Diseño de un prototipo funcional de vehículo autónomo por medio de visión artificial y sensores de proximidad, implementado en PYTHON sobre arquitectura de RASPBERRY PI.

Actualmente existen una gran cantidad de accidentes de tránsito debido a la imprudencia y experiencia de los conductores de vehículos que transitan por la ciudad. Las estadísticas muestran que cuando los bogotanos se desplazan de un lugar a otro, el tiempo de permanencia puede extenderse incluso al...

Full description

Autores:
Rodríguez Martínez, Héctor Andrés
Ocampo Gómez, Miguel Leonardo
Culma Yate, Neiro
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2018
Institución:
Universidad ECCI
Repositorio:
Repositorio Institucional ECCI
Idioma:
spa
OAI Identifier:
oai:repositorio.ecci.edu.co:001/3943
Acceso en línea:
https://repositorio.ecci.edu.co/handle/001/3943
Palabra clave:
Accidentes de tránsito
Visión artificial
Captaciòn de imagenes
Traffic accidents
Artificial vision
Image capture
Rights
openAccess
License
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
id ECCI2_95f06d04bce30170b7094e12e994d86b
oai_identifier_str oai:repositorio.ecci.edu.co:001/3943
network_acronym_str ECCI2
network_name_str Repositorio Institucional ECCI
repository_id_str
dc.title.spa.fl_str_mv Diseño de un prototipo funcional de vehículo autónomo por medio de visión artificial y sensores de proximidad, implementado en PYTHON sobre arquitectura de RASPBERRY PI.
title Diseño de un prototipo funcional de vehículo autónomo por medio de visión artificial y sensores de proximidad, implementado en PYTHON sobre arquitectura de RASPBERRY PI.
spellingShingle Diseño de un prototipo funcional de vehículo autónomo por medio de visión artificial y sensores de proximidad, implementado en PYTHON sobre arquitectura de RASPBERRY PI.
Accidentes de tránsito
Visión artificial
Captaciòn de imagenes
Traffic accidents
Artificial vision
Image capture
title_short Diseño de un prototipo funcional de vehículo autónomo por medio de visión artificial y sensores de proximidad, implementado en PYTHON sobre arquitectura de RASPBERRY PI.
title_full Diseño de un prototipo funcional de vehículo autónomo por medio de visión artificial y sensores de proximidad, implementado en PYTHON sobre arquitectura de RASPBERRY PI.
title_fullStr Diseño de un prototipo funcional de vehículo autónomo por medio de visión artificial y sensores de proximidad, implementado en PYTHON sobre arquitectura de RASPBERRY PI.
title_full_unstemmed Diseño de un prototipo funcional de vehículo autónomo por medio de visión artificial y sensores de proximidad, implementado en PYTHON sobre arquitectura de RASPBERRY PI.
title_sort Diseño de un prototipo funcional de vehículo autónomo por medio de visión artificial y sensores de proximidad, implementado en PYTHON sobre arquitectura de RASPBERRY PI.
dc.creator.fl_str_mv Rodríguez Martínez, Héctor Andrés
Ocampo Gómez, Miguel Leonardo
Culma Yate, Neiro
dc.contributor.advisor.none.fl_str_mv Ruiz Suarez, Luis Efraín
dc.contributor.author.none.fl_str_mv Rodríguez Martínez, Héctor Andrés
Ocampo Gómez, Miguel Leonardo
Culma Yate, Neiro
dc.contributor.corporatename.spa.fl_str_mv Universidad ECCI
dc.subject.proposal.spa.fl_str_mv Accidentes de tránsito
Visión artificial
Captaciòn de imagenes
topic Accidentes de tránsito
Visión artificial
Captaciòn de imagenes
Traffic accidents
Artificial vision
Image capture
dc.subject.proposal.eng.fl_str_mv Traffic accidents
Artificial vision
Image capture
description Actualmente existen una gran cantidad de accidentes de tránsito debido a la imprudencia y experiencia de los conductores de vehículos que transitan por la ciudad. Las estadísticas muestran que cuando los bogotanos se desplazan de un lugar a otro, el tiempo de permanencia puede extenderse incluso al doble por los cuellos de botella, generados por diversos motivos. De las penurias para llegar oportunamente al lugar de destino, la persona incurre en el incumplimiento de las normas de tránsito, acarreando multas económicas evitables mediante soluciones informáticas que emplean algoritmos de inteligencia artificial (IA), generando valor a la sociedad al reducir las tarifas. de accidentes así como en multas en términos de sanciones. A través de este proyecto se pretende identificar y estudiar una solución que pueda considerarse viable frente a los problemas antes mencionados. Por lo anterior, evaluaremos el uso de una combinación de tecnologías informáticas, entendiendo que búsquedas similares están revolucionando la industria automotriz hoy, definiendo un mercado potencialmente interesante para las mismas en los próximos años. Para realizar la evaluación propuesta, se utiliza un prototipo de vehículo a escala el cual fue equipado con un dispositivo informático liviano, en el cual se utilizaron los algoritmos necesarios para hacer un uso "inteligente" de la información obtenida de los sensores, permitiendo generar respuestas a partir de los actuadores que sean adecuados a las situaciones cuya gestión se ha definido como fundamental. En este orden de ideas, haciendo uso de las ventajas que brinda un sistema informático, así como de un modelo configurable que permite generar diferentes escenarios aleatorios, con obstáculos de diversa índole, es posible asegurar que los algoritmos en jaque sean probados. a tal nivel de rigor que se alcance la adecuada selección y calibración de los más adecuados para la propuesta final.
publishDate 2018
dc.date.issued.none.fl_str_mv 2018
dc.date.accessioned.none.fl_str_mv 2024-02-28T17:54:45Z
dc.date.available.none.fl_str_mv 2024-02-28T17:54:45Z
dc.type.spa.fl_str_mv Trabajo de grado - Pregrado
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.redcol.spa.fl_str_mv https://purl.org/redcol/resource_type/TP
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/draft
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_b1a7d7d4d402bcce
format http://purl.org/coar/resource_type/c_7a1f
status_str draft
dc.identifier.uri.none.fl_str_mv https://repositorio.ecci.edu.co/handle/001/3943
url https://repositorio.ecci.edu.co/handle/001/3943
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Ingeniero Abdul Ruiz Saldaña. (2016). ENTREVISTA. Coordinación de Ingeniería de Sistemas. Universidad ECCI. Bogotá.
V. M. Arévalo, J. González, G. Ambrosi. (2004). LA LIBRERÍA DE VISIÓN ARTIFICIAL OPENCV APLICACIÓN A LA DOCENCIA E INVESTIGACIÓN. Dpto. De Ingeniería de Sistemas y Automática, Universidad de Málaga. España. Extraído de: http://mapir.isa.uma.es/varevalo/drafts/arevalo2004lva1.pdf
Autor. (2012). APLICACIÓN PRÁCTICA DE LA VISIÓN ARTIFICIAL EN EL CONTROL DE PROCESOS INDUSTRIALES. Gobierno de España, Ministerio de Educación Español y Fondo Nacional Europeo. Extraído de: http://visionartificial.fpcat.cat/wp-ontent/uploads/UD_1_didac_Conceptos_previos.pdf
Dr. Luis Salgado. (2007). VISIÓN ARTIFICIAL: FUNDAMENTOS Y APLICACIONES. Universidad Politécnica de Madrid. Extraído de: http://webcache.googleusercontent.com/search?q=cache:http://arantxa.ii.uam.es/~jms/seminarios_doctorado/abstracts2006-2007/20070503LSalagado.pdf
Fernando Arboledas Cique y Jesús de Luis Serrano. (2014). INTELIGENCIA ARTIFICIAL EN MEDIOS DE TRANSPORTE. Universidad Carlos III de Madrid. Extraído de: http://www.it.uc3m.es/jvillena/irc/practicas/13-14/04.pdf
Daniel Asegurado Turón. (2011). EL COCHE INTELIGENTE. Universidad Carlos III de Madrid. Extraído de: http://portal.uc3m.es/portal/page/portal/actualidad_cientifica/publi/feria_ciencia08/coche_intelig
Joshué Manuel Pérez Rastelli. (2012). AGENTES DE CONTROL DE VEHÍCULOS AUTÓNOMOS EN ENTORNOS URBANOS Y AUTOVÍAS. Universidad Complutense de Madrid. Extraído de: https://www.google.com.co/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0ahUKEwiDoJDV09jXAhXCmuAKHQbcBM4QFggkMAA&url=http%3A%2F%2Fdigital.csic.es%2Fbitstream%2F10261%2F47804%2F1%2FTesis_Joshue_Perez.pdf&usg=AOvVaw37c1fvkPXWu4HBUDcXk4Ta
Daniel Asegurado Turón. (2012).EL COCHE INTELIGENTE, EN BUSCA DE MAYOR SEGURIDAD, SOSTENIBILIDAD Y CONFORT. Universidad Carlos III de Madrid Leganés, Madrid, España. Extraído de: http://www.it.uc3m.es/jvillena/irc/practicas/11-12/01pres.pdf
Dayana H. Bailon Delgado. (2015). AVANCE SIGNIFICATIVO DE INTELIGENCIA ARTIFICIAL: VEHÍCULOS AUTÓNOMOS. Escuela Superior Politécnica Agropecuaria de Manabí Manuel Félix López, Calceta – Ecuador. Extraído de: https://dayuia6toinfor.files.wordpress.com.
