ae77e
dab767be7a093b539031785b3bf95490
cd3d1849893b12c1eaa98d9a8d24dde5
465399c919b1064d4437572fc0e608a1
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio institucional EdocUR
repository.mail.fl_str_mv edocur@urosario.edu.co
_version_ 1814167524384702464
spelling Herrera, GiovannyMuñoz, MarinaSánchez-Herrera, MelissaBrown, AnyaKhazan, EmilyRamírez, Juan David1011716118600Salazar, Camilo79873757600Luna-Niño, NicolásBiólogoFull time86e04544-68ce-49dc-9838-2bcb33ce75086002021-02-16T20:32:40Z2021-02-16T20:32:40Z2021-01-18Estudios en las mariposas del género de Heliconius (Lepidoptera: Nymphalidae) han permitido entender los mecanismos que promueven la especiación y adaptación en el neotrópico. Análisis de la microbiota en estos insectos reportan variaciones interespecíficas e intraespecíficas, las cuales no están asociadas directamente a la depredación de polen. Además, se desconoce si los ecosistemas geográficos donde cohabitan mariposas con diferentes anillos miméticos afectan la microbiota de estos individuo. Este estudio utilizó amplicon-based sequencing del gen ARNr-16S en 66 muestras que corresponden a 4 especies de distintas regiones biogeográficas de Colombia: Heliconius clysonymus (n = 4), Heliconius erato (n = 24), Heliconius melpomene (n = 19) y Heliconius cydno (n = 19). La microbiota de Heliconius está dominada por los géneros Commensalibacter, Enterococcus, Spiroplasma y Orbus, donde sus abundancias difieren entre especies y subespecies, las cuales habitan diferentes provincias biogeográficas de Colombia. También, las agrupaciones de la microbiota por especie no reflejan totalmente sus relaciones filogenéticas. A pesar de la amplia diversidad de especies y subespecies de Heliconius en Colombia, este estudio encontró que las abundancias de las comunidades de su microbiota varían a partir de las condiciones ambientales de los ecosistemas en los que habitan y no presentan un patrón especie-específicoPrevious studies on Heliconius butterflies (Lepidoptera: Nymphalidae) have provided information to understand the mechanisms facilitating speciation and adaptation across the Neotropic realm. The analyses of the microbiota in these insects have shown interspecific and intraspecific variations, which were not directly associated with pollen predation. It remains unclear if the geographic ecosystems where butterflies with different mimicry rings cohabit affect the microbiota in these organisms. In this study, amplicon-based sequencing of the 16S rRNA gene was performed on 66 samples corresponding to four species from different biogeographic regions in Colombia, namely, Heliconius clysonymus (n = 4), Heliconius erato (n = 24), Heliconius melpomene (n = 19) and Heliconius cydno (n = 19). The predominant genera in Heliconius microbiota were Commensalibacter, Enterococcus, Spiroplasma and Orbus, with different abundances among species and subspecies inhabiting different biogeographic provinces in Colombia. Moreover, the microbiota clusters by species did not completely reflect their phylogenetic relationships. Despite the wide diversity of species and subspecies of Heliconius present in Colombia, this study demonstrated that the abundance of communities in the microbiota varied based on the environmental conditions of the ecosystems they inhabit and no species-specific pattern was observed.application/pdfhttps://doi.org/10.48713/10336_30921 https://repository.urosario.edu.co/handle/10336/30921spaUniversidad del RosarioFacultad de Ciencias Naturales y MatemáticasBiologíaAtribución-SinDerivadas 2.5 ColombiaAbierto (Texto Completo)EL AUTOR, manifiesta que la