Formulación teórica para la obtención de filmes y revestimientos a base de almidón de yuca

Considerando la gran problemática ecológica que produce el consumo masivo de plástico, se planteó como objetivo formular un sustituyente para mitigar la contaminación de petroquímicos con altas emisiones de gases de efecto invernadero y daños directos a la biodiversidad. Adicionalmente, la explosión...

Full description

Autores:
Ortiz Mateus, Luis Fernando
Triana, Camilo Andres
Aldana Sánchez, Juan Camilo
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2021
Institución:
Universidad ECCI
Repositorio:
Repositorio Institucional ECCI
Idioma:
spa
OAI Identifier:
oai:repositorio.ecci.edu.co:001/1379
Acceso en línea:
https://repositorio.ecci.edu.co/handle/001/1379
Palabra clave:
Biopolímeros
Almidones
Plásticos
Película biodegradable
Polisacárido
Petroquímicos
Biopolymers
Starches plastics
Biodegradable film
Polysaccharide
Petrochemicals
Rights
openAccess
License
Derechos Reservados - Universidad ECCI 2021
id ECCI2_ddd78714f6df50b3f96ca0c21b56f1bf
oai_identifier_str oai:repositorio.ecci.edu.co:001/1379
network_acronym_str ECCI2
network_name_str Repositorio Institucional ECCI
repository_id_str
dc.title.spa.fl_str_mv Formulación teórica para la obtención de filmes y revestimientos a base de almidón de yuca
title Formulación teórica para la obtención de filmes y revestimientos a base de almidón de yuca
spellingShingle Formulación teórica para la obtención de filmes y revestimientos a base de almidón de yuca
Biopolímeros
Almidones
Plásticos
Película biodegradable
Polisacárido
Petroquímicos
Biopolymers
Starches plastics
Biodegradable film
Polysaccharide
Petrochemicals
title_short Formulación teórica para la obtención de filmes y revestimientos a base de almidón de yuca
title_full Formulación teórica para la obtención de filmes y revestimientos a base de almidón de yuca
title_fullStr Formulación teórica para la obtención de filmes y revestimientos a base de almidón de yuca
title_full_unstemmed Formulación teórica para la obtención de filmes y revestimientos a base de almidón de yuca
title_sort Formulación teórica para la obtención de filmes y revestimientos a base de almidón de yuca
dc.creator.fl_str_mv Ortiz Mateus, Luis Fernando
Triana, Camilo Andres
Aldana Sánchez, Juan Camilo
dc.contributor.advisor.none.fl_str_mv Moreno Guarín, Diana Catalina
dc.contributor.author.none.fl_str_mv Ortiz Mateus, Luis Fernando
Triana, Camilo Andres
Aldana Sánchez, Juan Camilo
dc.subject.proposal.spa.fl_str_mv Biopolímeros
Almidones
Plásticos
Película biodegradable
Polisacárido
Petroquímicos
topic Biopolímeros
Almidones
Plásticos
Película biodegradable
Polisacárido
Petroquímicos
Biopolymers
Starches plastics
Biodegradable film
Polysaccharide
Petrochemicals
dc.subject.proposal.eng.fl_str_mv Biopolymers
Starches plastics
Biodegradable film
Polysaccharide
Petrochemicals
description Considerando la gran problemática ecológica que produce el consumo masivo de plástico, se planteó como objetivo formular un sustituyente para mitigar la contaminación de petroquímicos con altas emisiones de gases de efecto invernadero y daños directos a la biodiversidad. Adicionalmente, la explosión demográfica ha incrementado la demanda de productos alimenticios procesados, incrementando a su vez la producción de material polimérico para su envase y distribución. Inicialmente se hizo un análisis de biopolímeros de diferentes procedencias que tuvieran como factor común, un índice considerable de degradación, determinando que los de tipo polisacárido cumplen con los requerimientos iniciales para considerarse una materia prima base viable en términos de adquisición y almacenamiento. Como resultado el almidón de yuca de origen nativo cumplió con las características necesarias, sin embargo, al compararse con los polímeros convencionales y de mayor demanda en la elaboración de empaques como el PP y el PS, presenta una desventaja con respecto a las propiedades fisicoquímicas. Es por ello, que después de analizar las propiedades de dichos polímeros convencionales se concluyó que el almidón de yuca por sí solo como material no era bastante fuerte, resistente e impermeable; teniendo en cuenta este hallazgo, se planteó la modificación química de este con Quitosano, incluyendo al proceso una serie de plastificantes como el glicerol, agua destilada y extracto de propóleo en etanol en diferentes concentraciones que funcionan como reactivos para la mejora de propiedades importantes como mecánicas, físicas, de barrera y propiedades antimicrobianas. Luego de esto, con el fin de hacer un filme o película con mejores propiedades de barrera ya que hasta ahora no eran tan aceptables, se investigaron diferentes fuentes de residuos aprovechables que sirvieran como aditivo para aportar a la obtención de un biopolímero que funcionara como material para crear empaques en el sector alimenticio, usando la cáscara de uva y sus semillas que según nuestras investigaciones exploratorias cuentan con buenas características de barrera, que al ser adicionadas a nuestro proceso de modificación química del almidón de yuca y los demás plastificantes ya nombrados, otorgaba un aumento en la permeabilidad al agua y el coeficiente de permeabilidad al vapor, así mismo como su resistencia a la tracción y resistencia al impacto. Finalmente hubo una investigación de la maquinaria requerida y el proceso de obtención, en el que paralelamente se estudió la viabilidad en costos la producción de un lote de 1 kg de la película biodegradable. Posteriormente se contrastó con la producción de empaques plásticos de origen petroquímico concluyendo que el proceso de obtención de un bioplástico es un poco más costoso que el de los polímeros normales, pero que produciendo a mayor escala podría llegar a ser competitivo por valor unitario y que ambientalmente haría un impacto muy positivo para la industria alimenticia, la cual en la actualidad depende de los materiales poliméricos para su envase y empaque.
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2021-08-26T21:24:15Z
dc.date.available.none.fl_str_mv 2021-08-26T21:24:15Z
dc.date.issued.none.fl_str_mv 2021
dc.type.spa.fl_str_mv Trabajo de grado - Pregrado
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_dc82b40f9837b551
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.redcol.spa.fl_str_mv https://purl.org/redcol/resource_type/TP
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
format http://purl.org/coar/resource_type/c_7a1f
dc.identifier.uri.none.fl_str_mv https://repositorio.ecci.edu.co/handle/001/1379
url https://repositorio.ecci.edu.co/handle/001/1379
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Abdullah, Z. W., Dong, Y., Han, N., & Liu, S. (2019). Water and gas barrier properties of polyvinyl alcohol (PVA)/starch (ST)/ glycerol (GL)/halloysite nanotube (HNT) bionanocomposite films: Experimental characterisation and modelling approach. Composites Part B: Engineering, 174(February), 107033. https://doi.org/10.1016/j.compositesb.2019.107033
Acosta, S. (2014). Propiedades de films de almidòn de Yuca y Gelatina. Incorporacion de aceites Esenciales con efecto antimicrobiano. Tesis Doctoral.
Afinidad, I. (2020). Afin Idad 591. JOURNAL OF CHEMICAL ENGINEERING, THEORETICAL AND APPLIED CHEMISTRY EDITED BY AIQS, 77(591), 164–242. https://www.raco.cat/index.php/afinidad/article/download/377475/470782/
Aguilera-Otíz, M., Reza-Vargas, M. del C., Chew-Madinaveita, R. G., & Meza-Velázquez, J. A. (2011). Propiedades Funcionales De Las Antocianinas. BIOtecnia, 13(2), 16. https://doi.org/10.18633/bt.v13i2.81
AINIA. (2015). La correcta especificación de los envases. Centro Tecnológico Agroalimentario, 36. https://www.ecoembes.com/sites/default/files/archivos_publicaciones_em presas/la-correcta-especificacion-de-los-envases.pdf
Al-Jabareen, A., Al-Bustami, H., Harel, H., & Marom, G. (2013). Improving the oxygen barrier properties of polyethylene terephthalate by graphite nanoplatelets. Journal of Applied Polymer Science, 128(3), 1534–1539. https://doi.org/10.1002/app.38302
Almario, A., & Durango, L. (2018). Estudio de las propiedades absorbentes de un biopolímero a base de almidón de yuca. Espacios, 39, 15.
Amin, M., Putra, N., Kosasih, E. A., Prawiro, E., Luanto, R. A., & Mahlia, T. M. I. (2017). Thermal properties of beeswax/graphene phase change material as energy storage for building applications. Applied Thermal Engineering, 112, 273–280.
Amjadi, M., & Fatemi, A. (2021). Creep behavior and modeling of highdensity polyethylene (HDPE). Polymer Testing, 94(December 2020), 107031. https://doi.org/10.1016/j.polymertesting.2020.107031
Arias, B. N. (2016). El consumo responsable: educar para la sostenibilidad ambiental. Aibi Revista de Investigación, Administración e Ingeniería, 29– 34. https://doi.org/10.15649/2346030x.385
Aristizábal, J., & Sánchez, T. (2010). Guía técnica para producción y análisis de almidón de yuca. Fao, 163, 134. https://doi.org/9253056770- 9789253056774
Arrieta, M. P., Fortunati, E., Dominici, F., & Ray, E. (2014). PLA-PHB / cellulose based fi lms : Mechanical , barrier and disintegration properties. 107.
Astudillo, J. (2017). ELABORACIÓN DE UN RECUBRIMIENTO COMESTIBLE A BASE DE ALMIDÓN DE MAÍZ Y DE YUCA PARA TOMATE CHONTO. Vol37, No., 1–27. https://ci.nii.ac.jp/naid/40021243259/
Aulin, C., Karabulut, E., Tran, A., Waìšgberg, L., & Lindström, T. (2013). Transparent nanocellulosic multilayer thin films on polylactic acid with tunable gas barrier properties. ACS Applied Materials and Interfaces, 5(15), 7352–7359. https://doi.org/10.1021/am401700n
Auras, R., Harte, B., & Selke, S. (2014). Effect of water on the oxygen barrier properties of poly(ethylene terephthalate) and polylactide films. Journal of Applied Polymer Science, 92(3), 1790–1803. https://doi.org/10.1002/app.20148
Ayala, J. (2014). DETERMINACIÓN DE LA RESISTENCIA A LA TRACCIÓN Y TENACIDAD DE UN MATERIAL COMPUESTO A PARTIR DE BAGAZO DE CAÑA DE AZUCAR Y ALMIDON DE YUCA, A TRAVÉS DE LOS ENSAYOS DE TENSIÓN Y DE IMPACTO CHARPY. 203.
