Diseño de un prototipo funcional de vehículo autónomo por medio de visión artificial y sensores de proximidad, implementado en PYTHON sobre arquitectura de RASPBERRY PI.
Actualmente existen una gran cantidad de accidentes de tránsito debido a la imprudencia y experiencia de los conductores de vehículos que transitan por la ciudad. Las estadísticas muestran que cuando los bogotanos se desplazan de un lugar a otro, el tiempo de permanencia puede extenderse incluso al...
- Autores:
-
Rodríguez Martínez, Héctor Andrés
Ocampo Gómez, Miguel Leonardo
Culma Yate, Neiro
- Tipo de recurso:
- Trabajo de grado de pregrado
- Fecha de publicación:
- 2018
- Institución:
- Universidad ECCI
- Repositorio:
- Repositorio Institucional ECCI
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.ecci.edu.co:001/3943
- Acceso en línea:
- https://repositorio.ecci.edu.co/handle/001/3943
- Palabra clave:
- Accidentes de tránsito
Visión artificial
Captaciòn de imagenes
Traffic accidents
Artificial vision
Image capture
- Rights
- openAccess
- License
- Attribution-NonCommercial-NoDerivatives 4.0 Internacional
id |
ECCI2_95f06d04bce30170b7094e12e994d86b |
---|---|
oai_identifier_str |
oai:repositorio.ecci.edu.co:001/3943 |
network_acronym_str |
ECCI2 |
network_name_str |
Repositorio Institucional ECCI |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Diseño de un prototipo funcional de vehículo autónomo por medio de visión artificial y sensores de proximidad, implementado en PYTHON sobre arquitectura de RASPBERRY PI. |
title |
Diseño de un prototipo funcional de vehículo autónomo por medio de visión artificial y sensores de proximidad, implementado en PYTHON sobre arquitectura de RASPBERRY PI. |
spellingShingle |
Diseño de un prototipo funcional de vehículo autónomo por medio de visión artificial y sensores de proximidad, implementado en PYTHON sobre arquitectura de RASPBERRY PI. Accidentes de tránsito Visión artificial Captaciòn de imagenes Traffic accidents Artificial vision Image capture |
title_short |
Diseño de un prototipo funcional de vehículo autónomo por medio de visión artificial y sensores de proximidad, implementado en PYTHON sobre arquitectura de RASPBERRY PI. |
title_full |
Diseño de un prototipo funcional de vehículo autónomo por medio de visión artificial y sensores de proximidad, implementado en PYTHON sobre arquitectura de RASPBERRY PI. |
title_fullStr |
Diseño de un prototipo funcional de vehículo autónomo por medio de visión artificial y sensores de proximidad, implementado en PYTHON sobre arquitectura de RASPBERRY PI. |
title_full_unstemmed |
Diseño de un prototipo funcional de vehículo autónomo por medio de visión artificial y sensores de proximidad, implementado en PYTHON sobre arquitectura de RASPBERRY PI. |
title_sort |
Diseño de un prototipo funcional de vehículo autónomo por medio de visión artificial y sensores de proximidad, implementado en PYTHON sobre arquitectura de RASPBERRY PI. |
dc.creator.fl_str_mv |
Rodríguez Martínez, Héctor Andrés Ocampo Gómez, Miguel Leonardo Culma Yate, Neiro |
dc.contributor.advisor.none.fl_str_mv |
Ruiz Suarez, Luis Efraín |
dc.contributor.author.none.fl_str_mv |
Rodríguez Martínez, Héctor Andrés Ocampo Gómez, Miguel Leonardo Culma Yate, Neiro |
dc.contributor.corporatename.spa.fl_str_mv |
Universidad ECCI |
dc.subject.proposal.spa.fl_str_mv |
Accidentes de tránsito Visión artificial Captaciòn de imagenes |
topic |
Accidentes de tránsito Visión artificial Captaciòn de imagenes Traffic accidents Artificial vision Image capture |
dc.subject.proposal.eng.fl_str_mv |
Traffic accidents Artificial vision Image capture |
description |
Actualmente existen una gran cantidad de accidentes de tránsito debido a la imprudencia y experiencia de los conductores de vehículos que transitan por la ciudad. Las estadísticas muestran que cuando los bogotanos se desplazan de un lugar a otro, el tiempo de permanencia puede extenderse incluso al doble por los cuellos de botella, generados por diversos motivos. De las penurias para llegar oportunamente al lugar de destino, la persona incurre en el incumplimiento de las normas de tránsito, acarreando multas económicas evitables mediante soluciones informáticas que emplean algoritmos de inteligencia artificial (IA), generando valor a la sociedad al reducir las tarifas. de accidentes así como en multas en términos de sanciones. A través de este proyecto se pretende identificar y estudiar una solución que pueda considerarse viable frente a los problemas antes mencionados. Por lo anterior, evaluaremos el uso de una combinación de tecnologías informáticas, entendiendo que búsquedas similares están revolucionando la industria automotriz hoy, definiendo un mercado potencialmente interesante para las mismas en los próximos años. Para realizar la evaluación propuesta, se utiliza un prototipo de vehículo a escala el cual fue equipado con un dispositivo informático liviano, en el cual se utilizaron los algoritmos necesarios para hacer un uso "inteligente" de la información obtenida de los sensores, permitiendo generar respuestas a partir de los actuadores que sean adecuados a las situaciones cuya gestión se ha definido como fundamental. En este orden de ideas, haciendo uso de las ventajas que brinda un sistema informático, así como de un modelo configurable que permite generar diferentes escenarios aleatorios, con obstáculos de diversa índole, es posible asegurar que los algoritmos en jaque sean probados. a tal nivel de rigor que se alcance la adecuada selección y calibración de los más adecuados para la propuesta final. |