obra objeto de la presente autorización es original y la realizó sin violar o usurpar derechos de autor de terceros, por lo tanto la obra es de exclusiva autoría y tiene la titularidad sobre la misma.http://creativecommons.org/licenses/by-nd/2.5/co/http://purl.org/coar/access_right/c_abf2Marchesi, J. R. & Ravel, J. The vocabulary of microbiome research: a proposal. Microbiome 1–3 (2015) doi:10.1186/s40168-015-0094-5.Pascoe, E. L., Hauffe, H. C., Marchesi, J. R. & Perkins, S. E. Network analysis of gut microbiota literature: an overview of the research landscape in non-human animal studies. ISME J. 11, 2644–2651 (2017).Trivedi, P., Leach, J. E., Tringe, S. G., Sa, T. & Singh, B. K. Plant–microbiome interactions: from community assembly to plant health. Nat. Rev. Microbiol. 18, 607–621 (2020).Wang, Y. & Rozen, D. E. Gut microbiota colonization and transmission in the burying beetle Nicrophorus vespilloides throughout development. Appl. Environ. Microbiol. 83, (2017).Mao, M. & Bennett, G. M. Symbiont replacements reset the co-evolutionary relationship between insects and their heritable bacteria. ISME J. 14, 1384–1395 (2020).Engel, P. & Moran, N. A. The gut microbiota of insects - diversity in structure and function. FEMS Microbiol. Rev. 37, 699–735 (2013).Wang, Y., Gilbreath, T. M., Kukutla, P., Yan, G. & Xu, J. Dynamic gut microbiome across life history of the malaria mosquito Anopheles gambiae in Kenya. PLoS One 6, 1–9 (2011).Anderson, K. E. et al. The queen’s gut refines with age: longevity phenotypes in a social insect model. Microbiome 6, 1–16 (2018).Santos-Garcia, D., Mestre-Rincon, N., Zchori-Fein, E. & Morin, S. Inside out: microbiota dynamics during host-plant adaptation of whiteflies. ISME J. 14, 847–856 (2020).Chu, C.-C., Spencer, J. L., Curzi, M. J., Zavala, J. A. & Seufferheld, M. J. Gut bacteria facilitate adaptation to crop rotation in the western corn rootworm. Proc. Natl. Acad. Sci. 110, 11917–11922 (2013).Kim, J. M. et al. Effects of diet type, developmental stage, and gut compartment in the gut bacterial communities of two Cerambycidae species (Coleoptera). J. Microbiol. 55, 21–30 (2017).Huang, S. & Zhang, H. The impact of environmental heterogeneity and life stage on the hindgut microbiota of Holotrichia parallela larvae (Coleoptera: Scarabaeidae). PLoS One 8, e57169 (2013).Rocha, M. R., Barbosa dos Santos, L. M., Paulo Vicente, A. C. & Maciel-de-Freitas, R. Effects of environment, dietary regime and ageing on the dengue vector microbiota: evidence of a core microbiota throughout Aedes aegypti lifespan. Mem. Inst. Oswaldo Cruz 111, 577–587 (2016).Ferguson, L. V. et al. Seasonal shifts in the insect gut microbiome are concurrent with changes in cold tolerance and immunity. Funct. Ecol. 32, 2357–2368 (2018).Chen, B. et al. Gut microbiota metabolic potential correlates with body size between mulberry-feeding lepidopteran pest species. Pest Manag. Sci. 76, 1313–1323 (2020).Shukla, S. P. & Beran, F. Gut microbiota degrades toxic isothiocyanates in a flea beetle pest. Mol. Ecol. 29, 4692–4705 (2020).Prado, A., Marolleau, B., Vaissière, B. E., Barret, M. & Torres-Cortes, G. Insect pollination: an ecological process involved in the assembly of the seed microbiota. Sci. Rep. 10, 3575 (2020).Schilder, R. J. & Stewart, H. Parasitic gut infection in Libellula pulchella causes functional and molecular resemblance of dragonfly flight muscle to skeletal muscle of obese vertebrates. J. Exp. Biol. 222, 1–10 (2019).Feldhaar, H. Bacterial symbionts as mediators of ecologically. Ecol. Entomol. 