Ballesteros-Mártinez, L., Pérez-Cervera, C., & Andrade-Pizarro, R. (2020). Effect of glycerol and sorbitol concentrations on mechanical, optical, and barrier properties of sweet potato starch film. NFS Journal, 20(April), 1–9. https://doi.org/10.1016/j.nfs.2020.06.002
Barrios-Hernández, M. L. (2014). Consideraciones de las propiedades mecánicas y térmicas para la elaboración de un ducto de riego a partir de materiales poliméricos postconsumo. Revista Tecnología En Marcha, 27(3), 53. https://doi.org/10.18845/tm.v27i3.2066
Basiak, E., Lenart, A., & Debeaufort, F. (2017). Effect of starch type on the physico-chemical properties of edible films. International Journal of Biological Macromolecules, 98, 348–356. https://doi.org/10.1016/j.ijbiomac.2017.01.122
Beeva, D. A., Borisov, V. A., Mikitaev, A. K., Ligidov, M. K., Beev, A. A., & Barokova, E. B. (2015). Controlling the barrier properties of polyethylene terephthalate. A review. International Polymer Science and Technology, 42(7), T45–T52. https://doi.org/10.1177/0307174x1504200709
Belibi, P. C., Daou, T. J., Ndjaka, J. M. B., Michelin, L., Brendlé, J., Nsomd, B., & Durand, B. (2013). Tensile and water barrier properties of cassava starch composite films reinforced by synthetic zeolite and beidellite. Journal of Food Engineering, 115(3), 339–346. https://doi.org/10.1016/j.jfoodeng.2012.10.027
Bergel, B. F., da Luz, L. M., & Santana, R. M. C. (2017). Comparative study of the influence of chitosan as coating of thermoplastic starch foam from potato, cassava and corn starch. Progress in Organic Coatings, 106, 27– 32. https://doi.org/10.1016/j.porgcoat.2017.02.010
Bergel, B. F., da Luz, L. M., & Santana, R. M. C. (2018). Effect of poly(lactic acid) coating on mechanical and physical properties of thermoplastic starch foams from potato starch. Progress in Organic Coatings, 118(January), 91– 96. https://doi.org/10.1016/j.porgcoat.2018.01.029
Bergo, P. V. A., Carvalho, R. A., Sobral, P. J. A., Dos Santos, R. M. C., Da Silva, F. B. R., Prison, J. M., Solorza-Feria, J., & Habitante, A. M. Q. B. (2006). Physical properties of edible films based on cassava starch as affected by the plasticizer concentration. Italian Journal of Food Science, 18(5), 167–172.
Bergo, P., Sobral, P. J. A., & Prison, J. M. (2010). Effect of glycerol on physical properties of cassava starch films. Journal of Food Processing and Preservation, 34(SUPPL. 2), 401–410. https://doi.org/10.1111/j.1745- 4549.2008.00282.x
Boonsuk, P., Sukolrat, A., Bourkaew, S., Kaewtatip, K., Chantarak, S., Kelarakis, A., & Chaibundit, C. (2021). Structure-properties relationships in alkaline treated rice husk reinforced thermoplastic cassava starch biocomposites. International Journal of Biological Macromolecules, 167, 130–140. https://doi.org/10.1016/j.ijbiomac.2020.11.157
Bucio-Villalobos, C. M., & Martínez-Jaime, O. A. (2016). Actividad antibacteriana de un extracto acuoso de propóleo del municipio de Irapuato, Guanajuato, México. Agronomía Mesoamericana, 28(1), 223. https://doi.org/10.15517/am.v28i1.24253
Caicedo Flaker, C., Ayala Valencia, G., Agudelo Henao, A., & Vargas Zapata, R. (2011). Efecto Del Glicerol En Las Propiedades Eléctricas, Comportamiento De Fase Y Permeabilidad Al Vapor De Agua En Películas Basadas En Almidón De Papa. Revista Colombiana de Física, 42(3), 439.
Carballo Cuevas, B. Z. (2017). Obtención y caracterización de almidones termoplásticos obtenidos a partir de almidones injertados con poliésteres biodegradables. 91. https://cicy.repositorioinstitucional.mx/jspui/bitstream/1003/466/1/PCM_D _Tesis_2017_Cuevas_Zujey.pdf
Carvacrol, C. O. N., Bicapa, F., & Carvacrol, A. C. O. N. (2016). Propiedades Funcionales Y Antimicrobianas De Films Bicapa AlmidónPoliésteres. 2015–2016.
Castro, A. (2016). Polímeros biodegradables y química click. Universidad de Sevilla, 38. https://idus.us.es/xmlui/handle/11441/65106
Cazón, P., Vázquez, M., & Velazquez, G. (2018). Cellulose-glycerolpolyvinyl alcohol composite films for food packaging: Evaluation of water adsorption, mechanical properties, light-barrier properties and transparency. Carbohydrate Polymers, 195, 432–443. https://doi.org/10.1016/j.carbpol.2018.04.120
Cazón, P., Velázquez, G., & Vázquez, M. (2019). Characterization of bacterial cellulose films combined with chitosan and polyvinyl alcohol: Evaluation of mechanical and barrier properties. Carbohydrate Polymers, 216(February), 72–85. https://doi.org/10.1016/j.carbpol.2019.03.093
Cazón, P., Velazquez, G., & Vázquez, M. (2019). Novel composite films from regenerated cellulose-glycerol-polyvinyl alcohol: Mechanical and barrier properties. Food Hydrocolloids, 89, 481–491. https://doi.org/10.1016/j.foodhyd.2018.11.012
Cazón, P., Velazquez, G., & Vázquez, M. (2020). Characterization of mechanical and barrier properties of bacterial cellulose, glycerol and polyvinyl alcohol (PVOH) composite films with eco-friendly UV-protective properties. Food Hydrocolloids, 99(May 2019), 105323. https://doi.org/10.1016/j.foodhyd.2019.105323
Chiosso, M. E. (2019). Desarrollo de catalizadores sólidos ácidos para la eterificación de glicerol obtenido en la producción de biodiésel.
Ciannamea, E. M., Castillo, L. A., Barbosa, S. E., & De Angelis, M. G. (2018). Barrier properties and mechanical strength of bio-renewable, heatsealable films based on gelatin, glycerol and soybean oil for sustainable food packaging. Reactive and Functional Polymers, 125, 29–36. https://doi.org/10.1016/j.reactfunctpolym.2018.02.001
Cinthya Rivera, T. T. (2014). Obtención de películas biodegradables a partir de almidón de yuca (Manihot escu/enta Crantz) doblemente modificado para uso en empaque de alimentos. 147.
Colivet, J., & Carvalho, R. A. (2017). Hydrophilicity and physicochemical properties of chemically modified cassava starch films. Industrial Crops and Products, 95, 599–607. https://doi.org/10.1016/j.indcrop.2016.11.018
Costa, S. S., Miranda, A. L., de Morais, M. G., Costa, J. A. V., & Druzian, J. I. (2019). Microalgae as source of polyhydroxyalkanoates (PHAs) — A review. International Journal of Biological Macromolecules, 131, 536–547. https://doi.org/10.1016/j.ijbiomac.2019.03.099
Crawford, R. J., & Martin, P. J. (2020). General properties of plastics. In Plastics Engineering. https://doi.org/10.1016/b978-0-08-100709-9.00001-7
Delgado, K. L., Varona, G. A., Montilla, C. E., & Villada, H. S. (2016). Efecto del aditivo tween 80 y de la temperatura de procesamiento en las propiedades mecánicas de tensión de películas flexibles elaboradas a partir de almidón de yuca termoplástico. Informacion Tecnologica, 27(6), 145–152. https://doi.org/10.4067/S0718-07642016000600015
Díaz, A., Sánchez, J., Gallego, A., & Guiberteau, F. (2009). Estudio técnico sobre la rotura de presión de PVC. XIII Congreso Internacional de Ingeniería de Proyectos, 1(1), 511–517.
Ding, L., Xie, Z., Fu, X., Wang, Z., Huang, Q., & Zhang, B. (2021). Structural and in vitro starch digestion properties of potato parenchyma cells: Effects of gelatinization degree. Food Hydrocolloids, 113(August), 106464. https://doi.org/10.1016/j.foodhyd.2020.106464
Xia, C., Wang, W., Wang, L., Liu, H., & Xiao, J. (2019). Multilayer zein/gelatin films with tunable water barrier property and prolonged antioxidant activity. Food Packaging and Shelf Life, 19(November 2018), 76–85. https://doi.org/10.1016/j.fpsl.2018.12.004
Yang, Z., Peng, H., Wang, W., & Liu, T. (2010). Crystallization behavior of poly(ε-caprolactone)/layered double hydroxide nanocomposites. Journal of Applied Polymer Science, 116(5), 2658–2667. https://doi.org/10.1002/app
Zehetmeyer, G., Scheibel, J. M., Soares, R. M. D., Weibel, D. E., Oviedo, M. A. S., & Oliveira, R. V. B. (2013). Morphological, optical, and barrier properties of PP/MMT nanocomposites. Polymer Bulletin, 70(8), 2181– 2191. https://doi.org/10.1007/s00289-013-0929-9
Zhang, B., Huang, C., Zhao, H., Wang, J., Yin, C., Zhang, L., & Zhao, Y. (2019). Eects of cellulose nanocrystals and cellulose nanofibers on the structure and properties of polyhydroxybutyrate nanocomposites. Polymers, 11(12). https://doi.org/10.3390/polym11122063
Zhao, Y., Huerta, R. R., & Saldaña, M. D. A. (2019). Use of subcritical water technology to develop cassava starch/chitosan/gallic acid bioactive films reinforced with cellulose nanofibers from canola straw. Journal of Supercritical Fluids, 148(February), 55–65. https://doi.org/10.1016/j.supflu.2019.02.022
Zhu, J., Zhao, F., Xiong, R., Peng, T., Ma, Y., Hu, J., Xie, L., & Jiang, C. (2020). Thermal insulation and flame retardancy of attapulgite reinforced gelatin-based composite aerogel with enhanced strength properties. Composites Part A: Applied Science and Manufacturing, 138(July), 106040. https://doi.org/10.1016/j.compositesa.2020.106040
Zhu, Q., Wang, J., Sun, J., & Wang, Q. (2020). Preparation, characterization, and oxygen barrier properties of regenerated cellulose/polyvinyl alcohol blend films. BioResources, 15(2), 2735–2746.
dc.rights.spa.fl_str_mv Derechos Reservados - Universidad ECCI 2021
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Derechos Reservados - Universidad ECCI 2021
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 103 p.