El Tiempo. (2016). LO DIFÍCIL QUE ES SALIR ILESO DE UN ACCIDENTE CON MOTO EN BOGOTÁ. Bogotá.
Carmelo Marin. (2015). SEGUIMIENTO DE OBJETOS POR COLOR. Extraído de: o http://acodigo.blogspot.com.co/2016/04/seguimiento-de-objetos-por-color.htmlCarmelo Marin. (2015). ACENTUAR COLOR. Extraído de: http://acodigo.blogspot.com.co/
Centro de Análisis y Prospectiva Gabinete Técnico de la Guardia Civil. (2014). Extraído de: http://intranet.gccap.bage.es/
Robert Laganiere. (2011). OPENCV 2 COMPUTER VISION APPLICATION PROGRAMMING COOKBOOK. Extraído de: 9781849513241-OPENCV_2_COMPUTER_VISION_APPLICATION_PROGRAMMING.pdf.
dc.rights.spa.fl_str_mv Derechos Reservados - Universidad ECCI, 2018
dc.rights.license.*.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 Internacional
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Derechos Reservados - Universidad ECCI, 2018
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 76 p.
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad ECCI
dc.publisher.place.spa.fl_str_mv Colombia
dc.publisher.faculty.spa.fl_str_mv Facultad de Ingenierías
institution Universidad ECCI
bitstream.url.fl_str_mv https://repositorio.ecci.edu.co/bitstream/001/3943/6/license.txt
https://repositorio.ecci.edu.co/bitstream/001/3943/1/Trabajo%20de%20grado.pdf
https://repositorio.ecci.edu.co/bitstream/001/3943/2/Sesi%c3%b3n%20de%20derechos.pdf
https://repositorio.ecci.edu.co/bitstream/001/3943/3/Acta1.pdf
https://repositorio.ecci.edu.co/bitstream/001/3943/4/Acta2.pdf
https://repositorio.ecci.edu.co/bitstream/001/3943/5/Acta3.pdf
https://repositorio.ecci.edu.co/bitstream/001/3943/7/license_rdf
https://repositorio.ecci.edu.co/bitstream/001/3943/8/Trabajo%20de%20grado.pdf.txt
https://repositorio.ecci.edu.co/bitstream/001/3943/10/Sesi%c3%b3n%20de%20derechos.pdf.txt
https://repositorio.ecci.edu.co/bitstream/001/3943/12/Acta1.pdf.txt
https://repositorio.ecci.edu.co/bitstream/001/3943/14/Acta2.pdf.txt
https://repositorio.ecci.edu.co/bitstream/001/3943/16/Acta3.pdf.txt
https://repositorio.ecci.edu.co/bitstream/001/3943/9/Trabajo%20de%20grado.pdf.jpg
https://repositorio.ecci.edu.co/bitstream/001/3943/11/Sesi%c3%b3n%20de%20derechos.pdf.jpg
https://repositorio.ecci.edu.co/bitstream/001/3943/13/Acta1.pdf.jpg
https://repositorio.ecci.edu.co/bitstream/001/3943/15/Acta2.pdf.jpg
https://repositorio.ecci.edu.co/bitstream/001/3943/17/Acta3.pdf.jpg
bitstream.checksum.fl_str_mv 88794144ff048353b359a3174871b0d5
56231c3d6122efbe35e9dc04d80f245e
53a1cd4e7fd8ff60b87443fb83c6b03f
b68f978fbddd081b82f70a93d87ecd22
b7a99ed0668a24f0373bc4d9dcc5f2b4
519586db34d06f86118c553255e926f7
4460e5956bc1d1639be9ae6146a50347
9171c0a28e973a92258b236f244579ac
68b329da9893e34099c7d8ad5cb9c940
68b329da9893e34099c7d8ad5cb9c940
68b329da9893e34099c7d8ad5cb9c940
68b329da9893e34099c7d8ad5cb9c940
e3d90fd35e05288aa80862b4c34e230a
79aabf12b2fad9aba91fc05d7019ba00
35702b3b74814da5a8796c2cd86bb1be
52125c392ab9b16095d9477c37a50edb
998794bea57663d46151e4e770beee86
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Digital Universidad ECCI
repository.mail.fl_str_mv repositorio.institucional@ecci.edu.co
_version_ 1814100610330394624
spelling Attribution-NonCommercial-NoDerivatives 4.0 InternacionalDerechos Reservados - Universidad ECCI, 2018http://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Ruiz Suarez, Luis Efraín19a62ff76c0571538148d4080b7e7ec2Rodríguez Martínez, Héctor Andrés5696811fa5e09dda645f968656dac0a4Ocampo Gómez, Miguel Leonardoc9ca3db0027dd99f26243d738ff1922fCulma Yate, Neiro6c53dba53d5a5a58b85d583c0b411247Universidad ECCI2024-02-28T17:54:45Z2024-02-28T17:54:45Z2018https://repositorio.ecci.edu.co/handle/001/3943Actualmente existen una gran cantidad de accidentes de tránsito debido a la imprudencia y experiencia de los conductores de vehículos que transitan por la ciudad. Las estadísticas muestran que cuando los bogotanos se desplazan de un lugar a otro, el tiempo de permanencia puede extenderse incluso al doble por los cuellos de botella, generados por diversos motivos. De las penurias para llegar oportunamente al lugar de destino, la persona incurre en el incumplimiento de las normas de tránsito, acarreando multas económicas evitables mediante soluciones informáticas que emplean algoritmos de inteligencia artificial (IA), generando valor a la sociedad al reducir las tarifas. de accidentes así como en multas en términos de sanciones. A través de este proyecto se pretende identificar y estudiar una solución que pueda considerarse viable frente a los problemas antes mencionados. Por lo anterior, evaluaremos el uso de una combinación de tecnologías informáticas, entendiendo que búsquedas similares están revolucionando la industria automotriz hoy, definiendo un mercado potencialmente interesante para las mismas