36, 533–543 (2011).Kešnerová, L. et al. Gut microbiota structure differs between honeybees in winter and summer. ISME J 14, 801–814 (2020).Bosmans, L. et al. Hibernation leads to altered gut communities in bumblebee queens (Bombus terrestris). Insects 9, 1–14 (2018).Hammer, T. J., Dickerson, J. C., McMillan, W. O. & Fierer, N. Heliconius butterflies host characteristic and phylogenetically structured adult-stage microbiomes. Appl. Environ. Microbiol. (2020) doi:10.1128/AEM.02007-20.Jiggins, C. D. The Ecology and Evolution of Heliconius Butterflies. (2017). doi:10.1093/acprof:oso/9780199566570.001.0001.Scoble, M. J. The Lepidoptera: Form, Function and Diversity. (Oxford University Press, 1995). doi:https://doi.org/10.1093/aesa/88.4.590.Young, F. J. & Montgomery, S. H. Pollen feeding in Heliconius butterflies: the singular evolution of an adaptive suite. Proc. R. Soc. B Biol. Sci. 287, 20201304 (2020).Opitz, S. E. W. & Müller, C. Plant chemistry and insect sequestration. Chemoecology 19, 117–154 (2009).Hammer, T. J., McMillan, W. O. & Fierer, N. Metamorphosis of a butterfly-associated bacterial community. PLoS One 9, e86995 (2014).van Schooten, B., Godoy-Vitorino, F., McMillan, W. O. & Papa, R. Conserved microbiota among young Heliconius butterfly species. PeerJ 6, e5502 (2018).Ravenscraft, A., Berry, M., Hammer, T., Peay, K. & Boggs, C. Structure and function of the bacterial and fungal gut microbiota of Neotropical butterflies. Ecol. Monogr. 89, e01346 (2019).Pernice, M., Simpson, S. J. & Ponton, F. Towards an integrated understanding of gut microbiota using insects as model systems. J. Insect Physiol. (2014) doi:10.1016/j.jinsphys.2014.05.016.Jordan, H. R. & Tomberlin, J. K. Abiotic and biotic factors regulating inter-kingdom engagement between insects and microbe activity on vertebrate remains. Insects 8, (2017).Donkersley, P., Rhodes, G., Pickup, R. W., Jones, K. C. & Wilson, K. Bacterial communities associated with honeybee food stores are correlated with land use. Ecol. Evol. 8, 4743–4756 (2018).Li, P., Liang, H., Lin, W.-T., Feng, F. & Luo, L. Microbiota dynamics associated with environmental conditions and potential roles of cellulolytic communities in traditional Chinese cereal starter solid-state fermentation. Appl. Environ. Microbiol. 81, 5144–5156 (2015).Andrews, S. FastQC: a quality control tool for high throughput sequence data. (2010).Ewels, P., Magnusson, M., Lundin, S. & Käller, M. MultiQC: summarize analysis results for multiple tools and samples in a single report. Bioinformatics 32, 3047–3048 (2016).Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2012).McMurdie, P. J. & Holmes, S. phyloseq: An R Package for reproducible interactive analysis and graphics of microbiome census data. PLoS One 8, e61217 (2013).R Core Team. R: A Language and environment for statistical computing. (2020)Morrone, J. J. Biogeographical regionalisation of the Neotropical region. vol. 3782 (2014).Lahti, L. & Shetty, S. Tools for microbiome analysis in R. Version 2.1.28. (2017).Martijn, G. & Teunisse. Fantaxtic plots from phyloseq data. (2017).Haynes, W. Benjamini–Hochberg Method. in Encyclopedia of Systems Biology 78–78 (Springer New York, 2013). doi:10.1007/978-1-4419-9863-7_1215.Paradis, E. & Schliep, K. ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35, 526–528 (2019).Kozak, K. R. M. K., Ahlberg, N. I. W., Eild, A. N. F. E. N. & Asmahapatra, K. A. K. D. Multilocus species trees show the recent adaptive radiation of the mimetic Heliconius butterflies. Syst. Biol. 64, 505–524 (2015).Galili, T. dendextend: an R package for visualizing, adjusting and comparing trees of hierarchical clustering. Bioinformatics 31, 3718–3720 (2015).Revell, L. J. phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3, 217–223 (2012).Yun, J.