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad ECCI
dc.publisher.place.spa.fl_str_mv Colombia
dc.publisher.faculty.spa.fl_str_mv Facultad de Ingenierías
institution Universidad ECCI
bitstream.url.fl_str_mv https://repositorio.ecci.edu.co/bitstream/001/1379/1/Trabajo%20de%20grado.pdf
https://repositorio.ecci.edu.co/bitstream/001/1379/2/Cesi%c3%b3n%20de%20Derechos.pdf
https://repositorio.ecci.edu.co/bitstream/001/1379/3/Acta%20de%20grado.pdf
https://repositorio.ecci.edu.co/bitstream/001/1379/4/Anexos.rar
https://repositorio.ecci.edu.co/bitstream/001/1379/5/license.txt
https://repositorio.ecci.edu.co/bitstream/001/1379/6/Trabajo%20de%20grado.pdf.txt
https://repositorio.ecci.edu.co/bitstream/001/1379/8/Cesi%c3%b3n%20de%20Derechos.pdf.txt
https://repositorio.ecci.edu.co/bitstream/001/1379/10/Acta%20de%20grado.pdf.txt
https://repositorio.ecci.edu.co/bitstream/001/1379/7/Trabajo%20de%20grado.pdf.jpg
https://repositorio.ecci.edu.co/bitstream/001/1379/9/Cesi%c3%b3n%20de%20Derechos.pdf.jpg
https://repositorio.ecci.edu.co/bitstream/001/1379/11/Acta%20de%20grado.pdf.jpg
bitstream.checksum.fl_str_mv 035d21712b5b3d710aaa65af4b41607c
26f88773193e2f4bc0148b06e1ba28a2
3e4655e13d4b01242af0c84addd8ede9
f39aefbd64d092aced7a0831ed130d58
88794144ff048353b359a3174871b0d5
0aeb1d44a34e6fdab93b021d6917e178
2228e977ebea8966e27929f43e39cb67
a52ab64677d129c92e0d11b2a947b09d
8fd1f0d22c0537db1247a71c5c33dcf9
0c7a2c6dca75c182956f8505b5524a7d
060879c3e818f318cc855113bd19655e
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Digital Universidad ECCI
repository.mail.fl_str_mv repositorio.institucional@ecci.edu.co
_version_ 1814100575955976192
spelling Moreno Guarín, Diana Catalina70d90b540df9c2f72d45537c95bdfd1dOrtiz Mateus, Luis Fernandoe1b93d4259f86e06577d813aa80c372bTriana, Camilo Andres43c7fd0e86e4f6a2b325d9cff7a2905dAldana Sánchez, Juan Camiloead729b35b053ff7b180445c0007ac7a2021-08-26T21:24:15Z2021-08-26T21:24:15Z2021https://repositorio.ecci.edu.co/handle/001/1379Considerando la gran problemática ecológica que produce el consumo masivo de plástico, se planteó como objetivo formular un sustituyente para mitigar la contaminación de petroquímicos con altas emisiones de gases de efecto invernadero y daños directos a la biodiversidad. Adicionalmente, la explosión demográfica ha incrementado la demanda de productos alimenticios procesados, incrementando a su vez la producción de material polimérico para su envase y distribución. Inicialmente se hizo un análisis de biopolímeros de diferentes procedencias que tuvieran como factor común, un índice considerable de degradación, determinando que los de tipo polisacárido cumplen con los requerimientos iniciales para considerarse una materia prima base viable en términos de adquisición y almacenamiento. Como resultado el almidón de yuca de origen nativo cumplió con las características necesarias, sin embargo, al compararse con los polímeros convencionales y de mayor demanda en la elaboración de empaques como el PP y el PS, presenta una desventaja con respecto a las propiedades fisicoquímicas. Es por ello, que después de analizar las propiedades de dichos polímeros convencionales se concluyó que el almidón de yuca por sí solo como material no era bastante fuerte, resistente e impermeable; teniendo en cuenta este hallazgo, se planteó la modificación química de este con Quitosano, incluyendo al proceso una serie de plastificantes como el glicerol, agua destilada y extracto de propóleo en etanol en diferentes concentraciones que funcionan como reactivos para la mejora de propiedades importantes como mecánicas, físicas, de barrera y propiedades antimicrobianas. Luego de esto, con el fin de hacer un filme o película con mejores propiedades de barrera ya que hasta ahora no eran tan aceptables, se investigaron diferentes fuentes de residuos aprovechables que sirvieran como aditivo para aportar a la obtención de un biopolímero que funcionara como material para crear empaques en el sector alimenticio, usando la cáscara de uva y sus semillas que según nuestras investigaciones exploratorias cuentan con buenas características de barrera, que al ser adicionadas a nuestro proceso de modificación química del almidón de yuca y los demás plastificantes ya nombrados, otorgaba un aumento en la permeabilidad al agua y el coeficiente de permeabilidad al vapor, así mismo como su resistencia a la tracción y resistencia al impacto. Finalmente hubo una investigación de la maquinaria requerida y el proceso de obtención, en el que paralelamente se estudió la viabilidad en costos la producción de un lote de 1 kg de la película biodegradable. Posteriormente se contrastó con la producción de empaques plásticos de origen petroquímico concluyendo que el proceso de obtención de un bioplástico es un poco más costoso que el de los polímeros normales, pero que produciendo a mayor escala podría llegar a ser competitivo por valor unitario y que ambientalmente haría un impacto muy positivo para la industria alimenticia, la cual en la actualidad depende de los materiales poliméricos para su envase y empaque.Considering the great ecological problem produced by the massive consumption of plastic, the objective was to formulate a substitute to mitigate petrochemical pollution with high greenhouse gas emissions and direct damage to biodiversity. Additionally, the demographic explosion has increased the demand for processed food products, in turn increasing the production of polymeric material for packaging and distribution. Initially, an analysis was made of biopolymers from different sources that had as a common factor, a considerable degradation index, determining that the polysaccharide type met the initial requirements to be considered a viable base raw material in terms of acquisition and storage. As a result, the native cassava starch fulfilled the necessary characteristics, however, when compared with conventional polymers and those of greater demand in the manufacture of packaging such as PP and PS, it presents a disadvantage with respect to physicochemical properties. That is why, after analyzing the properties of said conventional polymers, it was concluded that cassava starch by itself as a material was not strong, resistant and waterproof enough; Taking this finding into account, the chemical modification of this with Chitosan was proposed, including in the process a series of plasticizers such as glycerol, distilled water and propolis extract in ethanol in different concentrations that function as reagents for the improvement of important properties such as mechanical , physical, barrier and antimicrobial properties. After this, in order to make a film with better barrier properties since until now they were not so acceptable, different sources of usable waste were investigated that would serve as additives to contribute to obtaining a biopolymer that would function as a material to create packaging in the food sector, using the grape peel and its seeds that according to our exploratory research have good barrier characteristics, which when added to our process of chemical modification of the cassava starch and the other plasticizers already named, gave an increase in water permeability and vapor permeability coefficient, as well as its tensile strength and impact resistance. Finally, there was an investigation of the required machinery and the obtaining process, in which the cost feasibility of producing a 1 kg batch of biodegradable film was studied in parallel. Subsequently, it was contrasted with the production of plastic packaging of petrochemical origin, concluding that the process of obtaining a bioplastic is a little more expensive than that of normal polymers, but that producing on a larger scale could become competitive by unit value and that environmentally it would have a very positive impact for the food industry, which currently relies on polymeric materials for its packaging.CONTENIDO Agradecimientos. 