en los próximos años. Para realizar la evaluación propuesta, se utiliza un prototipo de vehículo a escala el cual fue equipado con un dispositivo informático liviano, en el cual se utilizaron los algoritmos necesarios para hacer un uso "inteligente" de la información obtenida de los sensores, permitiendo generar respuestas a partir de los actuadores que sean adecuados a las situaciones cuya gestión se ha definido como fundamental. En este orden de ideas, haciendo uso de las ventajas que brinda un sistema informático, así como de un modelo configurable que permite generar diferentes escenarios aleatorios, con obstáculos de diversa índole, es posible asegurar que los algoritmos en jaque sean probados. a tal nivel de rigor que se alcance la adecuada selección y calibración de los más adecuados para la propuesta final.Tabla de contenido 1. Problema de Investigación 16 1.1. Descripción del problema . 16 1.2. Formulación del problema 16 2. Objetivos de la Investigación .. 17 2.1. Objetivo general 17 2.2. Objetivos específicos .. 17 3. Justificación y Delimitación. 17 3.1. Justificación . 17 3.2. Delimitación 18 4. Marco de Referencia de la Investigación .. 20 4.1. Marco teórico .. 20 4.1.1. La Visión artificial. 20 4.1.2. Elementos importantes para la captación de imágenes. 21 4.1.3 OpenCV . 23 4.1.3 Elementos que componen un vehículo auto-conducido (Self-driving vehicle) .. 33 4.1.4. Antecedentes. . 33 4.2. Marco conceptual . 41 4.2.1. Acciones básicas. 41 4.2.2. Conceptos de las acciones a realizar. 42 4.2.3. Definiciones generales. 43 4.3. Marco legal .. 44 5. Tipo de Investigación .. 46 6. Diseño Metodológico .. 47 7. Desarrollo de la Investigación . 48 7.1. Etapa uno .. 49 7.2. Etapa dos 53 7.3. Etapa tres .. 61 7.3.1. Código cámara web. .. 62 7.3.2. Código motor. 63 7.3.3. Código sensores 64 7.3.4. Videos funcionamiento. .. 66 8. Fuentes de Información .. 67 8.1. Fuentes primarias .. 67 8.2. Fuentes secundarias . 67 9. Recursos . 70 10. Cronograma .. 72 11. Conclusiones 73 12. Recomendaciones .. 75PregradoIngeniero en SistemasIngeniería de Sistemas76 p.application/pdfspaUniversidad ECCIColombiaFacultad de IngenieríasDiseño de un prototipo funcional de vehículo autónomo por medio de visión artificial y sensores de proximidad, implementado en PYTHON sobre arquitectura de RASPBERRY PI.Trabajo de grado - Pregradohttp://purl.org/coar/resource_type/c_7a1fTextinfo:eu-repo/semantics/bachelorThesishttps://purl.org/redcol/resource_type/TPinfo:eu-repo/semantics/drafthttp://purl.org/coar/version/c_b1a7d7d4d402bcceIngeniero Abdul Ruiz Saldaña. (2016). ENTREVISTA. Coordinación de Ingeniería de Sistemas. Universidad ECCI. Bogotá.V. M. Arévalo, J. González, G. Ambrosi. (2004). LA LIBRERÍA DE VISIÓN ARTIFICIAL OPENCV APLICACIÓN A LA DOCENCIA E INVESTIGACIÓN. Dpto. De Ingeniería de Sistemas y Automática, Universidad de Málaga. España. Extraído de: http://mapir.isa.uma.es/varevalo/drafts/arevalo2004lva1.pdfAutor. (2012). APLICACIÓN PRÁCTICA DE LA VISIÓN ARTIFICIAL EN EL CONTROL DE PROCESOS INDUSTRIALES. Gobierno de España, Ministerio de Educación Español y Fondo Nacional Europeo. Extraído de: http://visionartificial.fpcat.cat/wp-ontent/uploads/UD_1_didac_Conceptos_previos.pdfDr. Luis Salgado. (2007). VISIÓN ARTIFICIAL: FUNDAMENTOS Y APLICACIONES. Universidad Politécnica de Madrid. Extraído de: http://webcache.googleusercontent.com/search?q=cache:http://arantxa.ii.uam.es/~jms/seminarios_doctorado/abstracts2006-2007/20070503LSalagado.pdfFernando Arboledas Cique y Jesús de Luis Serrano. (2014). INTELIGENCIA ARTIFICIAL EN MEDIOS DE TRANSPORTE. Universidad Carlos III de Madrid. Extraído de: http://www.it.uc3m.es/jvillena/irc/practicas/13-14/04.pdfDaniel Asegurado Turón. (2011). EL COCHE INTELIGENTE. Universidad Carlos III de Madrid. Extraído de: http://portal.uc3m.es/portal/page/portal/actualidad_cientifica/publi/feria_ciencia08/coche_inteligJoshué Manuel Pérez Rastelli. (2012). AGENTES DE CONTROL DE VEHÍCULOS AUTÓNOMOS EN ENTORNOS URBANOS Y AUTOVÍAS. Universidad Complutense de Madrid. Extraído de: https://www.google.com.co/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0ahUKEwiDoJDV09jXAhXCmuAKHQbcBM4QFggkMAA&url=http%3A%2F%2Fdigital.csic.es%2Fbitstream%2F10261%2F47804%2F1%2FTesis_Joshue_Perez.pdf&usg=AOvVaw37c1fvkPXWu4HBUDcXk4TaDaniel Asegurado Turón. (2012).EL COCHE INTELIGENTE, EN BUSCA DE MAYOR SEGURIDAD, SOSTENIBILIDAD Y CONFORT. Universidad Carlos III de Madrid Leganés, Madrid, España. Extraído de: http://www.it.uc3m.es/jvillena/irc/practicas/11-12/01pres.pdfDayana H. Bailon Delgado. (2015). AVANCE SIGNIFICATIVO DE INTELIGENCIA ARTIFICIAL: VEHÍCULOS AUTÓNOMOS. Escuela Superior Politécnica Agropecuaria de Manabí Manuel Félix López, Calceta – Ecuador. Extraído de: https://dayuia6toinfor.files.wordpress.com.El