-H. et al. Insect gut bacterial diversity determined by environmental habitat, diet, developmental stage, and phylogeny of host. Appl. Environ. Microbiol. 80, 5254–5264 (2014).Paniagua, L. R., Frago, E., Kaltenpoth, M., Hilker, M. & Fatouros, N. E. Bacterial symbionts in Lepidoptera: their diversity, transmission, and impact on the host. Front. Microbiol. 9, 1–14 (2018).Tagliavia, M., Messina, E., Manachini, B., Cappello, S. & Quatrini, P. The gut microbiota of larvae of Rhynchophorus ferrugineus Oliver ( Coleoptera: Curculionidae). 1–11 (2014).Muratore, M., Sun, Y. & Prather, C. Environmental nutrients alter bacterial and fungal gut microbiomes in the common meadow katydid, Orchelimum vulgare. Front. Microbiol. 11, (2020).González-Serrano, F. et al. The gut microbiota composition of the moth Brithys crini reflects insect metamorphosis. Microb. Ecol. 79, 960–970 (2020).Anbutsu, H. & Fukatsu, T. Spiroplasma as a model insect endosymbiont. Environ. Microbiol. Rep. 3, 144–153 (2011).Bi, J. & Wang, Y. The effect of the endosymbiont Wolbachia on the behavior of insect hosts. 846–858 (2020) doi:10.1111/1744-7917.12731.Kautz, S., Rubin, B. E. R. & Moreau, C. S. Bacterial infections across the ants: frequency and prevalence of Wolbachia, Spiroplasma, and Asaia. Psyche A J. Entomol. 2013, 1–11 (2013).Ballinger, M. J. & Perlman, S. J. The defensive Spiroplasma. Curr. Opin. Insect Sci. 32, 36–41 (2019).Sanada-Morimura, S., Matsumura, M. & Noda, H. Male killing caused by a Spiroplasma symbiont in the small brown planthopper, Laodelphax striatellus. J. Hered. 104, 821–829 (2013).Tabata, J. et al. Male killing and incomplete inheritance of a novel Spiroplasma in the moth Ostrinia zaguliaevi. Microb. Ecol. 61, 254–263 (2011).Telschow, A., Flor, M., Kobayashi, Y., Hammerstein, P. & Werren, J. H. Wolbachia-induced unidirectional cytoplasmic incompatibility and speciation: mainland-island model. PLoS One 2, e701 (2007).Muñoz, A. G., Salazar, C., Castaño, J., Jiggings, C. D. & Linares, M. Multiple sources of reproductive isolation in a bimodal butterfly hybrid zone. J. Evol. Biol. 23, 1312–1320 (2010).Crotti, E. et al. Acetic acid bacteria as symbionts of insects. in Acetic Acid Bacteria 121–142 (Springer Japan, 2016). doi:10.1007/978-4-431-55933-7_5.Servin-Garciduenas, L. E., Sanchez-Quinto, A. & Martinez-Romero, E. Draft genome sequence of Commensalibacter papalotli MX01, a symbiont identified from the guts of overwintering monarch butterflies. Genome Announc. 2, (2014).Schmid, R. B., Lehman, R. M., Brözel, V. S. & Lundgren, J. G. An indigenous gut bacterium, Enterococcus faecalis (Lactobacillales: Enterococcaceae), increases seed consumption by Harpalus pensylvanicus (Coleoptera: Carabidae). Florida Entomol. 97, 575–584 (2014).Lee, J.-H., Lee, K.-A. & Lee, W.-J. Microbiota, gut physiology, and insect immunity. in Advances in Insect Physiology (ed. Ligoxygakis, P.) 111–138 (2017). doi:10.1016/bs.aiip.2016.11.001.Chouaia, B. et al. Acetic acid bacteria genomes reveal functional traits for adaptation to life in insect guts. Genome Biol. Evol. 6, 912–920 (2014).Vilanova, C., Baixeras, J., Latorre, A. & Porcar, M. The generalist inside the specialist: Gut bacterial communities of two insect species feeding on toxic plants are dominated by Enterococcus sp. Front. Microbiol. 