3 Contenido 4 LISTA DE TABLAS 6 LISTA DE GRÁFICAS 7 LISTA DE FIGURAS 7 LISTA DE SÍMBOLOS Y ABREVIATURAS 8 RESUMEN 1 ABSTRACT 2 INTRODUCCIÓN 4 1. PLANTEAMIENTO DEL PROBLEMA 6 2. JUSTIFICACIÓN DEL PROBLEMA 7 3. OBJETIVOS 8 3.1 Objetivo general 8 3.2 Objetivos específicos 8 4. HIPÓTESIS 9 5. MARCO TEÓRICO 10 5.1 Generalidades de los polímeros. 10 5.2 Migración de materiales plásticos. 11 5.3 Generalidades de los biopolímeros 12 5.3.1 Cambios moleculares de los biopolímeros. 13 5.3.2 Aplicaciones 14 5.4. La yuca y su almidón. 14 5.5. Generalidades de los filmes y revestimientos 17 5.6. Envases en la industria de los helados. 17 5.7. Análisis de biopolímeros que logren sustituir a los polímeros de origen fósil 18 5.7.1. Propiedades para la elaboración de empaques: 19 6. DISEÑO METODOLÓGICO 20 6.1. Proceso de búsqueda de información 20 6.2. Ecuaciones de búsqueda. 21 6.3 Caracterización de polímeros convencionales y naturales 23 6.4 Ajuste de la formulación del almidón de yuca nativo 23 6.5 Costeo para la producción del biopolímero modificado 24 7. RESULTADOS 26 7.1. Polímeros: 26 7.1.1. Propiedades físicas 26 7.1.2. Propiedades mecánicas 27 7.1.3. Propiedades térmicas 28 7.1.4. Propiedades de barrera 29 7.1.5. Análisis de Polímeros 30 7.2. Biopolímeros: 31 7.2.1. Propiedades físicas 31 7.2.2. Propiedades mecánicas 32 7.2.3. Propiedades térmicas 34 7.2.4. Propiedades de barrera 36 7.2.5. Análisis de Biopolímeros 37 7.3. Almidones termoplásticos 38 7.3.1. Propiedades físicas 39 7.3.2. Propiedades mecánicas 40 7.3.3. Propiedades térmicas 41 7.3.4. Propiedades de barrera 42 7.3.5. Análisis de almidones termoplásticos 44 7.4. Modificación del almidón de yuca 44 7.4.4. Confirmación de la modificación del almidón 46 7.5. . Formulación de posibles aditivos y plastificantes 47 7.5.1. Plastificantes 47 7.5.1.1. Glicerina o glicerol 48 7.5.1.2. Agua destilada 50 7.5.2. Aditivos: 50 7.5.3. Modificador químico 51 7.5.3.1.1. Quitina y quitosano 51 7.5.3.1.2. Propiedades del quitosano. 52 7.5.4. Extracto de propóleo en etanol y cera de abejas 52 7.5.5. Uva 53 7.5.5.1.1. Cáscara o piel de uva 54 8. FORMULACIÓN DEL BIOPLÁSTICO: 55 8.1. Proceso productivo de biopolímero de almidón de yuca 56 8.2. Equipo necesario 58 8.3. Determinación de los costos y la viabilidad de la obtención del bioplástico. 59 CONCLUSIONES 65 BIBLIOGRAFÍA 1 ANEXOS 28PregradoIngeniero en IndustrialIngeniería Industrial103 p.application/pdfspaUniversidad ECCIColombiaFacultad de IngenieríasDerechos Reservados - Universidad ECCI 2021info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Formulación teórica para la obtención de filmes y revestimientos a base de almidón de yucaTrabajo de grado - Pregradohttp://purl.org/coar/resource_type/c_7a1fTextinfo:eu-repo/semantics/bachelorThesishttps://purl.org/redcol/resource_type/TPhttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/version/c_dc82b40f9837b551Abdullah, Z. W., Dong, Y., Han, N., & Liu, S. (2019). Water and gas barrier properties of polyvinyl alcohol (PVA)/starch (ST)/ glycerol (GL)/halloysite nanotube (HNT) bionanocomposite films: Experimental characterisation and modelling approach. Composites Part B: Engineering, 174(February), 107033. https://doi.org/10.1016/j.compositesb.2019.107033Acosta, S. (2014). Propiedades de films de almidòn de Yuca y Gelatina. Incorporacion de aceites Esenciales con efecto antimicrobiano. Tesis Doctoral.Afinidad, I. (2020). Afin Idad 591. JOURNAL OF CHEMICAL ENGINEERING, THEORETICAL AND APPLIED CHEMISTRY EDITED BY AIQS, 77(591), 164–242. https://www.raco.cat/index.php/afinidad/article/download/377475/470782/Aguilera-Otíz, M., Reza-Vargas, M. del C., Chew-Madinaveita, R. G., & Meza-Velázquez, J. A. (2011). Propiedades Funcionales De Las Antocianinas. BIOtecnia, 13(2), 16. https://doi.org/10.18633/bt.v13i2.81AINIA. (2015). La correcta especificación de los envases. Centro Tecnológico Agroalimentario, 36. https://www.ecoembes.com/sites/default/files/archivos_publicaciones_em presas/la-correcta-especificacion-de-los-envases.pdfAl-Jabareen, A., Al-Bustami, H., Harel, H., & Marom, G. (2013). Improving the oxygen barrier properties of polyethylene terephthalate by graphite nanoplatelets. Journal of Applied Polymer Science, 128(3), 1534–1539. https://doi.org/10.1002/app.38302Almario, A., & Durango, L. (2018). Estudio de las propiedades absorbentes de un biopolímero a base de almidón de yuca. Espacios, 39, 15.Amin, M., Putra, N., Kosasih, E. A., Prawiro, E., Luanto, R. A., & Mahlia, T. M. I. (2017). Thermal properties of beeswax/graphene phase change material as energy storage for building applications. Applied Thermal Engineering, 112, 273–280.Amjadi, M., & Fatemi, A. (2021). Creep behavior and modeling of highdensity polyethylene (HDPE). Polymer Testing, 94(December 2020), 107031. https://doi.org/10.1016/j.polymertesting.2020.107031Arias, B. N. (2016). El consumo responsable: educar para la sostenibilidad ambiental. Aibi Revista de Investigación, Administración e Ingeniería, 29– 34. https://doi.org/10.15649/2346030x.385Aristizábal, J., & Sánchez, T. (2010). Guía técnica para producción y análisis de almidón de yuca. Fao, 163, 134. https://doi.org/9253056770- 9789253056774Arrieta, M. P., Fortunati, E., Dominici, F., & Ray, E. (2014). PLA-PHB / cellulose based fi lms : Mechanical , barrier and disintegration properties. 107.Astudillo, J. (2017). ELABORACIÓN DE UN RECUBRIMIENTO COMESTIBLE A BASE DE ALMIDÓN DE MAÍZ Y DE YUCA PARA TOMATE CHONTO. Vol37, No., 1–27. https://ci.nii.ac.jp/naid/40021243259/Aulin, C., Karabulut, E., Tran, A., Waìšgberg, L., & Lindström, T. (2013). Transparent nanocellulosic multilayer thin films on polylactic acid with tunable gas barrier properties. ACS Applied Materials and Interfaces, 5(15), 7352–7359. https://doi.org/10.1021/am401700nAuras, R., Harte, B., & Selke, S. (2014). Effect of water on the oxygen barrier properties of poly(ethylene terephthalate) and polylactide films. Journal of Applied Polymer Science, 92(3), 1790–1803. https://doi.org/10.1002/app.20148Ayala, J. (2014). DETERMINACIÓN DE LA RESISTENCIA A LA TRACCIÓN Y TENACIDAD DE UN MATERIAL COMPUESTO A PARTIR DE BAGAZO DE CAÑA DE AZUCAR Y ALMIDON DE YUCA, A TRAVÉS DE LOS ENSAYOS DE TENSIÓN Y DE IMPACTO CHARPY. 