Tiempo. (2016). LO DIFÍCIL QUE ES SALIR ILESO DE UN ACCIDENTE CON MOTO EN BOGOTÁ. Bogotá.Carmelo Marin. (2015). SEGUIMIENTO DE OBJETOS POR COLOR. Extraído de: o http://acodigo.blogspot.com.co/2016/04/seguimiento-de-objetos-por-color.htmlCarmelo Marin. (2015). ACENTUAR COLOR. Extraído de: http://acodigo.blogspot.com.co/Centro de Análisis y Prospectiva Gabinete Técnico de la Guardia Civil. (2014). Extraído de: http://intranet.gccap.bage.es/Robert Laganiere. (2011). OPENCV 2 COMPUTER VISION APPLICATION PROGRAMMING COOKBOOK. Extraído de: 9781849513241-OPENCV_2_COMPUTER_VISION_APPLICATION_PROGRAMMING.pdf.Accidentes de tránsitoVisión artificialCaptaciòn de imagenesTraffic accidentsArtificial visionImage captureLICENSElicense.txtlicense.txttext/plain; charset=utf-814798https://repositorio.ecci.edu.co/bitstream/001/3943/6/license.txt88794144ff048353b359a3174871b0d5MD56ORIGINALTrabajo de grado.pdfTrabajo de grado.pdfapplication/pdf2274813https://repositorio.ecci.edu.co/bitstream/001/3943/1/Trabajo%20de%20grado.pdf56231c3d6122efbe35e9dc04d80f245eMD51Sesión de derechos.pdfSesión de derechos.pdfapplication/pdf361360https://repositorio.ecci.edu.co/bitstream/001/3943/2/Sesi%c3%b3n%20de%20derechos.pdf53a1cd4e7fd8ff60b87443fb83c6b03fMD52Acta1.pdfActa1.pdfapplication/pdf253817https://repositorio.ecci.edu.co/bitstream/001/3943/3/Acta1.pdfb68f978fbddd081b82f70a93d87ecd22MD53Acta2.pdfActa2.pdfapplication/pdf255904https://repositorio.ecci.edu.co/bitstream/001/3943/4/Acta2.pdfb7a99ed0668a24f0373bc4d9dcc5f2b4MD54Acta3.pdfActa3.pdfapplication/pdf249356https://repositorio.ecci.edu.co/bitstream/001/3943/5/Acta3.pdf519586db34d06f86118c553255e926f7MD55CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.ecci.edu.co/bitstream/001/3943/7/license_rdf4460e5956bc1d1639be9ae6146a50347MD57TEXTTEXTTrabajo de grado.pdf.txtTrabajo de grado.pdf.txtExtracted texttext/plain75567https://repositorio.ecci.edu.co/bitstream/001/3943/8/Trabajo%20de%20grado.pdf.txt9171c0a28e973a92258b236f244579acMD58Sesión de derechos.pdf.txtSesión de derechos.pdf.txtExtracted texttext/plain1https://repositorio.ecci.edu.co/bitstream/001/3943/10/Sesi%c3%b3n%20de%20derechos.pdf.txt68b329da9893e34099c7d8ad5cb9c940MD510Acta1.pdf.txtActa1.pdf.txtExtracted texttext/plain1https://repositorio.ecci.edu.co/bitstream/001/3943/12/Acta1.pdf.txt68b329da9893e34099c7d8ad5cb9c940MD512Acta2.pdf.txtActa2.pdf.txtExtracted texttext/plain1https://repositorio.ecci.edu.co/bitstream/001/3943/14/Acta2.pdf.txt68b329da9893e34099c7d8ad5cb9c940MD514Acta3.pdf.txtActa3.pdf.txtExtracted texttext/plain1https://repositorio.ecci.edu.co/bitstream/001/3943/16/Acta3.pdf.txt68b329da9893e34099c7d8ad5cb9c940MD516THUMBNAILTrabajo de grado.pdf.jpgTrabajo de grado.pdf.jpgGenerated Thumbnailimage/jpeg8705https://repositorio.ecci.edu.co/bitstream/001/3943/9/Trabajo%20de%20grado.pdf.jpge3d90fd35e05288aa80862b4c34e230aMD59Sesión de derechos.pdf.jpgSesión de derechos.pdf.jpgGenerated Thumbnailimage/jpeg16072https://repositorio.ecci.edu.co/bitstream/001/3943/11/Sesi%c3%b3n%20de%20derechos.pdf.jpg79aabf12b2fad9aba91fc05d7019ba00MD511Acta1.pdf.jpgActa1.pdf.jpgGenerated Thumbnailimage/jpeg15147https://repositorio.ecci.edu.co/bitstream/001/3943/13/Acta1.pdf.jpg35702b3b74814da5a8796c2cd86bb1beMD513Acta2.pdf.jpgActa2.pdf.jpgGenerated Thumbnailimage/jpeg14803https://repositorio.ecci.edu.co/bitstream/001/3943/15/Acta2.pdf.jpg52125c392ab9b16095d9477c37a50edbMD515Acta3.pdf.jpgActa3.pdf.jpgGenerated Thumbnailimage/jpeg14655https://repositorio.ecci.edu.co/bitstream/001/3943/17/Acta3.pdf.jpg998794bea57663d46151e4e770beee86MD517THUMBNAIL001/3943oai:repositorio.ecci.edu.co:001/39432024-07-24 16:14:47.946Repositorio Digital Universidad ECCIrepositorio.institucional@ecci.edu.coTEEgT0JSQSAoVEFMIFkgQ09NTyBTRSBERUZJTkUgTcOBUyBBREVMQU5URSkgU0UgT1RPUkdBIEJBSk8gTE9TIFRFUk1JTk9TIERFIEVTVEEgTElDRU5DSUEgUMOaQkxJQ0EgREUgQ1JFQVRJVkUgQ09NTU9OUyAo4oCcTFBDQ+KAnSBPIOKAnExJQ0VOQ0lB4oCdKS4gTEEgT0JSQSBFU1TDgSBQUk9URUdJREEgUE9SIERFUkVDSE9TIERFIEFVVE9SIFkvVSBPVFJBUyBMRVlFUyBBUExJQ0FCTEVTLiBRVUVEQSBQUk9ISUJJRE8gQ1VBTFFVSUVSIFVTTyBRVUUgU0UgSEFHQSBERSBMQSBPQlJBIFFVRSBOTyBDVUVOVEUgQ09OIExBIEFVVE9SSVpBQ0nDk04gUEVSVElORU5URSBERSBDT05GT1JNSURBRCBDT04gTE9TIFTDiVJNSU5PUyBERSBFU1RBIExJQ0VOQ0lBIFkgREUgTEEgTEVZIERFIERFUkVDSE8gREUgQVVUT1IuCk1FRElBTlRFIEVMIEVKRVJDSUNJTyBERSBDVUFMUVVJRVJBIERFIExPUyBERVJFQ0hPUyBRVUUgU0UgT1RPUkdBTiBFTiBFU1RBIExJQ0VOQ0lBLCBVU1RFRCBBQ0VQVEEgWSBBQ1VFUkRBIFFVRURBUiBPQkxJR0FETyBFTiBMT1MgVEVSTUlOT1MgUVVFIFNFIFNFw5FBTEFOIEVOIEVMTEEuIEVMIExJQ0VOQ0lBTlRFIENPTkNFREUgQSBVU1RFRCBMT1MgREVSRUNIT1MgQ09OVEVOSURPUyBFTiBFU1RBIExJQ0VOQ0lBIENPTkRJQ0lPTkFET1MgQSBMQSBBQ0VQVEFDScOTTiBERSBTVVMgVEVSTUlOT1MgWSBDT05ESUNJT05FUy4KMS4gRGVmaW5pY2lvbmVzCmEuCU9icmEgQ29sZWN0aXZhIGVzIHVuYSBvYnJhLCB0YWwgY29tbyB1bmEgcHVibGljYWNpw