7, (2016).Alves, J. M. P. et al. Genome evolution and phylogenomic analysis of Candidatus Kinetoplastibacterium, the betaproteobacterial endosymbionts of Strigomonas and Angomonas. Genome Biol. Evol. 5, 338–350 (2013).Kostygov, A. Y. et al. Novel trypanosomatid-bacterium association: evolution of endosymbiosis in action. MBio 7, (2016).Palomino-Ángel, S., Anaya-Acevedo, J. A. & Botero, B. A. Evaluation of 3B42V7 and IMERG daily-precipitation products for a very high-precipitation region in northwestern South America. Atmos. Res. 217, 37–48 (2019).Morrone, J. J. Biogeografía de América Latina y el Caribe. (Zaragoza, 2001).Londoño-Murcia, M. C., Tellez-Valdés, O. & Sánchez-Cordero, V. Environmental heterogeneity of World Wildlife Fund for Nature ecoregions and implications for conservation in Neotropical biodiversity hotspots. Environ. Conserv. 37, 116–127 (2010).Ruiz Rodríguez, S. L. et al. Diversidad biológica y cultural del sur de la Amazonia colombiana - Diagnóstico. (Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, Corpoamazonia, Instituto Sinchi, Parques Nacionales Naturales, 2007).Killeen, T. J., Douglas, M., Consiglio, T., Jørgensen, P. M. & Mejia, J. Dry spots and wet spots in the Andean hotspot. J. Biogeogr. 34, 1357–1373 (2007).López, C. E. Landscapes variability and the early peopling of the inter-Andean Magdalena Valley, Colombia (South America). Quat. Int. (2020) doi:10.1016/j.quaint.2020.10.012.Kattan, G. H., Franco, P., Rojas, V. & Morales, G. Biological diversification in a complex region: a spatial analysis of faunistic diversity and biogeography of the Andes of Colombia. J. Biogeogr. 31, 1829–1839 (2004).Steele, P. R. Taxonomic revision of the Neotropical genus Psiguria (Cucurbitaceae). Syst. Bot. 35, 341–357 (2010).Kieran, T. J. et al. Regional biogeography of microbiota composition in the Chagas disease vector Rhodnius pallescens. Parasit. Vectors 12, 1–13 (2019)Koskinioti, P. et al. The effects of geographic origin and antibiotic treatment on the gut symbiotic communities of Bactrocera oleae populations. Entomol. Exp. Appl. 1–12 (2019) doi:10.1111/eea.12764.Seabourn, P., Spafford, H. & Yoneishi, N. The Aedes albopictus (Diptera: Culicidae) microbiome varies spatially and with Ascogregarine infection. PLoS Nefleted Trop. Dis. 14, 1–21 (2020).Palacios-Mayoral, V. D., Palacios-Mosquera, L. & Jiménez-Ortega, A. M. Diversidad de mariposas diurnas (Lepidoptera: Papilionoidea) asociadas con tres hábitats en el corregimiento de Pacurita, municipio de Quibdó, Chocó, Colombia. Rev. la Acad. Colomb. Ciencias Exactas, Físicas y Nat. 42, 237 (2018).Muñoz, A. G., Baxter, S. W., Linares, M. & Jiggins, C. D. Deep mitochondrial divergence within a Heliconius butterfly species is not explained by cryptic speciation or endosymbiotic bacteria. BMC Evol. Biol. 11, 358 (2011).Brooks, A. W., Kohl, K. D., Brucker, R. M., van Opstal, E. J. & Bordenstein, S. R. Phylosymbiosis: relationships and functional effects of microbial communities across host evolutionary history. PLOS Biol. 14, e2000225 (2016).Tinker, K. A. & Ottesen, E. A. Phylosymbiosis across deeply diverging lineages of omnivorous cockroaches (Order Blattodea). Appl. Environ. Microbiol. 86, (2020).instname:Universidad del Rosarioreponame:Repositorio Institucional EdocUREstudios microbiológicos en mariposasMariposas del género de Heliconius (Lepidoptera: Nymphalidae)Análisis de Microbiota en insectosCommensalibacter, Enterococcus, Spiroplasma y Orbus en MariposasMicrobiología576600Microbiological studies in butterfliesButterflies of the genusButterflies of the genus Heliconius (Lepidoptera: Nymphalidae)Microbiota analysis in insectsCommensalibacter, Enterococcus, Spiroplasma and Orbus in ButterfliesVariación geográfica de la microbiota en cuatro especies del género Heliconius (Lepidoptera: Nymphalidae) en