203.Ballesteros-Mártinez, L., Pérez-Cervera, C., & Andrade-Pizarro, R. (2020). Effect of glycerol and sorbitol concentrations on mechanical, optical, and barrier properties of sweet potato starch film. NFS Journal, 20(April), 1–9. https://doi.org/10.1016/j.nfs.2020.06.002Barrios-Hernández, M. L. (2014). Consideraciones de las propiedades mecánicas y térmicas para la elaboración de un ducto de riego a partir de materiales poliméricos postconsumo. Revista Tecnología En Marcha, 27(3), 53. https://doi.org/10.18845/tm.v27i3.2066Basiak, E., Lenart, A., & Debeaufort, F. (2017). Effect of starch type on the physico-chemical properties of edible films. International Journal of Biological Macromolecules, 98, 348–356. https://doi.org/10.1016/j.ijbiomac.2017.01.122Beeva, D. A., Borisov, V. A., Mikitaev, A. K., Ligidov, M. K., Beev, A. A., & Barokova, E. B. (2015). Controlling the barrier properties of polyethylene terephthalate. A review. International Polymer Science and Technology, 42(7), T45–T52. https://doi.org/10.1177/0307174x1504200709Belibi, P. C., Daou, T. J., Ndjaka, J. M. B., Michelin, L., Brendlé, J., Nsomd, B., & Durand, B. (2013). Tensile and water barrier properties of cassava starch composite films reinforced by synthetic zeolite and beidellite. Journal of Food Engineering, 115(3), 339–346. https://doi.org/10.1016/j.jfoodeng.2012.10.027Bergel, B. F., da Luz, L. M., & Santana, R. M. C. (2017). Comparative study of the influence of chitosan as coating of thermoplastic starch foam from potato, cassava and corn starch. Progress in Organic Coatings, 106, 27– 32. https://doi.org/10.1016/j.porgcoat.2017.02.010Bergel, B. F., da Luz, L. M., & Santana, R. M. C. (2018). Effect of poly(lactic acid) coating on mechanical and physical properties of thermoplastic starch foams from potato starch. Progress in Organic Coatings, 118(January), 91– 96. https://doi.org/10.1016/j.porgcoat.2018.01.029Bergo, P. V. A., Carvalho, R. A., Sobral, P. J. A., Dos Santos, R. M. C., Da Silva, F. B. R., Prison, J. M., Solorza-Feria, J., & Habitante, A. M. Q. B. (2006). Physical properties of edible films based on cassava starch as affected by the plasticizer concentration. Italian Journal of Food Science, 18(5), 167–172.Bergo, P., Sobral, P. J. A., & Prison, J. M. (2010). Effect of glycerol on physical properties of cassava starch films. Journal of Food Processing and Preservation, 34(SUPPL. 2), 401–410. https://doi.org/10.1111/j.1745- 4549.2008.00282.xBoonsuk, P., Sukolrat, A., Bourkaew, S., Kaewtatip, K., Chantarak, S., Kelarakis, A., & Chaibundit, C. (2021). Structure-properties relationships in alkaline treated rice husk reinforced thermoplastic cassava starch biocomposites. International Journal of Biological Macromolecules, 167, 130–140. https://doi.org/10.1016/j.ijbiomac.2020.11.157Bucio-Villalobos, C. M., & Martínez-Jaime, O. A. (2016). Actividad antibacteriana de un extracto acuoso de propóleo del municipio de Irapuato, Guanajuato, México. Agronomía Mesoamericana, 28(1), 223. https://doi.org/10.15517/am.v28i1.24253Caicedo Flaker, C., Ayala Valencia, G., Agudelo Henao, A., & Vargas Zapata, R. (2011). Efecto Del Glicerol En Las Propiedades Eléctricas, Comportamiento De Fase Y Permeabilidad Al Vapor De Agua En Películas Basadas En Almidón De Papa. Revista Colombiana de Física, 42(3), 439.Carballo Cuevas, B. Z. (2017). Obtención y caracterización de almidones termoplásticos obtenidos a partir de almidones injertados con poliésteres biodegradables. 91. https://cicy.repositorioinstitucional.mx/jspui/bitstream/1003/466/1/PCM_D _Tesis_2017_Cuevas_Zujey.pdfCarvacrol, C. O. N., Bicapa, F., & Carvacrol, A. C. O. N. (2016). Propiedades Funcionales Y Antimicrobianas De Films Bicapa AlmidónPoliésteres. 2015–2016.Castro, A. (2016). Polímeros biodegradables y química click. Universidad de Sevilla, 38. https://idus.us.es/xmlui/handle/11441/65106Cazón, P., Vázquez, M., & Velazquez, G. (2018). Cellulose-glycerolpolyvinyl alcohol composite films for food packaging: Evaluation of water adsorption, mechanical properties, light-barrier properties and transparency. Carbohydrate Polymers, 195, 432–443. https://doi.org/10.1016/j.carbpol.2018.04.120Cazón, P., Velázquez, G., & Vázquez, M. (2019). Characterization of bacterial cellulose films combined with chitosan and polyvinyl alcohol: Evaluation of mechanical and barrier properties. Carbohydrate Polymers, 216(February), 72–85. https://doi.org/10.1016/j.carbpol.2019.03.093Cazón, P., Velazquez, G., & Vázquez, M. (2019). Novel composite films from regenerated cellulose-glycerol-polyvinyl alcohol: Mechanical and barrier properties. Food Hydrocolloids, 89, 481–491. https://doi.org/10.1016/j.foodhyd.2018.11.012Cazón, P., Velazquez, G., & Vázquez, M. (2020). Characterization of mechanical and barrier properties of bacterial cellulose, glycerol and polyvinyl alcohol (PVOH) composite films with eco-friendly UV-protective properties. Food Hydrocolloids, 99(May 2019), 105323. https://doi.org/10.1016/j.foodhyd.2019.105323Chiosso, M. E. (2019). Desarrollo de catalizadores sólidos ácidos para la eterificación de glicerol obtenido en la producción de biodiésel.Ciannamea, E. M., Castillo, L. A., Barbosa, S. E., & De Angelis, M. G. (2018). Barrier properties and mechanical strength of bio-renewable, heatsealable films based on gelatin, glycerol and soybean oil for sustainable food packaging. Reactive and Functional Polymers, 125, 29–36. https://doi.org/10.1016/j.reactfunctpolym.2018.02.001Cinthya Rivera, T. T. (2014). Obtención de películas biodegradables a partir de almidón de yuca (Manihot escu/enta Crantz) doblemente modificado para uso en empaque de alimentos. 147.Colivet, J., & Carvalho, R. A. (2017). Hydrophilicity and physicochemical properties of chemically modified cassava starch films. Industrial Crops and Products, 95, 599–607. https://doi.org/10.1016/j.indcrop.2016.11.018Costa, S. S., Miranda, A. L., de Morais, M. G., Costa, J. A. V., & Druzian, J. I. (2019). Microalgae as source of polyhydroxyalkanoates (PHAs) — A review. International Journal of Biological Macromolecules, 131, 536–547. https://doi.org/10.1016/j.ijbiomac.2019.03.099Crawford, R. J., & Martin, P. J. (2020). General properties of plastics. In Plastics Engineering. https://doi.org/10.1016/b978-0-08-100709-9.00001-7Delgado, K. L., Varona, G. A., Montilla, C. E., & Villada, H. S. (2016). Efecto del aditivo tween 80 y de la temperatura de procesamiento en las propiedades mecánicas de tensión de películas flexibles elaboradas a partir de almidón de yuca termoplástico. Informacion Tecnologica, 27(6), 145–152. https://doi.org/10.4067/S0718-07642016000600015Díaz, A., Sánchez, J., Gallego, A., & Guiberteau, F. (2009). Estudio técnico sobre la rotura de presión de PVC. XIII Congreso Internacional de Ingeniería de Proyectos, 1(1), 511–517.Ding, L., Xie, Z., Fu, X., Wang, Z., Huang, Q., & Zhang, B. (2021). Structural and in vitro starch digestion properties of potato parenchyma cells: Effects of gelatinization degree. Food Hydrocolloids, 113(August), 106464. https://doi.org/10.1016/j.foodhyd.2020.106464Xia, C., Wang, W., Wang, L., Liu, H., & Xiao, J. (2019). Multilayer zein/gelatin films with tunable water barrier property and prolonged antioxidant activity. Food Packaging and Shelf Life, 19(November 2018), 76–85. https://doi.org/10.1016/j.fpsl.2018.12.004Yang, Z., Peng, H., Wang, W., & Liu, T. (2010). Crystallization behavior of poly(ε-caprolactone)/layered double hydroxide nanocomposites. Journal of Applied Polymer Science, 116(5), 2658–2667. https://doi.org/10.1002/appZehetmeyer, G., Scheibel, J. M., Soares, R. M. D., Weibel, D. E., Oviedo, M. A. S., & Oliveira, R. V. B. (2013). Morphological, optical, and barrier properties of PP/MMT nanocomposites. Polymer Bulletin, 70(8), 2181– 2191. https://doi.org/10.1007/s00289-013-0929-9Zhang, B., Huang, C., Zhao, H., Wang, J., Yin, C., Zhang, L., & Zhao, Y. (2019). Eects of cellulose nanocrystals and cellulose nanofibers on the structure and properties of polyhydroxybutyrate nanocomposites. Polymers, 11(12). https://doi.org/10.3390/polym11122063Zhao, Y., Huerta, R. R., & Saldaña, M. D. A. (2019). Use of subcritical water technology to develop cassava starch/chitosan/gallic acid bioactive films reinforced with cellulose nanofibers from canola straw. Journal of Supercritical Fluids, 148(February), 55–65. https://doi.org/10.1016/j.supflu.2019.02.022Zhu, J., Zhao, F., Xiong, R., Peng, T., Ma, Y., Hu, J., Xie, L., & Jiang, C. (2020). Thermal insulation and flame retardancy of attapulgite reinforced gelatin-based composite aerogel