7NuIHBlcmnDs2RpY2EsIHVuYSBhbnRvbG9nw61hLCBvIHVuYSBlbmNpY2xvcGVkaWEsIGVuIGxhIHF1ZSBsYSBvYnJhIGVuIHN1IHRvdGFsaWRhZCwgc2luIG1vZGlmaWNhY2nDs24gYWxndW5hLCBqdW50byBjb24gdW4gZ3J1cG8gZGUgb3RyYXMgY29udHJpYnVjaW9uZXMgcXVlIGNvbnN0aXR1eWVuIG9icmFzIHNlcGFyYWRhcyBlIGluZGVwZW5kaWVudGVzIGVuIHPDrSBtaXNtYXMsIHNlIGludGVncmFuIGVuIHVuIHRvZG8gY29sZWN0aXZvLiBVbmEgT2JyYSBxdWUgY29uc3RpdHV5ZSB1bmEgb2JyYSBjb2xlY3RpdmEgbm8gc2UgY29uc2lkZXJhcsOhIHVuYSBPYnJhIERlcml2YWRhIChjb21vIHNlIGRlZmluZSBhYmFqbykgcGFyYSBsb3MgcHJvcMOzc2l0b3MgZGUgZXN0YSBsaWNlbmNpYS4gYXF1ZWxsYSBwcm9kdWNpZGEgcG9yIHVuIGdydXBvIGRlIGF1dG9yZXMsIGVuIHF1ZSBsYSBPYnJhIHNlIGVuY3VlbnRyYSBzaW4gbW9kaWZpY2FjaW9uZXMsIGp1bnRvIGNvbiB1bmEgY2llcnRhIGNhbnRpZGFkIGRlIG90cmFzIGNvbnRyaWJ1Y2lvbmVzLCBxdWUgY29uc3RpdHV5ZW4gZW4gc8OtIG1pc21vcyB0cmFiYWpvcyBzZXBhcmFkb3MgZSBpbmRlcGVuZGllbnRlcywgcXVlIHNvbiBpbnRlZ3JhZG9zIGFsIHRvZG8gY29sZWN0aXZvLCB0YWxlcyBjb21vIHB1YmxpY2FjaW9uZXMgcGVyacOzZGljYXMsIGFudG9sb2fDrWFzIG8gZW5jaWNsb3BlZGlhcy4KYi4JT2JyYSBEZXJpdmFkYSBzaWduaWZpY2EgdW5hIG9icmEgYmFzYWRhIGVuIGxhIG9icmEgb2JqZXRvIGRlIGVzdGEgbGljZW5jaWEgbyBlbiDDqXN0YSB5IG90cmFzIG9icmFzIHByZWV4aXN0ZW50ZXMsIHRhbGVzIGNvbW8gdHJhZHVjY2lvbmVzLCBhcnJlZ2xvcyBtdXNpY2FsZXMsIGRyYW1hdGl6YWNpb25lcywg4oCcZmljY2lvbmFsaXphY2lvbmVz4oCdLCB2ZXJzaW9uZXMgcGFyYSBjaW5lLCDigJxncmFiYWNpb25lcyBkZSBzb25pZG/igJ0sIHJlcHJvZHVjY2lvbmVzIGRlIGFydGUsIHJlc8O6bWVuZXMsIGNvbmRlbnNhY2lvbmVzLCBvIGN1YWxxdWllciBvdHJhIGVuIGxhIHF1ZSBsYSBvYnJhIHB1ZWRhIHNlciB0cmFuc2Zvcm1hZGEsIGNhbWJpYWRhIG8gYWRhcHRhZGEsIGV4Y2VwdG8gYXF1ZWxsYXMgcXVlIGNvbnN0aXR1eWFuIHVuYSBvYnJhIGNvbGVjdGl2YSwgbGFzIHF1ZSBubyBzZXLDoW4gY29uc2lkZXJhZGFzIHVuYSBvYnJhIGRlcml2YWRhIHBhcmEgZWZlY3RvcyBkZSBlc3RhIGxpY2VuY2lhLiAoUGFyYSBldml0YXIgZHVkYXMsIGVuIGVsIGNhc28gZGUgcXVlIGxhIE9icmEgc2VhIHVuYSBjb21wb3NpY2nDs24gbXVzaWNhbCBvIHVuYSBncmFiYWNpw7NuIHNvbm9yYSwgcGFyYSBsb3MgZWZlY3RvcyBkZSBlc3RhIExpY2VuY2lhIGxhIHNpbmNyb25pemFjacOzbiB0ZW1wb3JhbCBkZSBsYSBPYnJhIGNvbiB1bmEgaW1hZ2VuIGVuIG1vdmltaWVudG8gc2UgY29uc2lkZXJhcsOhIHVuYSBPYnJhIERlcml2YWRhIHBhcmEgbG9zIGZpbmVzIGRlIGVzdGEgbGljZW5jaWEpLgpjLglMaWNlbmNpYW50ZSwgZXMgZWwgaW5kaXZpZHVvIG8gbGEgZW50aWRhZCB0aXR1bGFyIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBxdWUgb2ZyZWNlIGxhIE9icmEgZW4gY29uZm9ybWlkYWQgY29uIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLgpkLglBdXRvciBvcmlnaW5hbCwgZXMgZWwgaW5kaXZpZHVvIHF1ZSBjcmXDsyBsYSBPYnJhLgplLglPYnJhLCBlcyBhcXVlbGxhIG9icmEgc3VzY2VwdGlibGUgZGUgcHJvdGVjY2nDs24gcG9yIGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IgeSBxdWUgZXMgb2ZyZWNpZGEgZW4gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIGxpY2VuY2lhCmYuCVVzdGVkLCBlcyBlbCBpbmRpdmlkdW8gbyBsYSBlbnRpZGFkIHF1ZSBlamVyY2l0YSBsb3MgZGVyZWNob3Mgb3RvcmdhZG9zIGFsIGFtcGFybyBkZSBlc3RhIExpY2VuY2lhIHkgcXVlIGNvbiBhbnRlcmlvcmlkYWQgbm8gaGEgdmlvbGFkbyBsYXMgY29uZGljaW9uZXMgZGUgbGEgbWlzbWEgcmVzcGVjdG8gYSBsYSBPYnJhLCBvIHF1ZSBoYXlhIG9idGVuaWRvIGF1dG9yaXphY2nDs24gZXhwcmVzYSBwb3IgcGFydGUgZGVsIExpY2VuY2lhbnRlIHBhcmEgZWplcmNlciBsb3MgZGVyZWNob3MgYWwgYW1wYXJvIGRlIGVzdGEgTGljZW5jaWEgcGVzZSBhIHVuYSB2aW9sYWNpw7NuIGFudGVyaW9yLgoyLiBEZXJlY2hvcyBkZSBVc29zIEhvbnJhZG9zIHkgZXhjZXBjaW9uZXMgTGVnYWxlcy4KTmFkYSBlbiBlc3RhIExpY2VuY2lhIHBvZHLDoSBzZXIgaW50ZXJwcmV0YWRvIGNvbW8gdW5hIGRpc21pbnVjacOzbiwgbGltaXRhY2nDs24gbyByZXN0cmljY2nDs24gZGUgbG9zIGRlcmVjaG9zIGRlcml2YWRvcyBkZWwgdXNvIGhvbnJhZG8geSBvdHJhcyBsaW1pdGFjaW9uZXMgbyBleGNlcGNpb25lcyBhIGxvcyBkZXJlY2hvcyBkZWwgYXV0b3IgYmFqbyBlbCByw6lnaW1lbiBsZWdhbCB2aWdlbnRlIG8gZGVyaXZhZG8gZGUgY3VhbHF1aWVyIG90cmEgbm9ybWEgcXVlIHNlIGxlIGFwbGlxdWUuCjMuIENvbmNlc2nDs24gZGUgbGEgTGljZW5jaWEuCkJham8gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIGVsIExpY2VuY2lhbnRlIG90b3JnYSBhIFVzdGVkIHVuYSBsaWNlbmNpYSBtdW5kaWFsLCBsaWJyZSBkZSByZWdhbMOtYXMsIG5vIGV4Y2x1c2l2YSB5IHBlcnBldHVhIChkdXJhbnRlIHRvZG8gZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGVqZXJjZXIgZXN0b3MgZGVyZWNob3Mgc29icmUgbGEgT2JyYSB0YWwgeSBjb21vIHNlIGluZGljYSBhIGNvbnRpbnVhY2nDs246CmEuCVJlcHJvZHVjaXIgbGEgT2JyYSwgaW5jb3Jwb3JhciBsYSBPYnJhIGVuIHVuYSBvIG3DoXMgT2JyYXMgQ29sZWN0aXZhcywgeSByZXByb2R1Y2lyIGxhIE9icmEgaW5jb3Jwb3JhZGEgZW4gbGFzIE9icmFzIENvbGVjdGl2YXM7CmIuCURpc3RyaWJ1aXIgY29waWFzIG8gZm9ub2dyYW1hcyBkZSBsYXMgT2JyYXMsIGV4aGliaXJsYXMgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXJsYXMgcMO6YmxpY2FtZW50ZSB5L28gcG9uZXJsYXMgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EsIGluY2x1ecOpbmRvbGFzIGNvbW8gaW5jb3Jwb3JhZGFzIGVuIE9icmFzIENvbGVjdGl2YXMsIHNlZ8O6biBjb3JyZXNwb25kYTsKYy4JRGlzdHJpYnVpciBjb3BpYXMgZGUgbGFzIE9icmFzIERlcml2YWRhcyBxdWUgc2UgZ2VuZXJlbiwgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYS4KTG9zIGRlcmVjaG9zIG1lbmNpb25hZG9zIGFudGVyaW9ybWVudGUgcHVlZGVuIHNlciBlamVyY2lkb3MgZW4gdG9kb3MgbG9zIG1lZGlvcyB5IGZvcm1hdG9zLCBhY3R1YWxtZW50ZSBjb25vY2lkb3MgbyBxdWUgc2UgaW52ZW50ZW4gZW4gZWwgZnV0dXJvLiBMb3MgZGVyZWNob3MgYW50ZXMgbWVuY2lvbmFkb3MgaW5jbHV5ZW4gZWwgZGVyZWNobyBhIHJlYWxpemFyIGRpY2hhcyBtb2RpZmljYWNpb25lcyBlbiBsYSBtZWRpZGEgcXVlIHNlYW4gdMOpY25pY2FtZW50ZSBuZWNlc2FyaWFzIHBhcmEgZWplcmNlciBsb3MgZGVyZWNob3MgZW4gb3RybyBtZWRpbyBvIGZvcm1hdG9zLCBwZXJvIGRlIG90cmEgbWFuZXJhIHVzdGVkIG5vIGVzdMOhIGF1dG9yaXphZG8gcGFyYSByZWFsaXphciBvYnJhcyBkZXJpdmFkYXMuIFRvZG9zIGxvcyBkZXJlY2hvcyBubyBvdG9yZ2Fkb3MgZXhwcmVzYW1lbnRlIHBvciBlbCBMaWNlbmNpYW50ZSBxdWVkYW4gcG9yIGVzdGUgbWVkaW8gcmVzZXJ2YWRvcywgaW5jbHV5ZW5kbyBwZXJvIHNpbiBsaW1pdGFyc2UgYSBhcXVlbGxvcyBxdWUgc2UgbWVuY2lvbmFuIGVuIGxhcyBzZWNjaW9uZXMgNChkKSB5IDQoZSkuCjQuIFJlc3RyaWNjaW9uZXMuCkxhIGxpY2VuY2lhIG90b3JnYWRhIGVuIGxhIGFudGVyaW9yIFNlY2Npw7NuIDMgZXN0w6EgZXhwcmVzYW1lbnRlIHN1amV0YSB5IGxpbWl0YWRhIHBvciBsYXMgc2lndWllbnRlcyByZXN0cmljY2lvbmVzOgphLglVc3RlZCBwdWVkZSBkaXN0cmlidWlyLCBleGhpYmlyIHDDumJsaWNhbWVudGUsIGVqZWN1dGFyIHDDumJsaWNhbWVudGUsIG8gcG9uZXIgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBzw7NsbyBiYWpvIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLCB5IFVzdGVkIGRlYmUgaW5jbHVpciB1bmEgY29waWEgZGUgZXN0YSBsaWNlbmNpYSBvIGRlbCBJZGVudGlmaWNhZG9yIFVuaXZlcnNhbCBkZSBSZWN1cnNvcyBkZSBsYSBtaXNtYSBjb24gY2FkYSBjb3BpYSBkZSBsYSBPYnJhIHF1ZSBkaXN0cmlidXlhLCBleGhpYmEgcMO6YmxpY2FtZW50ZSwgZWplY3V0ZSBww7pibGljYW1lbnRlIG8gcG9uZ2EgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EuIE5vIGVzIHBvc2libGUgb2ZyZWNlciBvIGltcG9uZXIgbmluZ3VuYSBjb25kaWNpw7NuIHNvYnJlIGxhIE9icmEgcXVlIGFsdGVyZSBvIGxpbWl0ZSBsYXMgY29uZGljaW9uZXMgZGUgZXN0YSBMaWNlbmNpYSBvIGVsIGVqZXJjaWNpbyBkZSBsb3MgZGVyZWNob3MgZGUgbG9zIGRlc3RpbmF0YXJpb3Mgb3RvcmdhZG9zIGVuIGVzdGUgZG9jdW1lbnRvLiBObyBlcyBwb3NpYmxlIHN1YmxpY2VuY2lhciBsYSBPYnJhLiBVc3RlZCBkZWJlIG1hbnRlbmVyIGludGFjdG9zIHRvZG9zIGxvcyBhdmlzb3MgcXVlIGhhZ2FuIHJlZmVyZW5jaWEgYSBlc3RhIExpY2VuY2lhIHkgYSBsYSBjbMOhdXN1bGEgZGUgbGltaXRhY2nDs24gZGUgZ2FyYW50w61hcy4gVXN0ZWQgbm8gcHVlZGUgZGlzdHJpYnVpciwgZXhoaWJpciBww7pibGljYW1lbnRlLCBlamVjdXRhciBww7pibGljYW1lbnRlLCBvIHBvbmVyIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhIGxhIE9icmEgY29uIGFsZ3VuYSBtZWRpZGEgdGVjbm9sw7NnaWNhIHF1ZSBjb250cm9sZSBlbCBhY2Nlc28gbyBsYSB1dGlsaXphY2nDs24gZGUgZWxsYSBkZSB1bmEgZm9ybWEgcXVlIHNlYSBpbmNvbnNpc3RlbnRlIGNvbiBsYXMgY29uZGljaW9uZXMgZGUgZXN0YSBMaWNlbmNpYS4gTG8gYW50ZXJpb3Igc2UgYXBsaWNhIGEgbGEgT2JyYSBpbmNvcnBvcmFkYSBhIHVuYSBPYnJhIENvbGVjdGl2YSwgcGVybyBlc3RvIG5vIGV4aWdlIHF1ZSBsYSBPYnJhIENvbGVjdGl2YSBhcGFydGUgZGUgbGEgb2JyYSBtaXNtYSBxdWVkZSBzdWpldGEgYSBsYXMgY29uZGljaW9uZXMgZGUgZXN0YSBMaWNlbmNpYS4gU2kgVXN0ZWQgY3JlYSB1bmEgT2JyYSBDb2xlY3RpdmEsIHByZXZpbyBhdmlzbyBkZSBjdWFscXVpZXIgTGljZW5jaWFudGUgZGViZSwgZW4gbGEgbWVkaWRhIGRlIGxvIHBvc2libGUsIGVsaW1pbmFyIGRlIGxhIE9icmEgQ29sZWN0aXZhIGN1YWxxdWllciByZWZlcmVuY2lhIGEgZGljaG8gTGljZW5jaWFudGUgbyBhbCBBdXRvciBPcmlnaW5hbCwgc2Vnw7puIGxvIHNvbGljaXRhZG8gcG9yIGVsIExpY2VuY2lhbnRlIHkgY29uZm9ybWUgbG8gZXhpZ2UgbGEgY2zDoXVzdWxhIDQoYykuCmIuCVVzdGVkIG5vIHB1ZWRlIGVqZXJjZXIgbmluZ3VubyBkZSBsb3MgZGVyZWNob3MgcXVlIGxlIGhhbiBzaWRvIG90b3JnYWRvcyBlbiBsYSBTZWNjacOzbiAzIHByZWNlZGVudGUgZGUgbW9kbyBxdWUgZXN0w6luIHByaW5jaXBhbG1lbnRlIGRlc3RpbmFkb3MgbyBkaXJlY3RhbWVudGUgZGlyaWdpZG9zIGEgY29uc2VndWlyIHVuIHByb3ZlY2hvIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLiBFbCBpbnRlcmNhbWJpbyBkZSBsYSBPYnJhIHBvciBvdHJhcyBvYnJhcyBwcm90ZWdpZGFzIHBvciBkZXJlY2hvcyBkZSBhdXRvciwgeWEgc2VhIGEgdHJhdsOpcyBkZSB1biBzaXN0ZW1hIHBhcmEgY29tcGFydGlyIGFyY2hpdm9zIGRpZ2l0YWxlcyAoZGlnaXRhbCBmaWxlLXNoYXJpbmcpIG8gZGUgY3VhbHF1aWVyIG90cmEgbWFuZXJhIG5vIHNlcsOhIGNvbnNpZGVyYWRvIGNvbW8gZXN0YXIgZGVzdGluYWRvIHByaW5jaXBhbG1lbnRlIG8gZGlyaWdpZG8gZGlyZWN0YW1lbnRlIGEgY29uc2VndWlyIHVuIHByb3ZlY2hvIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLCBzaWVtcHJlIHF1ZSBubyBzZSByZWFsaWNlIHVuIHBhZ28gbWVkaWFudGUgdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIGVuIHJlbGFjacOzbiBjb24gZWwgaW50ZXJjYW1iaW8gZGUgb2JyYXMgcHJvdGVnaWRhcyBwb3IgZWwgZGVyZWNobyBkZSBhdXRvci4KYy4JU2kgdXN0ZWQgZGlzdHJpYnV5ZSwgZXhoaWJlIHDDumJsaWNhbWVudGUsIGVqZWN1dGEgcMO6YmxpY2FtZW50ZSBvIGVqZWN1dGEgcMO6YmxpY2FtZW50ZSBlbiBmb3JtYSBkaWdpdGFsIGxhIE9icmEgbyBjdWFscXVpZXIgT2JyYSBEZXJpdmFkYSB1IE9icmEgQ29sZWN0aXZhLCBVc3RlZCBkZWJlIG1hbnRlbmVyIGludGFjdGEgdG9kYSBsYSBpbmZvcm1hY2nDs24gZGUgZGVyZWNobyBkZSBhdXRvciBkZSBsYSBPYnJhIHkgcHJvcG9yY2lvbmFyLCBkZSBmb3JtYSByYXpvbmFibGUgc2Vnw7puIGVsIG1lZGlvIG8gbWFuZXJhIHF1ZSBVc3RlZCBlc3TDqSB1dGlsaXphbmRvOiAoaSkgZWwgbm9tYnJlIGRlbCBBdXRvciBPcmlnaW5hbCBzaSBlc3TDoSBwcm92aXN0byAobyBzZXVkw7NuaW1vLCBzaSBmdWVyZSBhcGxpY2FibGUpLCB5L28gKGlpKSBlbCBub21icmUgZGUgbGEgcGFydGUgbyBsYXMgcGFydGVzIHF1ZSBlbCBBdXRvciBPcmlnaW5hbCB5L28gZWwgTGljZW5jaWFudGUgaHViaWVyZW4gZGVzaWduYWRvIHBhcmEgbGEgYXRyaWJ1Y2nDs24gKHYuZy4sIHVuIGluc3RpdHV0byBwYXRyb2NpbmFkb3IsIGVkaXRvcmlhbCwgcHVibGljYWNpw7NuKSBlbiBsYSBpbmZvcm1hY2nDs24gZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGRlbCBMaWNlbmNpYW50ZSwgdMOpcm1pbm9zIGRlIHNlcnZpY2lvcyBvIGRlIG90cmFzIGZvcm1hcyByYXpvbmFibGVzOyBlbCB0w610dWxvIGRlIGxhIE9icmEgc2kgZXN0w6EgcHJvdmlzdG87IGVuIGxhIG1lZGlkYSBkZSBsbyByYXpvbmFibGVtZW50ZSBmYWN0