publishDate |
2018 |
dc.date.issued.none.fl_str_mv |
2018 |
dc.date.accessioned.none.fl_str_mv |
2024-02-28T17:54:45Z |
dc.date.available.none.fl_str_mv |
2024-02-28T17:54:45Z |
dc.type.spa.fl_str_mv |
Trabajo de grado - Pregrado |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
dc.type.redcol.spa.fl_str_mv |
https://purl.org/redcol/resource_type/TP |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/draft |
dc.type.coarversion.spa.fl_str_mv |
http://purl.org/coar/version/c_b1a7d7d4d402bcce |
format |
http://purl.org/coar/resource_type/c_7a1f |
status_str |
draft |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.ecci.edu.co/handle/001/3943 |
url |
https://repositorio.ecci.edu.co/handle/001/3943 |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
Ingeniero Abdul Ruiz Saldaña. (2016). ENTREVISTA. Coordinación de Ingeniería de Sistemas. Universidad ECCI. Bogotá. V. M. Arévalo, J. González, G. Ambrosi. (2004). LA LIBRERÍA DE VISIÓN ARTIFICIAL OPENCV APLICACIÓN A LA DOCENCIA E INVESTIGACIÓN. Dpto. De Ingeniería de Sistemas y Automática, Universidad de Málaga. España. Extraído de: http://mapir.isa.uma.es/varevalo/drafts/arevalo2004lva1.pdf Autor. (2012). APLICACIÓN PRÁCTICA DE LA VISIÓN ARTIFICIAL EN EL CONTROL DE PROCESOS INDUSTRIALES. Gobierno de España, Ministerio de Educación Español y Fondo Nacional Europeo. Extraído de: http://visionartificial.fpcat.cat/wp-ontent/uploads/UD_1_didac_Conceptos_previos.pdf Dr. Luis Salgado. (2007). VISIÓN ARTIFICIAL: FUNDAMENTOS Y APLICACIONES. Universidad Politécnica de Madrid. Extraído de: http://webcache.googleusercontent.com/search?q=cache:http://arantxa.ii.uam.es/~jms/seminarios_doctorado/abstracts2006-2007/20070503LSalagado.pdf Fernando Arboledas Cique y Jesús de Luis Serrano. (2014). INTELIGENCIA ARTIFICIAL EN MEDIOS DE TRANSPORTE. Universidad Carlos III de Madrid. Extraído de: http://www.it.uc3m.es/jvillena/irc/practicas/13-14/04.pdf Daniel Asegurado Turón. (2011). EL COCHE INTELIGENTE. Universidad Carlos III de Madrid. Extraído de: http://portal.uc3m.es/portal/page/portal/actualidad_cientifica/publi/feria_ciencia08/coche_intelig Joshué Manuel Pérez Rastelli. (2012). AGENTES DE CONTROL DE VEHÍCULOS AUTÓNOMOS EN ENTORNOS URBANOS Y AUTOVÍAS. Universidad Complutense de Madrid. Extraído de: https://www.google.com.co/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0ahUKEwiDoJDV09jXAhXCmuAKHQbcBM4QFggkMAA&url=http%3A%2F%2Fdigital.csic.es%2Fbitstream%2F10261%2F47804%2F1%2FTesis_Joshue_Perez.pdf&usg=AOvVaw37c1fvkPXWu4HBUDcXk4Ta Daniel Asegurado Turón. (2012).EL COCHE INTELIGENTE, EN BUSCA DE MAYOR SEGURIDAD, SOSTENIBILIDAD Y CONFORT. Universidad Carlos III de Madrid Leganés, Madrid, España. Extraído de: http://www.it.uc3m.es/jvillena/irc/practicas/11-12/01pres.pdf Dayana H. Bailon Delgado. (2015). AVANCE SIGNIFICATIVO DE INTELIGENCIA ARTIFICIAL: VEHÍCULOS AUTÓNOMOS. Escuela Superior Politécnica Agropecuaria de Manabí Manuel Félix López, Calceta – Ecuador. Extraído de: https://dayuia6toinfor.files.wordpress.com. El Tiempo. (2016). LO DIFÍCIL QUE ES SALIR ILESO DE UN ACCIDENTE CON MOTO EN BOGOTÁ. Bogotá. Carmelo Marin. (2015). SEGUIMIENTO DE OBJETOS POR COLOR. Extraído de: o http://acodigo.blogspot.com.co/2016/04/seguimiento-de-objetos-por-color.htmlCarmelo Marin. (2015). ACENTUAR COLOR. Extraído de: http://acodigo.blogspot.com.co/ Centro de Análisis y Prospectiva Gabinete Técnico de la Guardia Civil. (2014). Extraído de: http://intranet.gccap.bage.es/ Robert Laganiere. (2011). OPENCV 2 COMPUTER VISION APPLICATION PROGRAMMING COOKBOOK. Extraído de: 9781849513241-OPENCV_2_COMPUTER_VISION_APPLICATION_PROGRAMMING.pdf. |
dc.rights.spa.fl_str_mv |
Derechos Reservados - Universidad ECCI, 2018 |
dc.rights.license.*.fl_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 Internacional |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 Internacional Derechos Reservados - Universidad ECCI, 2018 http://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
76 p. |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad ECCI |
dc.publisher.place.spa.fl_str_mv |
Colombia |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ingenierías |
institution |
Universidad ECCI |
bitstream.url.fl_str_mv |