with enhanced strength properties. Composites Part A: Applied Science and Manufacturing, 138(July), 106040. https://doi.org/10.1016/j.compositesa.2020.106040Zhu, Q., Wang, J., Sun, J., & Wang, Q. (2020). Preparation, characterization, and oxygen barrier properties of regenerated cellulose/polyvinyl alcohol blend films. BioResources, 15(2), 2735–2746.BiopolímerosAlmidonesPlásticosPelícula biodegradablePolisacáridoPetroquímicosBiopolymersStarches plasticsBiodegradable filmPolysaccharidePetrochemicalsORIGINALTrabajo de grado.pdfTrabajo de grado.pdfapplication/pdf1748124https://repositorio.ecci.edu.co/bitstream/001/1379/1/Trabajo%20de%20grado.pdf035d21712b5b3d710aaa65af4b41607cMD51Cesión de Derechos.pdfCesión de Derechos.pdfapplication/pdf1643553https://repositorio.ecci.edu.co/bitstream/001/1379/2/Cesi%c3%b3n%20de%20Derechos.pdf26f88773193e2f4bc0148b06e1ba28a2MD52Acta de grado.pdfActa de grado.pdfapplication/pdf322119https://repositorio.ecci.edu.co/bitstream/001/1379/3/Acta%20de%20grado.pdf3e4655e13d4b01242af0c84addd8ede9MD53Anexos.rarAnexos.rarapplication/octet-stream7056148https://repositorio.ecci.edu.co/bitstream/001/1379/4/Anexos.rarf39aefbd64d092aced7a0831ed130d58MD54LICENSElicense.txtlicense.txttext/plain; charset=utf-814798https://repositorio.ecci.edu.co/bitstream/001/1379/5/license.txt88794144ff048353b359a3174871b0d5MD55TEXTTrabajo de grado.pdf.txtTrabajo de grado.pdf.txtExtracted texttext/plain200604https://repositorio.ecci.edu.co/bitstream/001/1379/6/Trabajo%20de%20grado.pdf.txt0aeb1d44a34e6fdab93b021d6917e178MD56Cesión de Derechos.pdf.txtCesión de Derechos.pdf.txtExtracted texttext/plain3https://repositorio.ecci.edu.co/bitstream/001/1379/8/Cesi%c3%b3n%20de%20Derechos.pdf.txt2228e977ebea8966e27929f43e39cb67MD58Acta de grado.pdf.txtActa de grado.pdf.txtExtracted texttext/plain1256https://repositorio.ecci.edu.co/bitstream/001/1379/10/Acta%20de%20grado.pdf.txta52ab64677d129c92e0d11b2a947b09dMD510THUMBNAILTrabajo de grado.pdf.jpgTrabajo de grado.pdf.jpgGenerated Thumbnailimage/jpeg7411https://repositorio.ecci.edu.co/bitstream/001/1379/7/Trabajo%20de%20grado.pdf.jpg8fd1f0d22c0537db1247a71c5c33dcf9MD57Cesión de Derechos.pdf.jpgCesión de Derechos.pdf.jpgGenerated Thumbnailimage/jpeg17634https://repositorio.ecci.edu.co/bitstream/001/1379/9/Cesi%c3%b3n%20de%20Derechos.pdf.jpg0c7a2c6dca75c182956f8505b5524a7dMD59Acta de grado.pdf.jpgActa de grado.pdf.jpgGenerated Thumbnailimage/jpeg12906https://repositorio.ecci.edu.co/bitstream/001/1379/11/Acta%20de%20grado.pdf.jpg060879c3e818f318cc855113bd19655eMD511001/1379oai:repositorio.ecci.edu.co:001/13792024-07-24 16:14:39.843Repositorio Digital Universidad ECCIrepositorio.institucional@ecci.edu.coTEEgT0JSQSAoVEFMIFkgQ09NTyBTRSBERUZJTkUgTcOBUyBBREVMQU5URSkgU0UgT1RPUkdBIEJBSk8gTE9TIFRFUk1JTk9TIERFIEVTVEEgTElDRU5DSUEgUMOaQkxJQ0EgREUgQ1JFQVRJVkUgQ09NTU9OUyAo4oCcTFBDQ+KAnSBPIOKAnExJQ0VOQ0lB4oCdKS4gTEEgT0JSQSBFU1TDgSBQUk9URUdJREEgUE9SIERFUkVDSE9TIERFIEFVVE9SIFkvVSBPVFJBUyBMRVlFUyBBUExJQ0FCTEVTLiBRVUVEQSBQUk9ISUJJRE8gQ1VBTFFVSUVSIFVTTyBRVUUgU0UgSEFHQSBERSBMQSBPQlJBIFFVRSBOTyBDVUVOVEUgQ09OIExBIEFVVE9SSVpBQ0nDk04gUEVSVElORU5URSBERSBDT05GT1JNSURBRCBDT04gTE9TIFTDiVJNSU5PUyBERSBFU1RBIExJQ0VOQ0lBIFkgREUgTEEgTEVZIERFIERFUkVDSE8gREUgQVVUT1IuCk1FRElBTlRFIEVMIEVKRVJDSUNJTyBERSBDVUFMUVVJRVJBIERFIExPUyBERVJFQ0hPUyBRVUUgU0UgT1RPUkdBTiBFTiBFU1RBIExJQ0VOQ0lBLCBVU1RFRCBBQ0VQVEEgWSBBQ1VFUkRBIFFVRURBUiBPQkxJR0FETyBFTiBMT1MgVEVSTUlOT1MgUVVFIFNFIFNFw5FBTEFOIEVOIEVMTEEuIEVMIExJQ0VOQ0lBTlRFIENPTkNFREUgQSBVU1RFRCBMT1MgREVSRUNIT1MgQ09OVEVOSURPUyBFTiBFU1RBIExJQ0VOQ0lBIENPTkRJQ0lPTkFET1MgQSBMQSBBQ0VQVEFDScOTTiBERSBTVVMgVEVSTUlOT1MgWSBDT05ESUNJT05FUy4KMS4gRGVmaW5pY2lvbmVzCmEuCU9icmEgQ29sZWN0aXZhIGVzIHVuYSBvYnJhLCB0YWwgY29tbyB1bmEgcHVibGljYWNpw7NuIHBlcmnDs2RpY2EsIHVuYSBhbnRvbG9nw61hLCBvIHVuYSBlbmNpY2xvcGVkaWEsIGVuIGxhIHF1ZSBsYSBvYnJhIGVuIHN1IHRvdGFsaWRhZCwgc2luIG1vZGlmaWNhY2nDs24gYWxndW5hLCBqdW50byBjb24gdW4gZ3J1cG8gZGUgb3RyYXMgY29udHJpYnVjaW9uZXMgcXVlIGNvbnN0aXR1eWVuIG9icmFzIHNlcGFyYWRhcyBlIGluZGVwZW5kaWVudGVzIGVuIHPDrSBtaXNtYXMsIHNlIGludGVncmFuIGVuIHVuIHRvZG8gY29sZWN0aXZvLiBVbmEgT2JyYSBxdWUgY29uc3RpdHV5ZSB1bmEgb2JyYSBjb2xlY3RpdmEgbm8gc2UgY29uc2lkZXJhcsOhIHVuYSBPYnJhIERlcml2YWRhIChjb21vIHNlIGRlZmluZSBhYmFqbykgcGFyYSBsb3MgcHJvcMOzc2l0b3MgZGUgZXN0YSBsaWNlbmNpYS4gYXF1ZWxsYSBwcm9kdWNpZGEgcG9yIHVuIGdydXBvIGRlIGF1dG9yZXMsIGVuIHF1ZSBsYSBPYnJhIHNlIGVuY3VlbnRyYSBzaW4gbW9kaWZpY2FjaW9uZXMsIGp1bnRvIGNvbiB1bmEgY2llcnRhIGNhbnRpZGFkIGRlIG90cmFzIGNvbnRyaWJ1Y2lvbmVzLCBxdWUgY29uc3RpdHV5ZW4gZW4gc8OtIG1pc21vcyB0cmFiYWpvcyBzZXBhcmFkb3MgZSBpbmRlcGVuZGllbnRlcywgcXVlIHNvbiBpbnRlZ3JhZG9zIGFsIHRvZG8gY29sZWN0aXZvLCB0YWxlcyBjb21vIHB1YmxpY2FjaW9uZXMgcGVyacOzZGljYXMsIGFudG9sb2fDrWFzIG8gZW5jaWNsb3BlZGlhcy4KYi4JT2JyYSBEZXJpdmFkYSBzaWduaWZpY2EgdW5hIG9icmEgYmFzYWRhIGVuIGxhIG9icmEgb2JqZXRvIGRlIGVzdGEgbGljZW5jaWEgbyBlbiDDqXN0YSB5IG90cmFzIG9icmFzIHByZWV4aXN0ZW50ZXMsIHRhbGVzIGNvbW8gdHJhZHVjY2lvbmVzLCBhcnJlZ2xvcyBtdXNpY2FsZXMsIGRyYW1hdGl6YWNpb25lcywg4oCcZmljY2lvbmFsaXphY2lvbmVz4oCdLCB2ZXJzaW9uZXMgcGFyYSBjaW5lLCDigJxncmFiYWNpb25lcyBkZSBzb25pZG/igJ0sIHJlcHJvZHVjY2lvbmVzIGRlIGFydGUsIHJlc8O6bWVuZXMsIGNvbmRlbnNhY2lvbmVzLCBvIGN1YWxxdWllciBvdHJhIGVuIGxhIHF1ZSBsYSBvYnJhIHB1ZWRhIHNlciB0cmFuc2Zvcm1hZGEsIGNhbWJpYWRhIG8gYWRhcHRhZGEsIGV4Y2VwdG8gYXF1ZWxsYXMgcXVlIGNvbnN0aXR1eWFuIHVuYSBvYnJhIGNvbGVjdGl2YSwgbGFzIHF1ZSBubyBzZXLDoW4gY29uc2lkZXJhZGFzIHVuYSBvYnJhIGRlcml2YWRhIHBhcmEgZWZlY3RvcyBkZSBlc3RhIGxpY2VuY2lhLiAoUGFyYSBldml0YXIgZHVkYXMsIGVuIGVsIGNhc28gZGUgcXVlIGxhIE9icmEgc2VhIHVuYSBjb21wb3NpY2nDs24gbXVzaWNhbCBvIHVuYSBncmFiYWNpw7NuIHNvbm9yYSwgcGFyYSBsb3MgZWZlY3RvcyBkZSBlc3RhIExpY2VuY2lhIGxhIHNpbmNyb25pemFjacOzbiB0ZW1wb3JhbCBkZSBsYSBPYnJhIGNvbiB1bmEgaW1hZ2VuIGVuIG1vdmltaWVudG8gc2UgY29uc2lkZXJhcsOhIHVuYSBPYnJhIERlcml2YWRhIHBhcmEgbG9zIGZpbmVzIGRlIGVzdGEgbGljZW5jaWEpLgpjLglMaWNlbmNpYW50ZSwgZXMgZWwgaW5kaXZpZHVvIG8gbGEgZW50aWRhZCB0aXR1bGFyIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBxdWUgb2ZyZWNlIGxhIE9icmEgZW4gY29uZm9ybWlkYWQgY29uIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLgpkLglBdXRvciBvcmlnaW5hbCwgZXMgZWwgaW5kaXZpZHVvIHF1ZSBjcmXDsyBsYSBPYnJhLgplLglPYnJhLCBlcyBhcXVlbGxhIG9icmEgc3VzY2VwdGlibGUgZGUgcHJvdGVjY2nDs24gcG9yIGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IgeSBxdWUgZXMgb2ZyZWNpZGEgZW4gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIGxpY2VuY2lhCmYuCVVzdGVkLCBlcyBlbCBpbmRpdmlkdW8gbyBsYSBlbnRpZGFkIHF1ZSBlamVyY2l0YSBsb3MgZGVyZWNob3Mgb3RvcmdhZG9zIGFsIGFtcGFybyBkZSBlc3RhIExpY2VuY2lhIHkgcXVlIGNvbiBhbnRlcmlvcmlkYWQgbm8gaGEgdmlvbGFkbyBsYXMgY29uZGljaW9uZXMgZGUgbGEgbWlzbWEgcmVzcGVjdG8gYSBsYSBPYnJhLCBvIHF1ZSBoYXlhIG9idGVuaWRvIGF1dG9yaXphY2nDs24gZXhwcmVzYSBwb3IgcGFydGUgZGVsIExpY2VuY2lhbnRlIHBhcmEgZWplcmNlciBsb3MgZGVyZWNob3MgYWwgYW1wYXJvIGRlIGVzdGEgTGljZW5jaWEgcGVzZSBhIHVuYSB2aW9sYWNpw7NuIGFudGVyaW9yLgoyLiBEZXJlY2hvcyBkZSBVc29zIEhvbnJhZG9zIHkgZXhjZXBjaW9uZXMgTGVnYWxlcy4KTmFkYSBlbiBlc3RhIExpY2VuY2lhIHBvZHLDoSBzZXIgaW50ZXJwcmV0YWRvIGNvbW8gdW5hIGRpc21pbnVjacOzbiwgbGltaXRhY2nDs24gbyByZXN0cmljY2nDs24gZGUgbG9zIGRlcmVjaG9zIGRlcml2YWRvcyBkZWwgdXNvIGhvbnJhZG8geSBvdHJhcyBsaW1pdGFjaW9uZXMgbyBleGNlcGNpb25lcyBhIGxvcyBkZXJlY2hvcyBkZWwgYXV0b3IgYmFqbyBlbCByw6lnaW1lbiBsZWdhbCB2aWdlbnRlIG8gZGVyaXZhZG8gZGUgY3VhbHF1aWVyIG90cmEgbm9ybWEgcXVlIHNlIGxlIGFwbGlxdWUuCjMuIENvbmNlc2nDs24gZGUgbGEgTGljZW5jaWEuCkJham8gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIGVsIExpY2VuY2lhbnRlIG90b3JnYSBhIFVzdGVkIHVuYSBsaWNlbmNpYSBtdW5kaWFsLCBsaWJyZSBkZSByZWdhbMOtYXMsIG5vIGV4Y2x1c2l2YSB5IHBlcnBldHVhIChkdXJhbnRlIHRvZG8gZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGVqZXJjZXIgZXN0b3MgZGVyZWNob3Mgc29icmUgbGEgT2JyYSB0YWwgeSBjb21vIHNlIGluZGljYSBhIGNvbnRpbnVhY2nDs246CmEuCVJlcHJvZHVjaXIgbGEgT2JyYSwgaW5jb3Jwb3JhciBsYSBPYnJhIGVuIHVuYSBvIG3DoXMgT2JyYXMgQ29sZWN0aXZhcywgeSByZXByb2R1Y2lyIGxhIE9icmEgaW5jb3Jwb3JhZGEgZW4gbGFzIE9icmFzIENvbGVjdGl2YXM7CmIuCURpc3RyaWJ1aXIgY29waWFzIG8gZm9ub2dyYW1hcyBkZSBsYXMgT2JyYXMsIGV4aGliaXJsYXMgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXJsYXMgcMO6YmxpY2FtZW50ZSB5L28gcG9uZXJsYXMgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EsIGluY2x1ecOpbmRvbGFzIGNvbW8gaW5jb3Jwb3JhZGFzIGVuIE9icmFzIENvbGVjdGl2YXMsIHNlZ8O6biBjb3JyZXNwb25kYTsKYy4JRGlzdHJpYnVpciBjb3BpYXMgZGUgbGFzIE9icmFzIERlcml2YWRhcyBxdWUgc2UgZ2VuZXJlbiwgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYS4KTG9zIGRlcmVjaG9zIG1lbmNpb25hZG9zIGFudGVyaW9ybWVudGUgcHVlZGVuIHNlciBlamVyY2lkb3MgZW4gdG9kb3MgbG9zIG1lZGlvcyB5IGZvcm1hdG9zLCBhY3R1YWxtZW50ZSBjb25vY2lkb3MgbyBxdWUgc2UgaW52ZW50ZW4gZW4gZWwgZnV0dXJvLiBMb3MgZGVyZWNob3MgYW50ZXMgbWVuY2lvbmFkb3MgaW5jbHV5ZW4gZWwgZGVyZWNobyBhIHJlYWxpemFyIGRpY2hhcyBtb2RpZmljYWNpb25lcyBlbiBsYSBtZWRpZGEgcXVlIHNlYW4gdMOpY25pY2FtZW50ZSBuZWNlc2FyaWFzIHBhcmEgZWplcmNlciBsb3MgZGVyZWNob3MgZW4gb3RybyBtZWRpbyBvIGZvcm1hdG9zLCBwZXJvIGRlIG90cmEgbWFuZXJhIHVzdGVkIG5vIGVzdMOhIGF1dG9yaXphZG8gcGFyYSByZWFsaXphciBvYnJhcyBkZXJpdmFkYXMuIFRvZG9zIGxvcyBkZXJlY2hvcyBubyBvdG9yZ2Fkb3MgZXhwcmVzYW1lbnRlIHBvciBlbCBMaWNlbmNpYW50ZSBxdWVkYW4gcG9yIGVzdGUgbWVkaW8gcmVzZXJ2YWRvcywgaW5jbHV5ZW5kbyBwZXJvIHNpbiBsaW1pdGFyc2UgYSBhcXVlbGxvcyBxdWUgc2UgbWVuY2lvbmFuIGVuIGxhcyBzZWNjaW9uZXMgNChkKSB5IDQoZSkuCjQuIFJlc3RyaWNjaW9uZXMuCkxhIGxpY2VuY2lhIG90b3JnYWRhIGVuIGxhIGFudGVyaW9yIFNlY2Npw7NuIDMgZXN0w6EgZXhwcmVzYW1lbnRlIHN1amV0YSB5IGxpbWl0YWRhIHBvciBsYXMgc2lndWllbnRlcyByZXN0cmljY2lvbmVzOgphLglVc3RlZCBwdWVkZSBkaXN0cmlidWlyLCBleGhpYmlyIHDDumJsaWNhbWVudGUsIGVqZWN1dGFyIHDDumJsaWNhbWVudGUsIG8gcG9uZXIgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBzw7NsbyBiYWpvIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLCB5IFVzdGVkIGRlYmUgaW5jbHVpciB1bmEgY29waWEgZGUgZXN0YSBsaWNlbmNpYSBvIGRlbCBJZGVudGlmaWNhZG9yIFVuaXZlcnNhbCBkZSBSZWN1cnNvcyBkZSBsYSBtaXNtYSBjb24gY2FkYSBjb3BpYSBkZSBsYSBPYnJhIHF1ZSBkaXN0cmlidXlhLCBleGhpYmEgcMO6YmxpY2FtZW50ZSwgZWplY3V0ZSBww7pibGljYW1lbnRlIG8gcG9uZ2EgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EuIE5vIGVzIHBvc2libGUgb2ZyZWNlciBvIGltcG9uZXIgbmluZ3VuYSBjb25kaWNpw7NuIHNvYnJlIGxhIE9icmEgcXVlIGFsdGVyZSBvIGxpbWl0ZSBsYXMgY29uZGljaW9uZXMgZGUgZXN0YSBMaWNlbmNpYSBvIGVsIGVqZXJjaWNpbyBkZSBsb3MgZGVyZWNob3MgZGUgbG9zIGRlc3RpbmF0YXJpb3Mgb3RvcmdhZG9zIGVuIGVzdGUgZG9jdW1lbnRvLiBObyBlcyBwb3NpYmxlIHN1YmxpY2VuY2lhciBsYSBPYnJhLiBVc3RlZCBkZWJlIG1hbnRlbmVyIGludGFjdG9zIHRvZG9zIGxvcyBhdmlzb3MgcXVlIGhhZ2FuIHJlZmVyZW5jaWEgYSBlc3RhIExpY2VuY2lhIHkgYSBsYSBjbMOhdXN1bGEgZGUgbGltaXRhY2nDs24gZGUgZ2FyYW50w61hcy4gVXN0ZWQgbm8gcHVlZGUgZGlzdHJpYnVpciwgZXhoaWJpciBww7pibGljYW1lbnRlLCBlamVjdXRhciBww7pibGljYW1lbnRlLCBvIHBvbmVyIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhIGxhIE9icmEgY29uIGFsZ3VuYSBtZWRpZGEgdGVjbm9sw7NnaWNhIHF1ZSBjb250cm9sZSBlbCBhY2Nlc28gbyBsYSB1dGlsaXphY2nDs24gZGUgZWxsYSBkZSB1bmEgZm9ybWEgcXVlIHNlYSBpbmNvbnNpc3RlbnRlIGNvbiBsYXMgY29uZGljaW9uZXMgZGUgZXN0YSBMaWNlbmNpYS4gTG8gYW50ZXJpb3Igc2UgYXBsaWNhIGEgbGEgT2JyYSBpbmNvcnBvcmFkYSBhIHVuYSBPYnJhIENvbGVjdGl2YSwgcGVybyBlc3RvIG5vIGV4aWdlIHF1ZSBsYSBPYnJhIENvbGVjdGl2YSBhcGFydGUgZGUgbGEgb2JyYSBtaXNtYSBxdWVkZSBzdWpldGEgYSBsYXMgY29uZGljaW9uZXMgZGUgZXN0YSBMaWNlbmNpYS4gU2kgVXN0ZWQgY3JlYSB1bmEgT2JyYSBDb2xlY3RpdmEsIHByZXZpbyBhdmlzbyBkZSBjdWFscXVpZXIgTGljZW5jaWFudGUgZGViZSwgZW4gbGEgbWVkaWRhIGRlIGxvIHBvc2libGUsIGVsaW1pbmFyIGRlIGxhIE9icmEgQ29sZWN0aXZhIGN1YWxxdWllciByZWZlcmVuY2lhIGEgZGljaG8gTGljZW5jaWFudGUgbyBhbCBBdXRvciBPcmlnaW5hbCwgc2Vnw7puIGxvIHNvbGljaXRhZG8gcG9yIGVsIExpY2VuY2lhbnRlIHkgY29uZm9ybWUgbG8gZXhpZ2UgbGEgY2zDoXVzdWxhIDQoYykuCmIuCVVzdGVkIG5vIHB1ZWRlIGVqZXJjZXIgbmluZ3VubyBkZSBsb3MgZGVyZWNob3MgcXVlIGxlIGhhbiBzaWRvIG90b3JnYWRvcyBlbiBsYSBTZWNjacOzbiAzIHByZWNlZGVudGUgZGUgbW9kbyBxdWUgZXN0w6luIHByaW5jaXBhbG1lbnRlIGRlc3RpbmFkb3MgbyBkaXJlY3RhbWVudGUgZGlyaWdpZG9zIGEgY29uc2VndWlyIHVuIHByb3ZlY2hvIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLiBFbCBpbnRlcmNhbWJpbyBkZSBsYSBPYnJhIHBvciBvdHJhcyBvYnJhcyBwcm90ZWdpZGFzIHBvciBkZXJlY2hvcyBkZSBhdXRvciwgeWEgc2VhIGEgdHJhdsOpcyBkZSB1biBzaXN0ZW1hIHBhcmEgY29tcGFydGlyIGFyY2hpdm9zIGRpZ2l0YWxlcyAoZGlnaXRhbCBmaWxlLXNoYXJpbmcpIG8gZGUgY3VhbHF1aWVyIG90cmEgbWFuZXJhIG5vIHNlcsOhIGNvbnNpZGVyYWRvIGNvbW8gZXN0YXIgZGVzdGluYWRvIHByaW5jaXBhbG1lbnRlIG8gZGlyaWdpZG8gZGlyZWN0YW1lbnRlIGEgY29uc2VndWlyIHVuIHByb3ZlY2hvIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLCBzaWVtcHJlIHF1ZSBubyBzZSByZWFsaWNlIHVuIHBhZ28gbWVkaWFudGUgdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIGVuIHJlbGFjacOzbiBjb24gZWwgaW50ZXJjYW1iaW8gZGUgb2JyYXMgcHJvdGVnaWRhcyBwb3IgZWwgZGVyZWNobyBkZSBhdXRvci4KYy4JU2kgdXN0ZWQgZGlzdHJpYnV5ZSwgZXhoaWJlIHDDumJsaWNhbWVudGUsIGVqZWN1dGEgcMO6YmxpY2FtZW50ZSBvIGVqZWN1dGEgcMO6YmxpY2FtZW50ZSBlbiBmb3JtYSBkaWdpdGFsIGxhIE9icmEgbyBjdWFscXVpZXIgT2JyYSBEZXJpdmFkYSB1IE9icmEgQ29sZWN0aXZhLCBVc3RlZCBkZWJlIG1hbnRlbmVyIGludGFjdGEgdG9kYSBsYSBpbmZvcm1hY2nDs24gZGUgZGVyZWNobyBkZSBhdXRvciBkZSBsYSBPYnJhIHkgcHJvcG9yY2lvbmFyLCBkZSBmb3JtYSByYXpvbmFibGUgc2Vnw7puIGVsIG1lZGlvIG8gbWFuZXJhIHF1ZSBVc3RlZCBlc3TDqSB1dGlsaXphbmRvOiAoaSkgZWwgbm9tYnJlIGRlbCBBdXRvciBPcmlnaW5hbCBzaSBlc3TDoSBwcm92aXN0byAobyBzZXVkw7NuaW1vLCBzaSBmdWVyZSBhcGxpY2FibGUpLCB5L28gKGlpKSBlbCBub21icmUgZGUgbGEgcGFydGUgbyBsYXMgcGFydGVzIHF1ZSBlbCBBdXRvciBPcmlnaW5hbCB5L28gZWwgTGljZW5jaWFudGUgaHViaWVyZW4gZGVzaWduYWRvIHBhcmEgbGEgYXRyaWJ1Y2nDs24gKHYuZy4sIHVuIGluc3RpdHV0byBwYXRyb2NpbmFkb3IsIGVkaXRvcmlhbCwgcHVibGljYWNpw7NuKSBlbiBsYSBpbmZvcm1hY2nDs24gZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGRlbCBMaWNlbmNpYW50ZSwgdMOpcm1pbm9zIGRlIHNlcnZpY2lvcyBvIGRlIG90cmFzIGZvcm1hcyByYXpvbmFibGVzOyBlbCB0w610dWxvIGRlIGxhIE9icmEgc2kgZXN0w6EgcHJvdmlzdG87IGVuIGxhIG1lZGlkYSBkZSBsbyByYXpvbmFibGVtZW50ZSBmYWN0aWJsZSB5LCBzaSBlc3TDoSBwcm92aXN0bywgZWwgSWRlbnRpZmljYWRvciBVbmlmb3JtZSBkZSBSZWN1cnNvcyAoVW5pZm9ybSBSZXNvdXJjZSBJZGVudGlmaWVyKSBxdWUgZWwgTGljZW5jaWFudGUgZXNwZWNpZmljYSBwYXJhIHNlciBhc29jaWFkbyBjb24gbGEgT2JyYSwgc2Fsdm8gcXVlIHRhbCBVUkkgbm8gc2UgcmVmaWVyYSBhIGxhIG5vdGEgc29icmUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIG8gYSBsYSBpbmZvcm1hY2nDs24gc29icmUgZWwgbGljZW5jaWFtaWVudG8gZGUgbGEgT2JyYTsgeSBlbiBlbCBjYXNvIGRlIHVuYSBPYnJhIERlcml2YWRhLCBhdHJpYnVpciBlbCBjcsOpZGl0byBpZGVudGlmaWNhbmRvIGVsIHVzbyBkZSBsYSBPYnJhIGVuIGxhIE9icmEgRGVyaXZhZGEgKHYuZy4sICJUcmFkdWNjacOzbiBGcmFuY2VzYSBkZSBsYSBPYnJhIGRlbCBBdXRvciBPcmlnaW5hbCwiIG8gIkd1acOzbiBDaW5lbWF0b2dyw6FmaWNvIGJhc2FkbyBlbiBsYSBPYnJhIG9yaWdpbmFsIGRlbCBBdXRvciBPcmlnaW5hbCIpLiBUYWwgY3LDqWRpdG8gcHVlZGUgc2VyIGltcGxlbWVudGFkbyBkZSBjdWFscXVpZXIgZm9ybWEgcmF6b25hYmxlOyBlbiBlbCBjYXNvLCBzaW4gZW1iYXJnbywgZGUgT2JyYXMgRGVyaXZhZGFzIHUgT2JyYXMgQ29sZWN0aXZhcywgdGFsIGNyw6lkaXRvIGFwYXJlY2Vyw6EsIGNvbW8gbcOtbmltbywgZG9uZGUgYXBhcmVjZSBlbCBjcsOpZGl0byBkZSBjdWFscXVpZXIgb3RybyBhdXRvciBjb21wYXJhYmxlIHkgZGUgdW5hIG1hbmVyYSwgYWwgbWVub3MsIHRhbiBkZXN0YWNhZGEgY29tbyBlbCBjcsOpZGl0byBkZSBvdHJvIGF1dG9yIGNvbXBhcmFibGUuCmQuCVBhcmEgZXZpdGFyIHRvZGEgY29uZnVzacOzbiwgZWwgTGljZW5jaWFudGUgYWNsYXJhIHF1ZSwgY3VhbmRvIGxhIG9icmEgZXMgdW5hIGNvbXBvc2ljacOzbiBtdXNpY2FsOgppLglSZWdhbMOtYXMgcG9yIGludGVycHJldGFjacOzbiB5IGVqZWN1Y2nDs24gYmFqbyBsaWNlbmNpYXMgZ2VuZXJhbGVzLiBFbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gZXhjbHVzaXZvIGRlIGF1dG9yaXphciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIG8gbGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGRlIGxhIG9icmEgeSBkZSByZWNvbGVjdGFyLCBzZWEgaW5kaXZpZHVhbG1lbnRlIG8gYSB0cmF2w6lzIGRlIHVuYSBzb2NpZWRhZCBkZSBnZXN0acOzbiBjb2xlY3RpdmEgZGUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIChwb3IgZWplbXBsbywgU0FZQ08pLCBsYXMgcmVnYWzDrWFzIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIG8gcG9yIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIChwb3IgZWplbXBsbyBXZWJjYXN0KSBsaWNlbmNpYWRhIGJham8gbGljZW5jaWFzIGdlbmVyYWxlcywgc2kgbGEgaW50ZXJwcmV0YWNpw7NuIG8gZWplY3VjacOzbiBkZSBsYSBvYnJhIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBvcmllbnRhZGEgcG9yIG8gZGlyaWdpZGEgYSBsYSBvYnRlbmNpw7NuIGRlIHVuYSB2ZW50YWphIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLgppaS4JUmVnYWzDrWFzIHBvciBGb25vZ3JhbWFzLiBFbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gZXhjbHVzaXZvIGRlIHJlY29sZWN0YXIsIGluZGl2aWR1YWxtZW50ZSBvIGEgdHJhdsOpcyBkZSB1bmEgc29jaWVkYWQgZGUgZ2VzdGnDs24gY29sZWN0aXZhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIHkgZGVyZWNob3MgY29uZXhvcyAocG9yIGVqZW1wbG8sIGxvcyBjb25zYWdyYWRvcyBwb3IgbGEgU0FZQ08pLCB1bmEgYWdlbmNpYSBkZSBkZXJlY2hvcyBtdXNpY2FsZXMgbyBhbGfDum4gYWdlbnRlIGRlc2lnbmFkbywgbGFzIHJlZ2Fsw61hcyBwb3IgY3VhbHF1aWVyIGZvbm9ncmFtYSBxdWUgVXN0ZWQgY3JlZSBhIHBhcnRpciBkZSBsYSBvYnJhICjigJx2ZXJzacOzbiBjb3ZlcuKAnSkgeSBkaXN0cmlidXlhLCBlbiBsb3MgdMOpcm1pbm9zIGRlbCByw6lnaW1lbiBkZSBkZXJlY2hvcyBkZSBhdXRvciwgc2kgbGEgY3JlYWNpw7NuIG8gZGlzdHJpYnVjacOzbiBkZSBlc2EgdmVyc2nDs24gY292ZXIgZXN0w6EgcHJpbW9yZGlhbG1lbnRlIGRlc3RpbmFkYSBvIGRpcmlnaWRhIGEgb2J0ZW5lciB1bmEgdmVudGFqYSBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYS4KZS4JR2VzdGnDs24gZGUgRGVyZWNob3MgZGUgQXV0b3Igc29icmUgSW50ZXJwcmV0YWNpb25lcyB5IEVqZWN1Y2lvbmVzIERpZ2l0YWxlcyAoV2ViQ2FzdGluZykuIFBhcmEgZXZpdGFyIHRvZGEgY29uZnVzacOzbiwgZWwgTGljZW5jaWFudGUgYWNsYXJhIHF1ZSwgY3VhbmRvIGxhIG9icmEgc2VhIHVuIGZvbm9ncmFtYSwgZWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSBhdXRvcml6YXIgbGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGRlIGxhIG9icmEgKHBvciBlamVtcGxvLCB3ZWJjYXN0KSB5IGRlIHJlY29sZWN0YXIsIGluZGl2aWR1YWxtZW50ZSBvIGEgdHJhdsOpcyBkZSB1bmEgc29jaWVkYWQgZGUgZ2VzdGnDs24gY29sZWN0aXZhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIHkgZGVyZWNob3MgY29uZXhvcyAocG9yIGVqZW1wbG8sIEFDSU5QUk8pLCBsYXMgcmVnYWzDrWFzIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8sIHdlYmNhc3QpLCBzdWpldGEgYSBsYXMgZGlzcG9zaWNpb25lcyBhcGxpY2FibGVzIGRlbCByw6lnaW1lbiBkZSBEZXJlY2hvIGRlIEF1dG9yLCBzaSBlc3RhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBlc3TDoSBwcmltb3JkaWFsbWVudGUgZGlyaWdpZGEgYSBvYnRlbmVyIHVuYSB2ZW50YWphIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLgo1LiBSZXByZXNlbnRhY2lvbmVzLCBHYXJhbnTDrWFzIHkgTGltaXRhY2lvbmVzIGRlIFJlc3BvbnNhYmlsaWRhZC4KQSBNRU5PUyBRVUUgTEFTIFBBUlRFUyBMTyBBQ09SREFSQU4gREUgT1RSQSBGT1JNQSBQT1IgRVNDUklUTywgRUwgTElDRU5DSUFOVEUgT0ZSRUNFIExBIE9CUkEgKEVOIEVMIEVTVEFETyBFTiBFTCBRVUUgU0UgRU5DVUVOVFJBKSDigJxUQUwgQ1VBTOKAnSwgU0lOIEJSSU5EQVIgR0FSQU5Uw41BUyBERSBDTEFTRSBBTEdVTkEgUkVTUEVDVE8gREUgTEEgT0JSQSwgWUEgU0VBIEVYUFJFU0EsIElNUEzDjUNJVEEsIExFR0FMIE8gQ1VBTFFVSUVSQSBPVFJBLCBJTkNMVVlFTkRPLCBTSU4gTElNSVRBUlNFIEEgRUxMQVMsIEdBUkFOVMONQVMgREUgVElUVUxBUklEQUQsIENPTUVSQ0lBQklMSURBRCwgQURBUFRBQklMSURBRCBPIEFERUNVQUNJw5NOIEEgUFJPUMOTU0lUTyBERVRFUk1JTkFETywgQVVTRU5DSUEgREUgSU5GUkFDQ0nDk04sIERFIEFVU0VOQ0lBIERFIERFRkVDVE9TIExBVEVOVEVTIE8gREUgT1RSTyBUSVBPLCBPIExBIFBSRVNFTkNJQSBPIEFVU0VOQ0lBIERFIEVSUk9SRVMsIFNFQU4gTyBOTyBERVNDVUJSSUJMRVMgKFBVRURBTiBPIE5PIFNFUiBFU1RPUyBERVNDVUJJRVJUT1MpLiBBTEdVTkFTIEpVUklTRElDQ0lPTkVTIE5PIFBFUk1JVEVOIExBIEVYQ0xVU0nDk04gREUgR0FSQU5Uw41BUyBJTVBMw41DSVRBUywgRU4gQ1VZTyBDQVNPIEVTVEEgRVhDTFVTScOTTiBQVUVERSBOTyBBUExJQ0FSU0UgQSBVU1RFRC4KNi4gTGltaXRhY2nDs24gZGUgcmVzcG9uc2FiaWxpZGFkLgpBIE1FTk9TIFFVRSBMTyBFWElKQSBFWFBSRVNBTUVOVEUgTEEgTEVZIEFQTElDQUJMRSwgRUwgTElDRU5DSUFOVEUgTk8gU0VSw4EgUkVTUE9OU0FCTEUgQU5URSBVU1RFRCBQT1IgREHDkU8gQUxHVU5PLCBTRUEgUE9SIFJFU1BPTlNBQklMSURBRCBFWFRSQUNPTlRSQUNUVUFMLCBQUkVDT05UUkFDVFVBTCBPIENPTlRSQUNUVUFMLCBPQkpFVElWQSBPIFNVQkpFVElWQSwgU0UgVFJBVEUgREUgREHDkU9TIE1PUkFMRVMgTyBQQVRSSU1PTklBTEVTLCBESVJFQ1RPUyBPIElORElSRUNUT1MsIFBSRVZJU1RPUyBPIElNUFJFVklTVE9TIFBST0RVQ0lET1MgUE9SIEVMIFVTTyBERSBFU1RBIExJQ0VOQ0lBIE8gREUgTEEgT0JSQSwgQVVOIENVQU5ETyBFTCBMSUNFTkNJQU5URSBIQVlBIFNJRE8gQURWRVJUSURPIERFIExBIFBPU0lCSUxJREFEIERFIERJQ0hPUyBEQcORT1MuIEFMR1VOQVMgTEVZRVMgTk8gUEVSTUlURU4gTEEgRVhDTFVTScOTTiBERSBDSUVSVEEgUkVTUE9OU0FCSUxJREFELCBFTiBDVVlPIENBU08gRVNUQSBFWENMVVNJw5NOIFBVRURFIE5PIEFQTElDQVJTRSBBIFVTVEVELgo3LiBUw6lybWluby4KYS4JRXN0YSBMaWNlbmNpYSB5IGxvcyBkZXJlY2hvcyBvdG9yZ2Fkb3MgZW4gdmlydHVkIGRlIGVsbGEgdGVybWluYXLDoW4gYXV0b23DoXRpY2FtZW50ZSBzaSBVc3RlZCBpbmZyaW5nZSBhbGd1bmEgY29uZGljacOzbiBlc3RhYmxlY2lkYSBlbiBlbGxhLiBTaW4gZW1iYXJnbywgbG9zIGluZGl2aWR1b3MgbyBlbnRpZGFkZXMgcXVlIGhhbiByZWNpYmlkbyBPYnJhcyBEZXJpdmFkYXMgbyBDb2xlY3RpdmFzIGRlIFVzdGVkIGRlIGNvbmZvcm1pZGFkIGNvbiBlc3RhIExpY2VuY2lhLCBubyB2ZXLDoW4gdGVybWluYWRhcyBzdXMgbGljZW5jaWFzLCBzaWVtcHJlIHF1ZSBlc3RvcyBpbmRpdmlkdW9zIG8gZW50aWRhZGVzIHNpZ2FuIGN1bXBsaWVuZG8gw61udGVncmFtZW50ZSBsYXMgY29uZGljaW9uZXMgZGUgZXN0YXMgbGljZW5jaWFzLiBMYXMgU2VjY2lvbmVzIDEsIDIsIDUsIDYsIDcsIHkgOCBzdWJzaXN0aXLDoW4gYSBjdWFscXVpZXIgdGVybWluYWNpw7NuIGRlIGVzdGEgTGljZW5jaWEuCmIuCVN1amV0YSBhIGxhcyBjb25kaWNpb25lcyB5IHTDqXJtaW5vcyBhbnRlcmlvcmVzLCBsYSBsaWNlbmNpYSBvdG9yZ2FkYSBhcXXDrSBlcyBwZXJwZXR1YSAoZHVyYW50ZSBlbCBwZXLDrW9kbyBkZSB2aWdlbmNpYSBkZSBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgbGEgb2JyYSkuIE5vIG9ic3RhbnRlIGxvIGFudGVyaW9yLCBlbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gYSBwdWJsaWNhciB5L28gZXN0cmVuYXIgbGEgT2JyYSBiYWpvIGNvbmRpY2lvbmVzIGRlIGxpY2VuY2lhIGRpZmVyZW50ZXMgbyBhIGRlamFyIGRlIGRpc3RyaWJ1aXJsYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGVzdGEgTGljZW5jaWEgZW4gY3VhbHF1aWVyIG1vbWVudG87IGVuIGVsIGVudGVuZGlkbywgc2luIGVtYmFyZ28sIHF1ZSBlc2EgZWxlY2Npw7NuIG5vIHNlcnZpcsOhIHBhcmEgcmV2b2NhciBlc3RhIGxpY2VuY2lhIG8gcXVlIGRlYmEgc2VyIG90b3JnYWRhICwgYmFqbyBsb3MgdMOpcm1pbm9zIGRlIGVzdGEgbGljZW5jaWEpLCB5IGVzdGEgbGljZW5jaWEgY29udGludWFyw6EgZW4gcGxlbm8gdmlnb3IgeSBlZmVjdG8gYSBtZW5vcyBxdWUgc2VhIHRlcm1pbmFkYSBjb21vIHNlIGV4cHJlc2EgYXRyw6FzLiBMYSBMaWNlbmNpYSByZXZvY2FkYSBjb250aW51YXLDoSBzaWVuZG8gcGxlbmFtZW50ZSB2aWdlbnRlIHkgZWZlY3RpdmEgc2kgbm8gc2UgbGUgZGEgdMOpcm1pbm8gZW4gbGFzIGNvbmRpY2lvbmVzIGluZGljYWRhcyBhbnRlcmlvcm1lbnRlLgo4LiBWYXJpb3MuCmEuCUNhZGEgdmV6IHF1ZSBVc3RlZCBkaXN0cmlidXlhIG8gcG9uZ2EgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBvIHVuYSBPYnJhIENvbGVjdGl2YSwgZWwgTGljZW5jaWFudGUgb2ZyZWNlcsOhIGFsIGRlc3RpbmF0YXJpbyB1bmEgbGljZW5jaWEgZW4gbG9zIG1pc21vcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBxdWUgbGEgbGljZW5jaWEgb3RvcmdhZGEgYSBVc3RlZCBiYWpvIGVzdGEgTGljZW5jaWEuCmIuCVNpIGFsZ3VuYSBkaXNwb3NpY2nDs24gZGUgZXN0YSBMaWNlbmNpYSByZXN1bHRhIGludmFsaWRhZGEgbyBubyBleGlnaWJsZSwgc2Vnw7puIGxhIGxlZ2lzbGFjacOzbiB2aWdlbnRlLCBlc3RvIG5vIGFmZWN0YXLDoSBuaSBsYSB2YWxpZGV6IG5pIGxhIGFwbGljYWJpbGlkYWQgZGVsIHJlc3RvIGRlIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEgeSwgc2luIGFjY2nDs24gYWRpY2lvbmFsIHBvciBwYXJ0ZSBkZSBsb3Mgc3VqZXRvcyBkZSBlc3RlIGFjdWVyZG8sIGFxdcOpbGxhIHNlIGVudGVuZGVyw6EgcmVmb3JtYWRhIGxvIG3DrW5pbW8gbmVjZXNhcmlvIHBhcmEgaGFjZXIgcXVlIGRpY2hhIGRpc3Bvc2ljacOzbiBzZWEgdsOhbGlkYSB5IGV4aWdpYmxlLgpjLglOaW5nw7puIHTDqXJtaW5vIG8gZGlzcG9zaWNpw7NuIGRlIGVzdGEgTGljZW5jaWEgc2UgZXN0aW1hcsOhIHJlbnVuY2lhZGEgeSBuaW5ndW5hIHZpb2xhY2nDs24gZGUgZWxsYSBzZXLDoSBjb25zZW50aWRhIGEgbWVub3MgcXVlIGVzYSByZW51bmNpYSBvIGNvbnNlbnRpbWllbnRvIHNlYSBvdG9yZ2FkbyBwb3IgZXNjcml0byB5IGZpcm1hZG8gcG9yIGxhIHBhcnRlIHF1ZSByZW51bmNpZSBvIGNvbnNpZW50YS4KZC4JRXN0YSBMaWNlbmNpYSByZWZsZWphIGVsIGFjdWVyZG8gcGxlbm8gZW50cmUgbGFzIHBhcnRlcyByZXNwZWN0byBhIGxhIE9icmEgYXF1w60gbGljZW5jaWFkYS4gTm8gaGF5IGFycmVnbG9zLCBhY3VlcmRvcyBvIGRlY2xhcmFjaW9uZXMgcmVzcGVjdG8gYSBsYSBPYnJhIHF1ZSBubyBlc3TDqW4gZXNwZWNpZmljYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gRWwgTGljZW5jaWFudGUgbm8gc2UgdmVyw6EgbGltaXRhZG8gcG9yIG5pbmd1bmEgZGlzcG9zaWNpw7NuIGFkaWNpb25hbCBxdWUgcHVlZGEgc3VyZ2lyIGVuIGFsZ3VuYSBjb211bmljYWNpw7NuIGVtYW5hZGEgZGUgVXN0ZWQuIEVzdGEgTGljZW5jaWEgbm8gcHVlZGUgc2VyIG1vZGlmaWNhZGEgc2luIGVsIGNvbnNlbnRpbWllbnRvIG11dHVvIHBvciBlc2NyaXRvIGRlbCBMaWNlbmNpYW50ZSB5IFVzdGVkLgo=