ColombiaGeographical variation of the microbiota in four species of the genus Heliconius (Lepidoptera: Nymphalidae) in ColombiabachelorThesisArtículoTrabajo de gradohttp://purl.org/coar/resource_type/c_7a1fORIGINALLunaNino-Nicolas-2021.pdfLunaNino-Nicolas-2021.pdfArtículo principalapplication/pdf441053https://repository.urosario.edu.co/bitstreams/13249749-61e0-46e5-b0c5-5b4d1e9358c0/download3ca50db151c3bc5d171245fac6c3b524MD51LunaNino-Nicolas-1-2021.rarLunaNino-Nicolas-1-2021.rarFiguras y tablas correspondientes al artículo principal application/zip21965960https://repository.urosario.edu.co/bitstreams/0dc7a083-193e-4c20-ba68-633e54a3e86e/downloadd083f2eb95a6133f17a2332cd6d2e4b4MD52LICENSElicense.txtlicense.txttext/plain1475https://repository.urosario.edu.co/bitstreams/5bb08a24-4de1-4a4c-9fd1-59b342f412d7/downloadfab9d9ed61d64f6ac005dee3306ae77eMD53CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repository.urosario.edu.co/bitstreams/aab0abc6-10ba-4538-8024-74adf80cdfc2/downloaddab767be7a093b539031785b3bf95490MD54TEXTLunaNino-Nicolas-2021.pdf.txtLunaNino-Nicolas-2021.pdf.txtExtracted texttext/plain50952https://repository.urosario.edu.co/bitstreams/49c305fa-6859-4e5e-bdb5-c409db040e32/downloadcd3d1849893b12c1eaa98d9a8d24dde5MD55THUMBNAILLunaNino-Nicolas-2021.pdf.jpgLunaNino-Nicolas-2021.pdf.jpgGenerated Thumbnailimage/jpeg2139https://repository.urosario.edu.co/bitstreams/4bfcedc7-6e2c-477a-85a8-4feede99c7a0/download465399c919b1064d4437572fc0e608a1MD5610336/30921oai:repository.urosario.edu.co:10336/309212021-02-17 03:03:08.132http://creativecommons.org/licenses/by-nd/2.5/co/Atribución-SinDerivadas 2.5 Colombiahttps://repository.urosario.edu.coRepositorio institucional EdocURedocur@urosario.edu.coRUwoTE9TKSBBVVRPUihFUyksIG1hbmlmaWVzdGEobWFuaWZlc3RhbW9zKSBxdWUgbGEgb2JyYSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIHJlYWxpesOzIHNpbiB2aW9sYXIgbyB1c3VycGFyIGRlcmVjaG9zIGRlIGF1dG9yIGRlIHRlcmNlcm9zLCBwb3IgbG8gdGFudG8gbGEgb2JyYSBlcyBkZSBleGNsdXNpdmEgYXV0b3LDrWEgeSB0aWVuZSBsYSB0aXR1bGFyaWRhZCBzb2JyZSBsYSBtaXNtYS4gCgpQQVJHUkFGTzogRW4gY2FzbyBkZSBwcmVzZW50YXJzZSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybyBlbiBjdWFudG8gYSBsb3MgZGVyZWNob3MgZGUgYXV0b3Igc29icmUgbGEgb2JyYSBlbiBjdWVzdGnDs24sIEVMIEFVVE9SLCBhc3VtaXLDoSB0b2RhIGxhIHJlc3BvbnNhYmlsaWRhZCwgeSBzYWxkcsOhIGVuIGRlZmVuc2EgZGUgbG9zIGRlcmVjaG9zIGFxdcOtIGF1dG9yaXphZG9zOyBwYXJhIHRvZG9zIGxvcyBlZmVjdG9zIGxhIHVuaXZlcnNpZGFkIGFjdMO6YSBjb21vIHVuIHRlcmNlcm8gZGUgYnVlbmEgZmUuIAoKRUwgQVVUT1IsIGF1dG9yaXphIGEgTEEgVU5JVkVSU0lEQUQgREVMIFJPU0FSSU8sICBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgTGV5IDQ0IGRlIDE5OTMsIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbm9ybWFzIGdlbmVyYWxlcyBzb2JyZSBsYSBtYXRlcmlhLCAgdXRpbGljZSB5IHVzZSBsYSBvYnJhIG9iamV0byBkZSBsYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuLgoKLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0KClBPTElUSUNBIERFIFRSQVRBTUlFTlRPIERFIERBVE9TIFBFUlNPTkFMRVMuIERlY2xhcm8gcXVlIGF1dG9yaXpvIHByZXZpYSB5IGRlIGZvcm1hIGluZm9ybWFkYSBlbCB0cmF0YW1pZW50byBkZSBtaXMgZGF0b3MgcGVyc29uYWxlcyBwb3IgcGFydGUgZGUgTEEgVU5JVkVSU0lEQUQgREVMIFJPU0FSSU8gIHBhcmEgZmluZXMgYWNhZMOpbWljb3MgeSBlbiBhcGxpY2FjacOzbiBkZSBjb252ZW5pb3MgY29uIHRlcmNlcm9zIG8gc2VydmljaW9zIGNvbmV4b3MgY29uIGFjdGl2aWRhZGVzIHByb3BpYXMgZGUgbGEgYWNhZGVtaWEsIGNvbiBlc3RyaWN0byBjdW1wbGltaWVudG8gZGUgbG9zIHByaW5jaXBpb3MgZGUgbGV5LiBQYXJhIGVsIGNvcnJlY3RvIGVqZXJjaWNpbyBkZSBtaSBkZXJlY2hvIGRlIGhhYmVhcyBkYXRhICBjdWVudG8gY29uIGxhIGN1ZW50YSBkZSBjb3JyZW8gaGFiZWFzZGF0YUB1cm9zYXJpby5lZHUuY28sIGRvbmRlIHByZXZpYSBpZGVudGlmaWNhY2nDs24gIHBvZHLDqSBzb2xpY2l0YXIgbGEgY29uc3VsdGEsIGNvcnJlY2Npw7NuIHkgc3VwcmVzacOzbiBkZSBtaXMgZGF0b3MuCgo=