aWJsZSB5LCBzaSBlc3TDoSBwcm92aXN0bywgZWwgSWRlbnRpZmljYWRvciBVbmlmb3JtZSBkZSBSZWN1cnNvcyAoVW5pZm9ybSBSZXNvdXJjZSBJZGVudGlmaWVyKSBxdWUgZWwgTGljZW5jaWFudGUgZXNwZWNpZmljYSBwYXJhIHNlciBhc29jaWFkbyBjb24gbGEgT2JyYSwgc2Fsdm8gcXVlIHRhbCBVUkkgbm8gc2UgcmVmaWVyYSBhIGxhIG5vdGEgc29icmUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIG8gYSBsYSBpbmZvcm1hY2nDs24gc29icmUgZWwgbGljZW5jaWFtaWVudG8gZGUgbGEgT2JyYTsgeSBlbiBlbCBjYXNvIGRlIHVuYSBPYnJhIERlcml2YWRhLCBhdHJpYnVpciBlbCBjcsOpZGl0byBpZGVudGlmaWNhbmRvIGVsIHVzbyBkZSBsYSBPYnJhIGVuIGxhIE9icmEgRGVyaXZhZGEgKHYuZy4sICJUcmFkdWNjacOzbiBGcmFuY2VzYSBkZSBsYSBPYnJhIGRlbCBBdXRvciBPcmlnaW5hbCwiIG8gIkd1acOzbiBDaW5lbWF0b2dyw6FmaWNvIGJhc2FkbyBlbiBsYSBPYnJhIG9yaWdpbmFsIGRlbCBBdXRvciBPcmlnaW5hbCIpLiBUYWwgY3LDqWRpdG8gcHVlZGUgc2VyIGltcGxlbWVudGFkbyBkZSBjdWFscXVpZXIgZm9ybWEgcmF6b25hYmxlOyBlbiBlbCBjYXNvLCBzaW4gZW1iYXJnbywgZGUgT2JyYXMgRGVyaXZhZGFzIHUgT2JyYXMgQ29sZWN0aXZhcywgdGFsIGNyw6lkaXRvIGFwYXJlY2Vyw6EsIGNvbW8gbcOtbmltbywgZG9uZGUgYXBhcmVjZSBlbCBjcsOpZGl0byBkZSBjdWFscXVpZXIgb3RybyBhdXRvciBjb21wYXJhYmxlIHkgZGUgdW5hIG1hbmVyYSwgYWwgbWVub3MsIHRhbiBkZXN0YWNhZGEgY29tbyBlbCBjcsOpZGl0byBkZSBvdHJvIGF1dG9yIGNvbXBhcmFibGUuCmQuCVBhcmEgZXZpdGFyIHRvZGEgY29uZnVzacOzbiwgZWwgTGljZW5jaWFudGUgYWNsYXJhIHF1ZSwgY3VhbmRvIGxhIG9icmEgZXMgdW5hIGNvbXBvc2ljacOzbiBtdXNpY2FsOgppLglSZWdhbMOtYXMgcG9yIGludGVycHJldGFjacOzbiB5IGVqZWN1Y2nDs24gYmFqbyBsaWNlbmNpYXMgZ2VuZXJhbGVzLiBFbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gZXhjbHVzaXZvIGRlIGF1dG9yaXphciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIG8gbGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGRlIGxhIG9icmEgeSBkZSByZWNvbGVjdGFyLCBzZWEgaW5kaXZpZHVhbG1lbnRlIG8gYSB0cmF2w6lzIGRlIHVuYSBzb2NpZWRhZCBkZSBnZXN0acOzbiBjb2xlY3RpdmEgZGUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIChwb3IgZWplbXBsbywgU0FZQ08pLCBsYXMgcmVnYWzDrWFzIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIG8gcG9yIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIChwb3IgZWplbXBsbyBXZWJjYXN0KSBsaWNlbmNpYWRhIGJham8gbGljZW5jaWFzIGdlbmVyYWxlcywgc2kgbGEgaW50ZXJwcmV0YWNpw7NuIG8gZWplY3VjacOzbiBkZSBsYSBvYnJhIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBvcmllbnRhZGEgcG9yIG8gZGlyaWdpZGEgYSBsYSBvYnRlbmNpw7NuIGRlIHVuYSB2ZW50YWphIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLgppaS4JUmVnYWzDrWFzIHBvciBGb25vZ3JhbWFzLiBFbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gZXhjbHVzaXZvIGRlIHJlY29sZWN0YXIsIGluZGl2aWR1YWxtZW50ZSBvIGEgdHJhdsOpcyBkZSB1bmEgc29jaWVkYWQgZGUgZ2VzdGnDs24gY29sZWN0aXZhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIHkgZGVyZWNob3MgY29uZXhvcyAocG9yIGVqZW1wbG8sIGxvcyBjb25zYWdyYWRvcyBwb3IgbGEgU0FZQ08pLCB1bmEgYWdlbmNpYSBkZSBkZXJlY2hvcyBtdXNpY2FsZXMgbyBhbGfDum4gYWdlbnRlIGRlc2lnbmFkbywgbGFzIHJlZ2Fsw61hcyBwb3IgY3VhbHF1aWVyIGZvbm9ncmFtYSBxdWUgVXN0ZWQgY3JlZSBhIHBhcnRpciBkZSBsYSBvYnJhICjigJx2ZXJzacOzbiBjb3ZlcuKAnSkgeSBkaXN0cmlidXlhLCBlbiBsb3MgdMOpcm1pbm9zIGRlbCByw6lnaW1lbiBkZSBkZXJlY2hvcyBkZSBhdXRvciwgc2kgbGEgY3JlYWNpw7NuIG8gZGlzdHJpYnVjacOzbiBkZSBlc2EgdmVyc2nDs24gY292ZXIgZXN0w6EgcHJpbW9yZGlhbG1lbnRlIGRlc3RpbmFkYSBvIGRpcmlnaWRhIGEgb2J0ZW5lciB1bmEgdmVudGFqYSBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYS4KZS4JR2VzdGnDs24gZGUgRGVyZWNob3MgZGUgQXV0b3Igc29icmUgSW50ZXJwcmV0YWNpb25lcyB5IEVqZWN1Y2lvbmVzIERpZ2l0YWxlcyAoV2ViQ2FzdGluZykuIFBhcmEgZXZpdGFyIHRvZGEgY29uZnVzacOzbiwgZWwgTGljZW5jaWFudGUgYWNsYXJhIHF1ZSwgY3VhbmRvIGxhIG9icmEgc2VhIHVuIGZvbm9ncmFtYSwgZWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSBhdXRvcml6YXIgbGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGRlIGxhIG9icmEgKHBvciBlamVtcGxvLCB3ZWJjYXN0KSB5IGRlIHJlY29sZWN0YXIsIGluZGl2aWR1YWxtZW50ZSBvIGEgdHJhdsOpcyBkZSB1bmEgc29jaWVkYWQgZGUgZ2VzdGnDs24gY29sZWN0aXZhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIHkgZGVyZWNob3MgY29uZXhvcyAocG9yIGVqZW1wbG8sIEFDSU5QUk8pLCBsYXMgcmVnYWzDrWFzIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8sIHdlYmNhc3QpLCBzdWpldGEgYSBsYXMgZGlzcG9zaWNpb25lcyBhcGxpY2FibGVzIGRlbCByw6lnaW1lbiBkZSBEZXJlY2hvIGRlIEF1dG9yLCBzaSBlc3RhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBlc3TDoSBwcmltb3JkaWFsbWVudGUgZGlyaWdpZGEgYSBvYnRlbmVyIHVuYSB2ZW50YWphIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLgo1LiBSZXByZXNlbnRhY2lvbmVzLCBHYXJhbnTDrWFzIHkgTGltaXRhY2lvbmVzIGRlIFJlc3BvbnNhYmlsaWRhZC4KQSBNRU5PUyBRVUUgTEFTIFBBUlRFUyBMTyBBQ09SREFSQU4gREUgT1RSQSBGT1JNQSBQT1IgRVNDUklUTywgRUwgTElDRU5DSUFOVEUgT0ZSRUNFIExBIE9CUkEgKEVOIEVMIEVTVEFETyBFTiBFTCBRVUUgU0UgRU5DVUVOVFJBKSDigJxUQUwgQ1VBTOKAnSwgU0lOIEJSSU5EQVIgR0FSQU5Uw41BUyBERSBDTEFTRSBBTEdVTkEgUkVTUEVDVE8gREUgTEEgT0JSQSwgWUEgU0VBIEVYUFJFU0EsIElNUEzDjUNJVEEsIExFR0FMIE8gQ1VBTFFVSUVSQSBPVFJBLCBJTkNMVVlFTkRPLCBTSU4gTElNSVRBUlNFIEEgRUxMQVMsIEdBUkFOVMONQVMgREUgVElUVUxBUklEQUQsIENPTUVSQ0lBQklMSURBRCwgQURBUFRBQklMSURBRCBPIEFERUNVQUNJw5NOIEEgUFJPUMOTU0lUTyBERVRFUk1JTkFETywgQVVTRU5DSUEgREUgSU5GUkFDQ0nDk04sIERFIEFVU0VOQ0lBIERFIERFRkVDVE9TIExBVEVOVEVTIE8gREUgT1RSTyBUSVBPLCBPIExBIFBSRVNFTkNJQSBPIEFVU0VOQ0lBIERFIEVSUk9SRVMsIFNFQU4gTyBOTyBERVNDVUJSSUJMRVMgKFBVRURBTiBPIE5PIFNFUiBFU1RPUyBERVNDVUJJRVJUT1MpLiBBTEdVTkFTIEpVUklTRElDQ0lPTkVTIE5PIFBFUk1JVEVOIExBIEVYQ0xVU0nDk04gREUgR0FSQU5Uw41BUyBJTVBMw41DSVRBUywgRU4gQ1VZTyBDQVNPIEVTVEEgRVhDTFVTScOTTiBQVUVERSBOTyBBUExJQ0FSU0UgQSBVU1RFRC4KNi4gTGltaXRhY2nDs24gZGUgcmVzcG9uc2FiaWxpZGFkLgpBIE1FTk9TIFFVRSBMTyBFWElKQSBFWFBSRVNBTUVOVEUgTEEgTEVZIEFQTElDQUJMRSwgRUwgTElDRU5DSUFOVEUgTk8gU0VSw4EgUkVTUE9OU0FCTEUgQU5URSBVU1RFRCBQT1IgREHDkU8gQUxHVU5PLCBTRUEgUE9SIFJFU1BPTlNBQklMSURBRCBFWFRSQUNPTlRSQUNUVUFMLCBQUkVDT05UUkFDVFVBTCBPIENPTlRSQUNUVUFMLCBPQkpFVElWQSBPIFNVQkpFVElWQSwgU0UgVFJBVEUgREUgREHDkU9TIE1PUkFMRVMgTyBQQVRSSU1PTklBTEVTLCBESVJFQ1RPUyBPIElORElSRUNUT1MsIFBSRVZJU1RPUyBPIElNUFJFVklTVE9TIFBST0RVQ0lET1MgUE9SIEVMIFVTTyBERSBFU1RBIExJQ0VOQ0lBIE8gREUgTEEgT0JSQSwgQVVOIENVQU5ETyBFTCBMSUNFTkNJQU5URSBIQVlBIFNJRE8gQURWRVJUSURPIERFIExBIFBPU0lCSUxJREFEIERFIERJQ0hPUyBEQcORT1MuIEFMR1VOQVMgTEVZRVMgTk8gUEVSTUlURU4gTEEgRVhDTFVTScOTTiBERSBDSUVSVEEgUkVTUE9OU0FCSUxJREFELCBFTiBDVVlPIENBU08gRVNUQSBFWENMVVNJw5NOIFBVRURFIE5PIEFQTElDQVJTRSBBIFVTVEVELgo3LiBUw6lybWluby4KYS4JRXN0YSBMaWNlbmNpYSB5IGxvcyBkZXJlY2hvcyBvdG9yZ2Fkb3MgZW4gdmlydHVkIGRlIGVsbGEgdGVybWluYXLDoW4gYXV0b23DoXRpY2FtZW50ZSBzaSBVc3RlZCBpbmZyaW5nZSBhbGd1bmEgY29uZGljacOzbiBlc3RhYmxlY2lkYSBlbiBlbGxhLiBTaW4gZW1iYXJnbywgbG9zIGluZGl2aWR1b3MgbyBlbnRpZGFkZXMgcXVlIGhhbiByZWNpYmlkbyBPYnJhcyBEZXJpdmFkYXMgbyBDb2xlY3RpdmFzIGRlIFVzdGVkIGRlIGNvbmZvcm1pZGFkIGNvbiBlc3RhIExpY2VuY2lhLCBubyB2ZXLDoW4gdGVybWluYWRhcyBzdXMgbGljZW5jaWFzLCBzaWVtcHJlIHF1ZSBlc3RvcyBpbmRpdmlkdW9zIG8gZW50aWRhZGVzIHNpZ2FuIGN1bXBsaWVuZG8gw61udGVncmFtZW50ZSBsYXMgY29uZGljaW9uZXMgZGUgZXN0YXMgbGljZW5jaWFzLiBMYXMgU2VjY2lvbmVzIDEsIDIsIDUsIDYsIDcsIHkgOCBzdWJzaXN0aXLDoW4gYSBjdWFscXVpZXIgdGVybWluYWNpw7NuIGRlIGVzdGEgTGljZW5jaWEuCmIuCVN1amV0YSBhIGxhcyBjb25kaWNpb25lcyB5IHTDqXJtaW5vcyBhbnRlcmlvcmVzLCBsYSBsaWNlbmNpYSBvdG9yZ2FkYSBhcXXDrSBlcyBwZXJwZXR1YSAoZHVyYW50ZSBlbCBwZXLDrW9kbyBkZSB2aWdlbmNpYSBkZSBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgbGEgb2JyYSkuIE5vIG9ic3RhbnRlIGxvIGFudGVyaW9yLCBlbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gYSBwdWJsaWNhciB5L28gZXN0cmVuYXIgbGEgT2JyYSBiYWpvIGNvbmRpY2lvbmVzIGRlIGxpY2VuY2lhIGRpZmVyZW50ZXMgbyBhIGRlamFyIGRlIGRpc3RyaWJ1aXJsYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGVzdGEgTGljZW5jaWEgZW4gY3VhbHF1aWVyIG1vbWVudG87IGVuIGVsIGVudGVuZGlkbywgc2luIGVtYmFyZ28sIHF1ZSBlc2EgZWxlY2Npw7NuIG5vIHNlcnZpcsOhIHBhcmEgcmV2b2NhciBlc3RhIGxpY2VuY2lhIG8gcXVlIGRlYmEgc2VyIG90b3JnYWRhICwgYmFqbyBsb3MgdMOpcm1pbm9zIGRlIGVzdGEgbGljZW5jaWEpLCB5IGVzdGEgbGljZW5jaWEgY29udGludWFyw6EgZW4gcGxlbm8gdmlnb3IgeSBlZmVjdG8gYSBtZW5vcyBxdWUgc2VhIHRlcm1pbmFkYSBjb21vIHNlIGV4cHJlc2EgYXRyw6FzLiBMYSBMaWNlbmNpYSByZXZvY2FkYSBjb250aW51YXLDoSBzaWVuZG8gcGxlbmFtZW50ZSB2aWdlbnRlIHkgZWZlY3RpdmEgc2kgbm8gc2UgbGUgZGEgdMOpcm1pbm8gZW4gbGFzIGNvbmRpY2lvbmVzIGluZGljYWRhcyBhbnRlcmlvcm1lbnRlLgo4LiBWYXJpb3MuCmEuCUNhZGEgdmV6IHF1ZSBVc3RlZCBkaXN0cmlidXlhIG8gcG9uZ2EgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBvIHVuYSBPYnJhIENvbGVjdGl2YSwgZWwgTGljZW5jaWFudGUgb2ZyZWNlcsOhIGFsIGRlc3RpbmF0YXJpbyB1bmEgbGljZW5jaWEgZW4gbG9zIG1pc21vcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBxdWUgbGEgbGljZW5jaWEgb3RvcmdhZGEgYSBVc3RlZCBiYWpvIGVzdGEgTGljZW5jaWEuCmIuCVNpIGFsZ3VuYSBkaXNwb3NpY2nDs24gZGUgZXN0YSBMaWNlbmNpYSByZXN1bHRhIGludmFsaWRhZGEgbyBubyBleGlnaWJsZSwgc2Vnw7puIGxhIGxlZ2lzbGFjacOzbiB2aWdlbnRlLCBlc3RvIG5vIGFmZWN0YXLDoSBuaSBsYSB2YWxpZGV6IG5pIGxhIGFwbGljYWJpbGlkYWQgZGVsIHJlc3RvIGRlIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEgeSwgc2luIGFjY2nDs24gYWRpY2lvbmFsIHBvciBwYXJ0ZSBkZSBsb3Mgc3VqZXRvcyBkZSBlc3RlIGFjdWVyZG8sIGFxdcOpbGxhIHNlIGVudGVuZGVyw6EgcmVmb3JtYWRhIGxvIG3DrW5pbW8gbmVjZXNhcmlvIHBhcmEgaGFjZXIgcXVlIGRpY2hhIGRpc3Bvc2ljacOzbiBzZWEgdsOhbGlkYSB5IGV4aWdpYmxlLgpjLglOaW5nw7puIHTDqXJtaW5vIG8gZGlzcG9zaWNpw7NuIGRlIGVzdGEgTGljZW5jaWEgc2UgZXN0aW1hcsOhIHJlbnVuY2lhZGEgeSBuaW5ndW5hIHZpb2xhY2nDs24gZGUgZWxsYSBzZXLDoSBjb25zZW50aWRhIGEgbWVub3MgcXVlIGVzYSByZW51bmNpYSBvIGNvbnNlbnRpbWllbnRvIHNlYSBvdG9yZ2FkbyBwb3IgZXNjcml0byB5IGZpcm1hZG8gcG9yIGxhIHBhcnRlIHF1ZSByZW51bmNpZSBvIGNvbnNpZW50YS4KZC4JRXN0YSBMaWNlbmNpYSByZWZsZWphIGVsIGFjdWVyZG8gcGxlbm8gZW50cmUgbGFzIHBhcnRlcyByZXNwZWN0byBhIGxhIE9icmEgYXF1w60gbGljZW5jaWFkYS4gTm8gaGF5IGFycmVnbG9zLCBhY3VlcmRvcyBvIGRlY2xhcmFjaW9uZXMgcmVzcGVjdG8gYSBsYSBPYnJhIHF1ZSBubyBlc3TDqW4gZXNwZWNpZmljYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gRWwgTGljZW5jaWFudGUgbm8gc2UgdmVyw6EgbGltaXRhZG8gcG9yIG5pbmd1bmEgZGlzcG9zaWNpw7NuIGFkaWNpb25hbCBxdWUgcHVlZGEgc3VyZ2lyIGVuIGFsZ3VuYSBjb211bmljYWNpw7NuIGVtYW5hZGEgZGUgVXN0ZWQuIEVzdGEgTGljZW5jaWEgbm8gcHVlZGUgc2VyIG1vZGlmaWNhZGEgc2luIGVsIGNvbnNlbnRpbWllbnRvIG11dHVvIHBvciBlc2NyaXRvIGRlbCBMaWNlbmNpYW50ZSB5IFVzdGVkLgo=