https://repositorio.ecci.edu.co/bitstream/001/3943/6/license.txt https://repositorio.ecci.edu.co/bitstream/001/3943/1/Trabajo%20de%20grado.pdf https://repositorio.ecci.edu.co/bitstream/001/3943/2/Sesi%c3%b3n%20de%20derechos.pdf https://repositorio.ecci.edu.co/bitstream/001/3943/3/Acta1.pdf https://repositorio.ecci.edu.co/bitstream/001/3943/4/Acta2.pdf https://repositorio.ecci.edu.co/bitstream/001/3943/5/Acta3.pdf https://repositorio.ecci.edu.co/bitstream/001/3943/7/license_rdf https://repositorio.ecci.edu.co/bitstream/001/3943/8/Trabajo%20de%20grado.pdf.txt https://repositorio.ecci.edu.co/bitstream/001/3943/10/Sesi%c3%b3n%20de%20derechos.pdf.txt https://repositorio.ecci.edu.co/bitstream/001/3943/12/Acta1.pdf.txt https://repositorio.ecci.edu.co/bitstream/001/3943/14/Acta2.pdf.txt https://repositorio.ecci.edu.co/bitstream/001/3943/16/Acta3.pdf.txt https://repositorio.ecci.edu.co/bitstream/001/3943/9/Trabajo%20de%20grado.pdf.jpg https://repositorio.ecci.edu.co/bitstream/001/3943/11/Sesi%c3%b3n%20de%20derechos.pdf.jpg https://repositorio.ecci.edu.co/bitstream/001/3943/13/Acta1.pdf.jpg https://repositorio.ecci.edu.co/bitstream/001/3943/15/Acta2.pdf.jpg https://repositorio.ecci.edu.co/bitstream/001/3943/17/Acta3.pdf.jpg |
bitstream.checksum.fl_str_mv |
88794144ff048353b359a3174871b0d5 56231c3d6122efbe35e9dc04d80f245e 53a1cd4e7fd8ff60b87443fb83c6b03f b68f978fbddd081b82f70a93d87ecd22 b7a99ed0668a24f0373bc4d9dcc5f2b4 519586db34d06f86118c553255e926f7 4460e5956bc1d1639be9ae6146a50347 9171c0a28e973a92258b236f244579ac 68b329da9893e34099c7d8ad5cb9c940 68b329da9893e34099c7d8ad5cb9c940 68b329da9893e34099c7d8ad5cb9c940 68b329da9893e34099c7d8ad5cb9c940 e3d90fd35e05288aa80862b4c34e230a 79aabf12b2fad9aba91fc05d7019ba00 35702b3b74814da5a8796c2cd86bb1be 52125c392ab9b16095d9477c37a50edb 998794bea57663d46151e4e770beee86 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Digital Universidad ECCI |
repository.mail.fl_str_mv |
repositorio.institucional@ecci.edu.co |
_version_ |
1814100610330394624 |
spelling |
Attribution-NonCommercial-NoDerivatives 4.0 InternacionalDerechos Reservados - Universidad ECCI, 2018http://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Ruiz Suarez, Luis Efraín19a62ff76c0571538148d4080b7e7ec2Rodríguez Martínez, Héctor Andrés5696811fa5e09dda645f968656dac0a4Ocampo Gómez, Miguel Leonardoc9ca3db0027dd99f26243d738ff1922fCulma Yate, Neiro6c53dba53d5a5a58b85d583c0b411247Universidad ECCI2024-02-28T17:54:45Z2024-02-28T17:54:45Z2018https://repositorio.ecci.edu.co/handle/001/3943Actualmente existen una gran cantidad de accidentes de tránsito debido a la imprudencia y experiencia de los conductores de vehículos que transitan por la ciudad. Las estadísticas muestran que cuando los bogotanos se desplazan de un lugar a otro, el tiempo de permanencia puede extenderse incluso al doble por los cuellos de botella, generados por diversos motivos. De las penurias para llegar oportunamente al lugar de destino, la persona incurre en el incumplimiento de las normas de tránsito, acarreando multas económicas evitables mediante soluciones informáticas que emplean algoritmos de inteligencia artificial (IA), generando valor a la sociedad al reducir las tarifas. de accidentes así como en multas en términos de sanciones. A través de este proyecto se pretende identificar y estudiar una solución que pueda considerarse viable frente a los problemas antes mencionados. Por lo anterior, evaluaremos el uso de una combinación de tecnologías informáticas, entendiendo que búsquedas similares están revolucionando la industria automotriz hoy, definiendo un mercado potencialmente interesante para las mismas en los próximos años. Para realizar la evaluación propuesta, se utiliza un prototipo de vehículo a escala el cual fue equipado con un dispositivo informático liviano, en el cual se utilizaron los algoritmos necesarios para hacer un uso "inteligente" de la información obtenida de los sensores, permitiendo generar respuestas a partir de los actuadores que sean adecuados a las situaciones cuya gestión se ha definido como fundamental. En este orden de ideas, haciendo uso de las ventajas que brinda un sistema informático, así como de un modelo configurable que permite generar diferentes escenarios aleatorios, con obstáculos de diversa índole, es posible asegurar que los algoritmos en jaque sean probados. a tal nivel de rigor que se alcance la adecuada selección y calibración de los más adecuados para la propuesta final.Tabla de contenido 1. Problema de Investigación 16 1.1. Descripción del problema . 16 1.2. Formulación del problema 16 2. Objetivos de la Investigación .. 17 2.1. Objetivo general 17 2.2. Objetivos específicos .. 17 3. Justificación y Delimitación. 17 3.1. Justificación . 17 3.2. Delimitación 18 4. Marco de Referencia de la Investigación .. 20 4.1. Marco teórico .. 20 4.1.1. La Visión artificial. 20 4.1.2. Elementos importantes para la captación de imágenes. 21 4.1.3 OpenCV . 23 4.1.3 Elementos que componen un vehículo auto-conducido (Self-driving vehicle) .. 33 4.1.4. Antecedentes. . 33 4.2. Marco conceptual . 41 4.2.1. Acciones básicas. 41 4.2.2. Conceptos de las acciones a realizar. 42 4.2.3. Definiciones generales. 43 4.3. Marco legal .. 44 5. Tipo de Investigación .. 46 6. Diseño Metodológico .. 47 7. Desarrollo de la Investigación . 48 7.1. Etapa uno .. 49 7.2. Etapa dos 53 7.3. Etapa tres .. 61 7.3.1. Código cámara web. .. 62 7.3.2. Código motor. 63 7.3.3. Código sensores 64 7.3.4. Videos funcionamiento. .. 66 8. Fuentes de Información .. 67 8.1. Fuentes primarias .. 67 8.2. Fuentes secundarias . 67 9. Recursos . 70 10. Cronograma .. 72 11. Conclusiones 73 12. Recomendaciones .. 75PregradoIngeniero en SistemasIngeniería de Sistemas76 p.application/pdfspaUniversidad ECCIColombiaFacultad de IngenieríasDiseño de un prototipo funcional de vehículo autónomo por medio de visión artificial y sensores de proximidad, implementado en PYTHON sobre arquitectura de RASPBERRY PI.Trabajo de grado - Pregradohttp://purl.org/coar/resource_type/c_7a1fTextinfo:eu-repo/semantics/bachelorThesishttps://purl.org/redcol/resource_type/TPinfo:eu-repo/semantics/drafthttp://purl.org/coar/version/c_b1a7d7d4d402bcceIngeniero Abdul Ruiz Saldaña. (2016). ENTREVISTA. Coordinación de Ingeniería de Sistemas. Universidad ECCI. Bogotá.V. M. Arévalo, J. González, G. Ambrosi. (2004). LA LIBRERÍA DE VISIÓN ARTIFICIAL OPENCV APLICACIÓN A LA DOCENCIA E INVESTIGACIÓN. Dpto. De Ingeniería de Sistemas y Automática, Universidad de Málaga. España. Extraído de: http://mapir.isa.uma.es/varevalo/drafts/arevalo2004lva1.pdfAutor. (2012). APLICACIÓN PRÁCTICA DE LA VISIÓN ARTIFICIAL EN EL CONTROL DE PROCESOS INDUSTRIALES. Gobierno de España, Ministerio de Educación Español y Fondo Nacional Europeo. Extraído de: http://visionartificial.fpcat.cat/wp-ontent/uploads/UD_1_didac_Conceptos_previos.pdfDr. Luis Salgado. (2007). VISIÓN ARTIFICIAL: FUNDAMENTOS Y APLICACIONES. Universidad Politécnica de Madrid. Extraído de: http://webcache.googleusercontent.com/search?q=cache:http://arantxa.ii.uam.es/~jms/seminarios_doctorado/abstracts2006-2007/20070503LSalagado.pdfFernando Arboledas Cique y Jesús de Luis Serrano. (2014). INTELIGENCIA ARTIFICIAL EN MEDIOS DE TRANSPORTE. Universidad Carlos III de Madrid. Extraído de: http://www.it.uc3m.es/jvillena/irc/practicas/13-14/04.pdfDaniel Asegurado Turón. (2011). EL COCHE INTELIGENTE. Universidad Carlos III de Madrid. Extraído de: http://portal.uc3m.es/portal/page/portal/actualidad_cientifica/publi/feria_ciencia08/coche_inteligJoshué Manuel Pérez Rastelli. (2012). AGENTES DE CONTROL DE VEHÍCULOS AUTÓNOMOS EN ENTORNOS URBANOS Y AUTOVÍAS. Universidad Complutense de Madrid. Extraído de: https://www.google.com.co/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0ahUKEwiDoJDV09jXAhXCmuAKHQbcBM4QFggkMAA&url=http%3A%2F%2Fdigital.csic.es%2Fbitstream%2F10261%2F47804%2F1%2FTesis_Joshue_Perez.pdf&usg=AOvVaw37c1fvkPXWu4HBUDcXk4TaDaniel Asegurado Turón. (2012).EL COCHE INTELIGENTE, EN BUSCA DE MAYOR SEGURIDAD, SOSTENIBILIDAD Y CONFORT. Universidad Carlos III de Madrid Leganés, Madrid, España. Extraído de: http://www.it.uc3m.es/jvillena/irc/practicas/11-12/01pres.pdfDayana H. Bailon Delgado. (2015). AVANCE SIGNIFICATIVO DE INTELIGENCIA ARTIFICIAL: VEHÍCULOS AUTÓNOMOS. Escuela Superior Politécnica Agropecuaria de Manabí Manuel Félix López, Calceta – Ecuador. Extraído de: https://dayuia6toinfor.files.wordpress.com.El Tiempo. (2016). LO DIFÍCIL QUE ES SALIR ILESO DE UN ACCIDENTE CON MOTO EN BOGOTÁ. Bogotá.Carmelo Marin. (2015). SEGUIMIENTO DE OBJETOS POR COLOR. Extraído de: o http://acodigo.blogspot.com.co/2016/04/seguimiento-de-objetos-por-color.htmlCarmelo Marin. (2015). ACENTUAR COLOR. Extraído de: http://acodigo.blogspot.com.co/Centro de Análisis y Prospectiva Gabinete Técnico de la Guardia Civil. (2014). Extraído de: http://intranet.gccap.bage.es/Robert Laganiere. (2011). OPENCV 2 COMPUTER VISION APPLICATION PROGRAMMING COOKBOOK. Extraído de: 9781849513241-OPENCV_2_COMPUTER_VISION_APPLICATION_PROGRAMMING.pdf.Accidentes de tránsitoVisión artificialCaptaciòn de imagenesTraffic accidentsArtificial visionImage captureLICENSElicense.txtlicense.txttext/plain; charset=utf-814798https://repositorio.ecci.edu.co/bitstream/001/3943/6/license.txt88794144ff048353b359a3174871b0d5MD56ORIGINALTrabajo de grado.pdfTrabajo de grado.pdfapplication/pdf2274813https://repositorio.ecci.edu.co/bitstream/001/3943/1/Trabajo%20de%20grado.pdf56231c3d6122efbe35e9dc04d80f245eMD51Sesión de derechos.pdfSesión de derechos.pdfapplication/pdf361360https://repositorio.ecci.edu.co/bitstream/001/3943/2/Sesi%c3%b3n%20de%20derechos.pdf53a1cd4e7fd8ff60b87443fb83c6b03fMD52Acta1.pdfActa1.pdfapplication/pdf253817https://repositorio.ecci.edu.co/bitstream/001/3943/3/Acta1.pdfb68f978fbddd081b82f70a93d87ecd22MD53Acta2.pdfActa2.pdfapplication/pdf255904https://repositorio.ecci.edu.co/bitstream/001/3943/4/Acta2.pdfb7a99ed0668a24f0373bc4d9dcc5f2b4MD54Acta3.pdfActa3.pdfapplication/pdf249356https://repositorio.ecci.edu.co/bitstream/001/3943/5/Acta3.pdf519586db34d06f86118c553255e926f7MD55CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.ecci.edu.co/bitstream/001/3943/7/license_rdf4460e5956bc1d1639be9ae6146a50347MD57TEXTTEXTTrabajo de grado.pdf.txtTrabajo de grado.pdf.txtExtracted texttext/plain75567https://repositorio.ecci.edu.co/bitstream/001/3943/8/Trabajo%20de%20grado.pdf.txt9171c0a28e973a92258b236f244579acMD58Sesión de derechos.pdf.txtSesión de derechos.pdf.txtExtracted texttext/plain1https://repositorio.ecci.edu.co/bitstream/001/3943/10/Sesi%c3%b3n%20de%20derechos.pdf.txt68b329da9893e34099c7d8ad5cb9c940MD510Acta1.pdf.txtActa1.pdf.txtExtracted texttext/plain1https://repositorio.ecci.edu.co/bitstream/001/3943/12/Acta1.pdf.txt68b329da9893e34099c7d8ad5cb9c940MD512Acta2.pdf.txtActa2.pdf.txtExtracted texttext/plain1https://repositorio.ecci.edu.co/bitstream/001/3943/14/Acta2.pdf.txt68b329da9893e34099c7d8ad5cb9c940MD514Acta3.pdf.txtActa3.pdf.txtExtracted texttext/plain1https://repositorio.ecci.edu.co/bitstream/001/3943/16/Acta3.pdf.txt68b329da9893e34099c7d8ad5cb9c940MD516THUMBNAILTrabajo de grado.pdf.jpgTrabajo de grado.pdf.jpgGenerated Thumbnailimage/jpeg8705https://repositorio.ecci.edu.co/bitstream/001/3943/9/Trabajo%20de%20grado.pdf.jpge3d90fd35e05288aa80862b4c34e230aMD59Sesión de derechos.pdf.jpgSesión de derechos.pdf.jpgGenerated Thumbnailimage/jpeg16072https://repositorio.ecci.edu.co/bitstream/001/3943/11/Sesi%c3%b3n%20de%20derechos.pdf.jpg79aabf12b2fad9aba91fc05d7019ba00MD511Acta1.pdf.jpgActa1.pdf.jpgGenerated Thumbnailimage/jpeg15147https://repositorio.ecci.edu.co/bitstream/001/3943/13/Acta1.pdf.jpg35702b3b74814da5a8796c2cd86bb1beMD513Acta2.pdf.jpgActa2.pdf.jpgGenerated Thumbnailimage/jpeg14803https://repositorio.ecci.edu.co/bitstream/001/3943/15/Acta2.pdf.jpg52125c392ab9b16095d9477c37a50edbMD515Acta3.pdf.jpgActa3.pdf.jpgGenerated Thumbnailimage/jpeg14655https://repositorio.ecci.edu.co/bitstream/001/3943/17/Acta3.pdf.jpg998794bea57663d46151e4e770beee86MD517THUMBNAIL001/3943oai:repositorio.ecci.edu.co:001/39432024-07-24 16:14:47.946Repositorio Digital Universidad ECCIrepositorio.institucional@ecci.edu.coTEEgT0JSQSAoVEFMIFkgQ09NTyBTRSBERUZJTkUgTcOBUyBBREVMQU5URSkgU0UgT1RPUkdBIEJBSk8gTE9TIFRFUk1JTk9TIERFIEVTVEEgTElDRU5DSUEgUMOaQkxJQ0EgREUgQ1JFQVRJVkUgQ09NTU9OUyAo4oCcTFBDQ+KAnSBPIOKAnExJQ0VOQ0lB4oCdKS4gTEEgT0JSQSBFU1TDgSBQUk9URUdJREEgUE9SIERFUkVDSE9TIERFIEFVVE9SIFkvVSBPVFJBUyBMRVlFUyBBUExJQ0FCTEVTLiBRVUVEQSBQUk9ISUJJRE8gQ1VBTFFVSUVSIFVTTyBRVUUgU0UgSEFHQSBERSBMQSBPQlJBIFFVRSBOTyBDVUVOVEUgQ09OIExBIEFVVE9SSVpBQ0nDk04gUEVSVElORU5URSBERSBDT05GT1JNSURBRCBDT04gTE9TIFTDiVJNSU5PUyBERSBFU1RBIExJQ0VOQ0lBIFkgREUgTEEgTEVZIERFIERFUkVDSE8gREUgQVVUT1IuCk1FRElBTlRFIEVMIEVKRVJDSUNJTyBERSBDVUFMUVVJRVJBIERFIExPUyBERVJFQ0hPUyBRVUUgU0UgT1RPUkdBTiBFTiBFU1RBIExJQ0VOQ0lBLCBVU1RFRCBBQ0VQVEEgWSBBQ1VFUkRBIFFVRURBUiBPQkxJR0FETyBFTiBMT1MgVEVSTUlOT1MgUVVFIFNFIFNFw5FBTEFOIEVOIEVMTEEuIEVMIExJQ0VOQ0lBTlRFIENPTkNFREUgQSBVU1RFRCBMT1MgREVSRUNIT1MgQ09OVEVOSURPUyBFTiBFU1RBIExJQ0VOQ0lBIENPTkRJQ0lPTkFET1MgQSBMQSBBQ0VQVEFDScOTTiBERSBTVVMgVEVSTUlOT1MgWSBDT05ESUNJT05FUy4KMS4gRGVmaW5pY2lvbmVzCmEuCU9icmEgQ29sZWN0aXZhIGVzIHVuYSBvYnJhLCB0YWwgY29tbyB1bmEgcHVibGljYWNpw7NuIHBlcmnDs2RpY2EsIHVuYSBhbnRvbG9nw61hLCBvIHVuYSBlbmNpY2xvcGVkaWEsIGVuIGxhIHF1ZSBsYSBvYnJhIGVuIHN1IHRvdGFsaWRhZCwgc2luIG1vZGlmaWNhY2nDs24gYWxndW5hLCBqdW50byBjb24gdW4gZ3J1cG8gZGUgb3RyYXMgY29udHJpYnVjaW9uZXMgcXVlIGNvbnN0aXR1eWVuIG9icmFzIHNlcGFyYWRhcyBlIGluZGVwZW5kaWVudGVzIGVuIHPDrSBtaXNtYXMsIHNlIGludGVncmFuIGVuIHVuIHRvZG8gY29sZWN0aXZvLiBVbmEgT2JyYSBxdWUgY29uc3RpdHV5ZSB1bmEgb2JyYSBjb2xlY3RpdmEgbm8gc2UgY29uc2lkZXJhcsOhIHVuYSBPYnJhIERlcml2YWRhIChjb21vIHNlIGRlZmluZSBhYmFqbykgcGFyYSBsb3MgcHJvcMOzc2l0b3MgZGUgZXN0YSBsaWNlbmNpYS4gYXF1ZWxsYSBwcm9kdWNpZGEgcG9yIHVuIGdydXBvIGRlIGF1dG9yZXMsIGVuIHF1ZSBsYSBPYnJhIHNlIGVuY3VlbnRyYSBzaW4gbW9kaWZpY2FjaW9uZXMsIGp1bnRvIGNvbiB1bmEgY2llcnRhIGNhbnRpZGFkIGRlIG90cmFzIGNvbnRyaWJ1Y2lvbmVzLCBxdWUgY29uc3RpdHV5ZW4gZW4gc8OtIG1pc21vcyB0cmFiYWpvcyBzZXBhcmFkb3MgZSBpbmRlcGVuZGllbnRlcywgcXVlIHNvbiBpbnRlZ3JhZG9zIGFsIHRvZG8gY29sZWN0aXZvLCB0YWxlcyBjb21vIHB1YmxpY2FjaW9uZXMgcGVyacOzZGljYXMsIGFudG9sb2fDrWFzIG8gZW5jaWNsb3BlZGlhcy4KYi4JT2JyYSBEZXJpdmFkYSBzaWduaWZpY2EgdW5hIG9icmEgYmFzYWRhIGVuIGxhIG9icmEgb2JqZXRvIGRlIGVzdGEgbGljZW5jaWEgbyBlbiDDqXN0YSB5IG90cmFzIG9icmFzIHByZWV4aXN0ZW50ZXMsIHRhbGVzIGNvbW8gdHJhZHVjY2lvbmVzLCBhcnJlZ2xvcyBtdXNpY2FsZXMsIGRyYW1hdGl6YWNpb25lcywg4oCcZmljY2lvbmFsaXphY2lvbmVz4oCdLCB2ZXJzaW9uZXMgcGFyYSBjaW5lLCDigJxncmFiYWNpb25lcyBkZSBzb25pZG/igJ0sIHJlcHJvZHVjY2lvbmVzIGRlIGFydGUsIHJlc8O6bWVuZXMsIGNvbmRlbnNhY2lvbmVzLCBvIGN1YWxxdWllciBvdHJhIGVuIGxhIHF1ZSBsYSBvYnJhIHB1ZWRhIHNlciB0cmFuc2Zvcm1hZGEsIGNhbWJpYWRhIG8gYWRhcHRhZGEsIGV4Y2VwdG8gYXF1ZWxsYXMgcXVlIGNvbnN0aXR1eWFuIHVuYSBvYnJhIGNvbGVjdGl2YSwgbGFzIHF1ZSBubyBzZXLDoW4gY29uc2lkZXJhZGFzIHVuYSBvYnJhIGRlcml2YWRhIHBhcmEgZWZlY3RvcyBkZSBlc3RhIGxpY2VuY2lhLiAoUGFyYSBldml0YXIgZHVkYXMsIGVuIGVsIGNhc28gZGUgcXVlIGxhIE9icmEgc2VhIHVuYSBjb21wb3NpY2nDs24gbXVzaWNhbCBvIHVuYSBncmFiYWNpw7NuIHNvbm9yYSwgcGFyYSBsb3MgZWZlY3RvcyBkZSBlc3RhIExpY2VuY2lhIGxhIHNpbmNyb25pemFjacOzbiB0ZW1wb3JhbCBkZSBsYSBPYnJhIGNvbiB1bmEgaW1hZ2VuIGVuIG1vdmltaWVudG8gc2UgY29uc2lkZXJhcsOhIHVuYSBPYnJhIERlcml2YWRhIHBhcmEgbG9zIGZpbmVzIGRlIGVzdGEgbGljZW5jaWEpLgpjLglMaWNlbmNpYW50ZSwgZXMgZWwgaW5kaXZpZHVvIG8gbGEgZW50aWRhZCB0aXR1bGFyIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBxdWUgb2ZyZWNlIGxhIE9icmEgZW4gY29uZm9ybWlkYWQgY29uIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLgpkLglBdXRvciBvcmlnaW5hbCwgZXMgZWwgaW5kaXZpZHVvIHF1ZSBjcmXDsyBsYSBPYnJhLgplLglPYnJhLCBlcyBhcXVlbGxhIG9icmEgc3VzY2VwdGlibGUgZGUgcHJvdGVjY2nDs24gcG9yIGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IgeSBxdWUgZXMgb2ZyZWNpZGEgZW4gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIGxpY2VuY2lhCmYuCVVzdGVkLCBlcyBlbCBpbmRpdmlkdW8gbyBsYSBlbnRpZGFkIHF1ZSBlamVyY2l0YSBsb3MgZGVyZWNob3Mgb3RvcmdhZG9zIGFsIGFtcGFybyBkZSBlc3RhIExpY2VuY2lhIHkgcXVlIGNvbiBhbnRlcmlvcmlkYWQgbm8gaGEgdmlvbGFkbyBsYXMgY29uZGljaW9uZXMgZGUgbGEgbWlzbWEgcmVzcGVjdG8gYSBsYSBPYnJhLCBvIHF1ZSBoYXlhIG9idGVuaWRvIGF1dG9yaXphY2nDs24gZXhwcmVzYSBwb3IgcGFydGUgZGVsIExpY2VuY2lhbnRlIHBhcmEgZWplcmNlciBsb3MgZGVyZWNob3MgYWwgYW1wYXJvIGRlIGVzdGEgTGljZW5jaWEgcGVzZSBhIHVuYSB2aW9sYWNpw7NuIGFudGVyaW9yLgoyLiBEZXJlY2hvcyBkZSBVc29zIEhvbnJhZG9zIHkgZXhjZXBjaW9uZXMgTGVnYWxlcy4KTmFkYSBlbiBlc3RhIExpY2VuY2lhIHBvZHLDoSBzZXIgaW50ZXJwcmV0YWRvIGNvbW8gdW5hIGRpc21pbnVjacOzbiwgbGltaXRhY2nDs24gbyByZXN0cmljY2nDs24gZGUgbG9zIGRlcmVjaG9zIGRlcml2YWRvcyBkZWwgdXNvIGhvbnJhZG8geSBvdHJhcyBsaW1pdGFjaW9uZXMgbyBleGNlcGNpb25lcyBhIGxvcyBkZXJlY2hvcyBkZWwgYXV0b3IgYmFqbyBlbCByw6lnaW1lbiBsZWdhbCB2aWdlbnRlIG8gZGVyaXZhZG8gZGUgY3VhbHF1aWVyIG90cmEgbm9ybWEgcXVlIHNlIGxlIGFwbGlxdWUuCjMuIENvbmNlc2nDs24gZGUgbGEgTGljZW5jaWEuCkJham8gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIGVsIExpY2VuY2lhbnRlIG90b3JnYSBhIFVzdGVkIHVuYSBsaWNlbmNpYSBtdW5kaWFsLCBsaWJyZSBkZSByZWdhbMOtYXMsIG5vIGV4Y2x1c2l2YSB5IHBlcnBldHVhIChkdXJhbnRlIHRvZG8gZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGVqZXJjZXIgZXN0b3MgZGVyZWNob3Mgc29icmUgbGEgT2JyYSB0YWwgeSBjb21vIHNlIGluZGljYSBhIGNvbnRpbnVhY2nDs246CmEuCVJlcHJvZHVjaXIgbGEgT2JyYSwgaW5jb3Jwb3JhciBsYSBPYnJhIGVuIHVuYSBvIG3DoXMgT2JyYXMgQ29sZWN0aXZhcywgeSByZXByb2R1Y2lyIGxhIE9icmEgaW5jb3Jwb3JhZGEgZW4gbGFzIE9icmFzIENvbGVjdGl2YXM7CmIuCURpc3RyaWJ1aXIgY29waWFzIG8gZm9ub2dyYW1hcyBkZSBsYXMgT2JyYXMsIGV4aGliaXJsYXMgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXJsYXMgcMO6YmxpY2FtZW50ZSB5L28gcG9uZXJsYXMgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EsIGluY2x1ecOpbmRvbGFzIGNvbW8gaW5jb3Jwb3JhZGFzIGVuIE9icmFzIENvbGVjdGl2YXMsIHNlZ8O6biBjb3JyZXNwb25kYTsKYy4JRGlzdHJpYnVpciBjb3BpYXMgZGUgbGFzIE9icmFzIERlcml2YWRhcyBxdWUgc2UgZ2VuZXJlbiwgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYS4KTG9zIGRlcmVjaG9zIG1lbmNpb25hZG9zIGFudGVyaW9ybWVudGUgcHVlZGVuIHNlciBlamVyY2lkb3MgZW4gdG9kb3MgbG9zIG1lZGlvcyB5IGZvcm1hdG9zLCBhY3R1YWxtZW50ZSBjb25vY2lkb3MgbyBxdWUgc2UgaW52ZW50ZW4gZW4gZWwgZnV0dXJvLiBMb3MgZGVyZWNob3MgYW50ZXMgbWVuY2lvbmFkb3MgaW5jbHV5ZW4gZWwgZGVyZWNobyBhIHJlYWxpemFyIGRpY2hhcyBtb2RpZmljYWNpb25lcyBlbiBsYSBtZWRpZGEgcXVlIHNlYW4gdMOpY25pY2FtZW50ZSBuZWNlc2FyaWFzIHBhcmEgZWplcmNlciBsb3MgZGVyZWNob3MgZW4gb3RybyBtZWRpbyBvIGZvcm1hdG9zLCBwZXJvIGRlIG90cmEgbWFuZXJhIHVzdGVkIG5vIGVzdMOhIGF1dG9yaXphZG8gcGFyYSByZWFsaXphciBvYnJhcyBkZXJpdmFkYXMuIFRvZG9zIGxvcyBkZXJlY2hvcyBubyBvdG9yZ2Fkb3MgZXhwcmVzYW1lbnRlIHBvciBlbCBMaWNlbmNpYW50ZSBxdWVkYW4gcG9yIGVzdGUgbWVkaW8gcmVzZXJ2YWRvcywgaW5jbHV5ZW5kbyBwZXJvIHNpbiBsaW1pdGFyc2UgYSBhcXVlbGxvcyBxdWUgc2UgbWVuY2lvbmFuIGVuIGxhcyBzZWNjaW9uZXMgNChkKSB5IDQoZSkuCjQuIFJlc3RyaWNjaW9uZXMuCkxhIGxpY2VuY2lhIG90b3JnYWRhIGVuIGxhIGFudGVyaW9yIFNlY2Npw7NuIDMgZXN0w6EgZXhwcmVzYW1lbnRlIHN1amV0YSB5IGxpbWl0YWRhIHBvciBsYXMgc2lndWllbnRlcyByZXN0cmljY2lvbmVzOgphLglVc3RlZCBwdWVkZSBkaXN0cmlidWlyLCBleGhpYmlyIHDDumJsaWNhbWVudGUsIGVqZWN1dGFyIHDDumJsaWNhbWVudGUsIG8gcG9uZXIgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBzw7NsbyBiYWpvIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLCB5IFVzdGVkIGRlYmUgaW5jbHVpciB1bmEgY29waWEgZGUgZXN0YSBsaWNlbmNpYSBvIGRlbCBJZGVudGlmaWNhZG9yIFVuaXZlcnNhbCBkZSBSZWN1cnNvcyBkZSBsYSBtaXNtYSBjb24gY2FkYSBjb3BpYSBkZSBsYSBPYnJhIHF1ZSBkaXN0cmlidXlhLCBleGhpYmEgcMO6YmxpY2FtZW50ZSwgZWplY3V0ZSBww7pibGljYW1lbnRlIG8gcG9uZ2EgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EuIE5vIGVzIHBvc2libGUgb2ZyZWNlciBvIGltcG9uZXIgbmluZ3VuYSBjb25kaWNpw7NuIHNvYnJlIGxhIE9icmEgcXVlIGFsdGVyZSBvIGxpbWl0ZSBsYXMgY29uZGljaW9uZXMgZGUgZXN0YSBMaWNlbmNpYSBvIGVsIGVqZXJjaWNpbyBkZSBsb3MgZGVyZWNob3MgZGUgbG9zIGRlc3RpbmF0YXJpb3Mgb3RvcmdhZG9zIGVuIGVzdGUgZG9jdW1lbnRvLiBObyBlcyBwb3NpYmxlIHN1YmxpY2VuY2lhciBsYSBPYnJhLiBVc3RlZCBkZWJlIG1hbnRlbmVyIGludGFjdG9zIHRvZG9zIGxvcyBhdmlzb3MgcXVlIGhhZ2FuIHJlZmVyZW5jaWEgYSBlc3RhIExpY2VuY2lhIHkgYSBsYSBjbMOhdXN1bGEgZGUgbGltaXRhY2nDs24gZGUgZ2FyYW50w61hcy4gVXN0ZWQgbm8gcHVlZGUgZGlzdHJpYnVpciwgZXhoaWJpciBww7pibGljYW1lbnRlLCBlamVjdXRhciBww7pibGljYW1lbnRlLCBvIHBvbmVyIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhIGxhIE9icmEgY29uIGFsZ3VuYSBtZWRpZGEgdGVjbm9sw7NnaWNhIHF1ZSBjb250cm9sZSBlbCBhY2Nlc28gbyBsYSB1dGlsaXphY2nDs24gZGUgZWxsYSBkZSB1bmEgZm9ybWEgcXVlIHNlYSBpbmNvbnNpc3RlbnRlIGNvbiBsYXMgY29uZGljaW9uZXMgZGUgZXN0YSBMaWNlbmNpYS4gTG8gYW50ZXJpb3Igc2UgYXBsaWNhIGEgbGEgT2JyYSBpbmNvcnBvcmFkYSBhIHVuYSBPYnJhIENvbGVjdGl2YSwgcGVybyBlc3RvIG5vIGV4aWdlIHF1ZSBsYSBPYnJhIENvbGVjdGl2YSBhcGFydGUgZGUgbGEgb2JyYSBtaXNtYSBxdWVkZSBzdWpldGEgYSBsYXMgY29uZGljaW9uZXMgZGUgZXN0YSBMaWNlbmNpYS4gU2kgVXN0ZWQgY3JlYSB1bmEgT2JyYSBDb2xlY3RpdmEsIHByZXZpbyBhdmlzbyBkZSBjdWFscXVpZXIgTGljZW5jaWFudGUgZGViZSwgZW4gbGEgbWVkaWRhIGRlIGxvIHBvc2libGUsIGVsaW1pbmFyIGRlIGxhIE9icmEgQ29sZWN0aXZhIGN1YWxxdWllciByZWZlcmVuY2lhIGEgZGljaG8gTGljZW5jaWFudGUgbyBhbCBBdXRvciBPcmlnaW5hbCwgc2Vnw7puIGxvIHNvbGljaXRhZG8gcG9yIGVsIExpY2VuY2lhbnRlIHkgY29uZm9ybWUgbG8gZXhpZ2UgbGEgY2zDoXVzdWxhIDQoYykuCmIuCVVzdGVkIG5vIHB1ZWRlIGVqZXJjZXIgbmluZ3VubyBkZSBsb3MgZGVyZWNob3MgcXVlIGxlIGhhbiBzaWRvIG90b3JnYWRvcyBlbiBsYSBTZWNjacOzbiAzIHByZWNlZGVudGUgZGUgbW9kbyBxdWUgZXN0w6luIHByaW5jaXBhbG1lbnRlIGRlc3RpbmFkb3MgbyBkaXJlY3RhbWVudGUgZGlyaWdpZG9zIGEgY29uc2VndWlyIHVuIHByb3ZlY2hvIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLiBFbCBpbnRlcmNhbWJpbyBkZSBsYSBPYnJhIHBvciBvdHJhcyBvYnJhcyBwcm90ZWdpZGFzIHBvciBkZXJlY2hvcyBkZSBhdXRvciwgeWEgc2VhIGEgdHJhdsOpcyBkZSB1biBzaXN0ZW1hIHBhcmEgY29tcGFydGlyIGFyY2hpdm9zIGRpZ2l0YWxlcyAoZGlnaXRhbCBmaWxlLXNoYXJpbmcpIG8gZGUgY3VhbHF1aWVyIG90cmEgbWFuZXJhIG5vIHNlcsOhIGNvbnNpZGVyYWRvIGNvbW8gZXN0YXIgZGVzdGluYWRvIHByaW5jaXBhbG1lbnRlIG8gZGlyaWdpZG8gZGlyZWN0YW1lbnRlIGEgY29uc2VndWlyIHVuIHByb3ZlY2hvIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLCBzaWVtcHJlIHF1ZSBubyBzZSByZWFsaWNlIHVuIHBhZ28gbWVkaWFudGUgdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIGVuIHJlbGFjacOzbiBjb24gZWwgaW50ZXJjYW1iaW8gZGUgb2JyYXMgcHJvdGVnaWRhcyBwb3IgZWwgZGVyZWNobyBkZSBhdXRvci4KYy4JU2kgdXN0ZWQgZGlzdHJpYnV5ZSwgZXhoaWJlIHDDumJsaWNhbWVudGUsIGVqZWN1dGEgcMO6YmxpY2FtZW50ZSBvIGVqZWN1dGEgcMO6YmxpY2FtZW50ZSBlbiBmb3JtYSBkaWdpdGFsIGxhIE9icmEgbyBjdWFscXVpZXIgT2JyYSBEZXJpdmFkYSB1IE9icmEgQ29sZWN0aXZhLCBVc3RlZCBkZWJlIG1hbnRlbmVyIGludGFjdGEgdG9kYSBsYSBpbmZvcm1hY2nDs24gZGUgZGVyZWNobyBkZSBhdXRvciBkZSBsYSBPYnJhIHkgcHJvcG9yY2lvbmFyLCBkZSBmb3JtYSByYXpvbmFibGUgc2Vnw7puIGVsIG1lZGlvIG8gbWFuZXJhIHF1ZSBVc3RlZCBlc3TDqSB1dGlsaXphbmRvOiAoaSkgZWwgbm9tYnJlIGRlbCBBdXRvciBPcmlnaW5hbCBzaSBlc3TDoSBwcm92aXN0byAobyBzZXVkw7NuaW1vLCBzaSBmdWVyZSBhcGxpY2FibGUpLCB5L28gKGlpKSBlbCBub21icmUgZGUgbGEgcGFydGUgbyBsYXMgcGFydGVzIHF1ZSBlbCBBdXRvciBPcmlnaW5hbCB5L28gZWwgTGljZW5jaWFudGUgaHViaWVyZW4gZGVzaWduYWRvIHBhcmEgbGEgYXRyaWJ1Y2nDs24gKHYuZy4sIHVuIGluc3RpdHV0byBwYXRyb2NpbmFkb3IsIGVkaXRvcmlhbCwgcHVibGljYWNpw7NuKSBlbiBsYSBpbmZvcm1hY2nDs24gZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGRlbCBMaWNlbmNpYW50ZSwgdMOpcm1pbm9zIGRlIHNlcnZpY2lvcyBvIGRlIG90cmFzIGZvcm1hcyByYXpvbmFibGVzOyBlbCB0w610dWxvIGRlIGxhIE9icmEgc2kgZXN0w6EgcHJvdmlzdG87IGVuIGxhIG1lZGlkYSBkZSBsbyByYXpvbmFibGVtZW50ZSBmYWN0aWJsZSB5LCBzaSBlc3TDoSBwcm92aXN0bywgZWwgSWRlbnRpZmljYWRvciBVbmlmb3JtZSBkZSBSZWN1cnNvcyAoVW5pZm9ybSBSZXNvdXJjZSBJZGVudGlmaWVyKSBxdWUgZWwgTGljZW5jaWFudGUgZXNwZWNpZmljYSBwYXJhIHNlciBhc29jaWFkbyBjb24gbGEgT2JyYSwgc2Fsdm8gcXVlIHRhbCBVUkkgbm8gc2UgcmVmaWVyYSBhIGxhIG5vdGEgc29icmUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIG8gYSBsYSBpbmZvcm1hY2nDs24gc29icmUgZWwgbGljZW5jaWFtaWVudG8gZGUgbGEgT2JyYTsgeSBlbiBlbCBjYXNvIGRlIHVuYSBPYnJhIERlcml2YWRhLCBhdHJpYnVpciBlbCBjcsOpZGl0byBpZGVudGlmaWNhbmRvIGVsIHVzbyBkZSBsYSBPYnJhIGVuIGxhIE9icmEgRGVyaXZhZGEgKHYuZy4sICJUcmFkdWNjacOzbiBGcmFuY2VzYSBkZSBsYSBPYnJhIGRlbCBBdXRvciBPcmlnaW5hbCwiIG8gIkd1acOzbiBDaW5lbWF0b2dyw6FmaWNvIGJhc2FkbyBlbiBsYSBPYnJhIG9yaWdpbmFsIGRlbCBBdXRvciBPcmlnaW5hbCIpLiBUYWwgY3LDqWRpdG8gcHVlZGUgc2VyIGltcGxlbWVudGFkbyBkZSBjdWFscXVpZXIgZm9ybWEgcmF6b25hYmxlOyBlbiBlbCBjYXNvLCBzaW4gZW1iYXJnbywgZGUgT2JyYXMgRGVyaXZhZGFzIHUgT2JyYXMgQ29sZWN0aXZhcywgdGFsIGNyw6lkaXRvIGFwYXJlY2Vyw6EsIGNvbW8gbcOtbmltbywgZG9uZGUgYXBhcmVjZSBlbCBjcsOpZGl0byBkZSBjdWFscXVpZXIgb3RybyBhdXRvciBjb21wYXJhYmxlIHkgZGUgdW5hIG1hbmVyYSwgYWwgbWVub3MsIHRhbiBkZXN0YWNhZGEgY29tbyBlbCBjcsOpZGl0byBkZSBvdHJvIGF1dG9yIGNvbXBhcmFibGUuCmQuCVBhcmEgZXZpdGFyIHRvZGEgY29uZnVzacOzbiwgZWwgTGljZW5jaWFudGUgYWNsYXJhIHF1ZSwgY3VhbmRvIGxhIG9icmEgZXMgdW5hIGNvbXBvc2ljacOzbiBtdXNpY2FsOgppLglSZWdhbMOtYXMgcG9yIGludGVycHJldGFjacOzbiB5IGVqZWN1Y2nDs24gYmFqbyBsaWNlbmNpYXMgZ2VuZXJhbGVzLiBFbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gZXhjbHVzaXZvIGRlIGF1dG9yaXphciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIG8gbGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGRlIGxhIG9icmEgeSBkZSByZWNvbGVjdGFyLCBzZWEgaW5kaXZpZHVhbG1lbnRlIG8gYSB0cmF2w6lzIGRlIHVuYSBzb2NpZWRhZCBkZSBnZXN0acOzbiBjb2xlY3RpdmEgZGUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIChwb3IgZWplbXBsbywgU0FZQ08pLCBsYXMgcmVnYWzDrWFzIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIG8gcG9yIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIChwb3IgZWplbXBsbyBXZWJjYXN0KSBsaWNlbmNpYWRhIGJham8gbGljZW5jaWFzIGdlbmVyYWxlcywgc2kgbGEgaW50ZXJwcmV0YWNpw7NuIG8gZWplY3VjacOzbiBkZSBsYSBvYnJhIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBvcmllbnRhZGEgcG9yIG8gZGlyaWdpZGEgYSBsYSBvYnRlbmNpw7NuIGRlIHVuYSB2ZW50YWphIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLgppaS4JUmVnYWzDrWFzIHBvciBGb25vZ3JhbWFzLiBFbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gZXhjbHVzaXZvIGRlIHJlY29sZWN0YXIsIGluZGl2aWR1YWxtZW50ZSBvIGEgdHJhdsOpcyBkZSB1bmEgc29jaWVkYWQgZGUgZ2VzdGnDs24gY29sZWN0aXZhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIHkgZGVyZWNob3MgY29uZXhvcyAocG9yIGVqZW1wbG8sIGxvcyBjb25zYWdyYWRvcyBwb3IgbGEgU0FZQ08pLCB1bmEgYWdlbmNpYSBkZSBkZXJlY2hvcyBtdXNpY2FsZXMgbyBhbGfDum4gYWdlbnRlIGRlc2lnbmFkbywgbGFzIHJlZ2Fsw61hcyBwb3IgY3VhbHF1aWVyIGZvbm9ncmFtYSBxdWUgVXN0ZWQgY3JlZSBhIHBhcnRpciBkZSBsYSBvYnJhICjigJx2ZXJzacOzbiBjb3ZlcuKAnSkgeSBkaXN0cmlidXlhLCBlbiBsb3MgdMOpcm1pbm9zIGRlbCByw6lnaW1lbiBkZSBkZXJlY2hvcyBkZSBhdXRvciwgc2kgbGEgY3JlYWNpw7NuIG8gZGlzdHJpYnVjacOzbiBkZSBlc2EgdmVyc2nDs24gY292ZXIgZXN0w6EgcHJpbW9yZGlhbG1lbnRlIGRlc3RpbmFkYSBvIGRpcmlnaWRhIGEgb2J0ZW5lciB1bmEgdmVudGFqYSBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYS4KZS4JR2VzdGnDs24gZGUgRGVyZWNob3MgZGUgQXV0b3Igc29icmUgSW50ZXJwcmV0YWNpb25lcyB5IEVqZWN1Y2lvbmVzIERpZ2l0YWxlcyAoV2ViQ2FzdGluZykuIFBhcmEgZXZpdGFyIHRvZGEgY29uZnVzacOzbiwgZWwgTGljZW5jaWFudGUgYWNsYXJhIHF1ZSwgY3VhbmRvIGxhIG9icmEgc2VhIHVuIGZvbm9ncmFtYSwgZWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSBhdXRvcml6YXIgbGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGRlIGxhIG9icmEgKHBvciBlamVtcGxvLCB3ZWJjYXN0KSB5IGRlIHJlY29sZWN0YXIsIGluZGl2aWR1YWxtZW50ZSBvIGEgdHJhdsOpcyBkZSB1bmEgc29jaWVkYWQgZGUgZ2VzdGnDs24gY29sZWN0aXZhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIHkgZGVyZWNob3MgY29uZXhvcyAocG9yIGVqZW1wbG8sIEFDSU5QUk8pLCBsYXMgcmVnYWzDrWFzIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8sIHdlYmNhc3QpLCBzdWpldGEgYSBsYXMgZGlzcG9zaWNpb25lcyBhcGxpY2FibGVzIGRlbCByw6lnaW1lbiBkZSBEZXJlY2hvIGRlIEF1dG9yLCBzaSBlc3RhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBlc3TDoSBwcmltb3JkaWFsbWVudGUgZGlyaWdpZGEgYSBvYnRlbmVyIHVuYSB2ZW50YWphIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLgo1LiBSZXByZXNlbnRhY2lvbmVzLCBHYXJhbnTDrWFzIHkgTGltaXRhY2lvbmVzIGRlIFJlc3BvbnNhYmlsaWRhZC4KQSBNRU5PUyBRVUUgTEFTIFBBUlRFUyBMTyBBQ09SREFSQU4gREUgT1RSQSBGT1JNQSBQT1IgRVNDUklUTywgRUwgTElDRU5DSUFOVEUgT0ZSRUNFIExBIE9CUkEgKEVOIEVMIEVTVEFETyBFTiBFTCBRVUUgU0UgRU5DVUVOVFJBKSDigJxUQUwgQ1VBTOKAnSwgU0lOIEJSSU5EQVIgR0FSQU5Uw41BUyBERSBDTEFTRSBBTEdVTkEgUkVTUEVDVE8gREUgTEEgT0JSQSwgWUEgU0VBIEVYUFJFU0EsIElNUEzDjUNJVEEsIExFR0FMIE8gQ1VBTFFVSUVSQSBPVFJBLCBJTkNMVVlFTkRPLCBTSU4gTElNSVRBUlNFIEEgRUxMQVMsIEdBUkFOVMONQVMgREUgVElUVUxBUklEQUQsIENPTUVSQ0lBQklMSURBRCwgQURBUFRBQklMSURBRCBPIEFERUNVQUNJw5NOIEEgUFJPUMOTU0lUTyBERVRFUk1JTkFETywgQVVTRU5DSUEgREUgSU5GUkFDQ0nDk04sIERFIEFVU0VOQ0lBIERFIERFRkVDVE9TIExBVEVOVEVTIE8gREUgT1RSTyBUSVBPLCBPIExBIFBSRVNFTkNJQSBPIEFVU0VOQ0lBIERFIEVSUk9SRVMsIFNFQU4gTyBOTyBERVNDVUJSSUJMRVMgKFBVRURBTiBPIE5PIFNFUiBFU1RPUyBERVNDVUJJRVJUT1MpLiBBTEdVTkFTIEpVUklTRElDQ0lPTkVTIE5PIFBFUk1JVEVOIExBIEVYQ0xVU0nDk04gREUgR0FSQU5Uw41BUyBJTVBMw41DSVRBUywgRU4gQ1VZTyBDQVNPIEVTVEEgRVhDTFVTScOTTiBQVUVERSBOTyBBUExJQ0FSU0UgQSBVU1RFRC4KNi4gTGltaXRhY2nDs24gZGUgcmVzcG9uc2FiaWxpZGFkLgpBIE1FTk9TIFFVRSBMTyBFWElKQSBFWFBSRVNBTUVOVEUgTEEgTEVZIEFQTElDQUJMRSwgRUwgTElDRU5DSUFOVEUgTk8gU0VSw4EgUkVTUE9OU0FCTEUgQU5URSBVU1RFRCBQT1IgREHDkU8gQUxHVU5PLCBTRUEgUE9SIFJFU1BPTlNBQklMSURBRCBFWFRSQUNPTlRSQUNUVUFMLCBQUkVDT05UUkFDVFVBTCBPIENPTlRSQUNUVUFMLCBPQkpFVElWQSBPIFNVQkpFVElWQSwgU0UgVFJBVEUgREUgREHDkU9TIE1PUkFMRVMgTyBQQVRSSU1PTklBTEVTLCBESVJFQ1RPUyBPIElORElSRUNUT1MsIFBSRVZJU1RPUyBPIElNUFJFVklTVE9TIFBST0RVQ0lET1MgUE9SIEVMIFVTTyBERSBFU1RBIExJQ0VOQ0lBIE8gREUgTEEgT0JSQSwgQVVOIENVQU5ETyBFTCBMSUNFTkNJQU5URSBIQVlBIFNJRE8gQURWRVJUSURPIERFIExBIFBPU0lCSUxJREFEIERFIERJQ0hPUyBEQcORT1MuIEFMR1VOQVMgTEVZRVMgTk8gUEVSTUlURU4gTEEgRVhDTFVTScOTTiBERSBDSUVSVEEgUkVTUE9OU0FCSUxJREFELCBFTiBDVVlPIENBU08gRVNUQSBFWENMVVNJw5NOIFBVRURFIE5PIEFQTElDQVJTRSBBIFVTVEVELgo3LiBUw6lybWluby4KYS4JRXN0YSBMaWNlbmNpYSB5IGxvcyBkZXJlY2hvcyBvdG9yZ2Fkb3MgZW4gdmlydHVkIGRlIGVsbGEgdGVybWluYXLDoW4gYXV0b23DoXRpY2FtZW50ZSBzaSBVc3RlZCBpbmZyaW5nZSBhbGd1bmEgY29uZGljacOzbiBlc3RhYmxlY2lkYSBlbiBlbGxhLiBTaW4gZW1iYXJnbywgbG9zIGluZGl2aWR1b3MgbyBlbnRpZGFkZXMgcXVlIGhhbiByZWNpYmlkbyBPYnJhcyBEZXJpdmFkYXMgbyBDb2xlY3RpdmFzIGRlIFVzdGVkIGRlIGNvbmZvcm1pZGFkIGNvbiBlc3RhIExpY2VuY2lhLCBubyB2ZXLDoW4gdGVybWluYWRhcyBzdXMgbGljZW5jaWFzLCBzaWVtcHJlIHF1ZSBlc3RvcyBpbmRpdmlkdW9zIG8gZW50aWRhZGVzIHNpZ2FuIGN1bXBsaWVuZG8gw61udGVncmFtZW50ZSBsYXMgY29uZGljaW9uZXMgZGUgZXN0YXMgbGljZW5jaWFzLiBMYXMgU2VjY2lvbmVzIDEsIDIsIDUsIDYsIDcsIHkgOCBzdWJzaXN0aXLDoW4gYSBjdWFscXVpZXIgdGVybWluYWNpw7NuIGRlIGVzdGEgTGljZW5jaWEuCmIuCVN1amV0YSBhIGxhcyBjb25kaWNpb25lcyB5IHTDqXJtaW5vcyBhbnRlcmlvcmVzLCBsYSBsaWNlbmNpYSBvdG9yZ2FkYSBhcXXDrSBlcyBwZXJwZXR1YSAoZHVyYW50ZSBlbCBwZXLDrW9kbyBkZSB2aWdlbmNpYSBkZSBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgbGEgb2JyYSkuIE5vIG9ic3RhbnRlIGxvIGFudGVyaW9yLCBlbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gYSBwdWJsaWNhciB5L28gZXN0cmVuYXIgbGEgT2JyYSBiYWpvIGNvbmRpY2lvbmVzIGRlIGxpY2VuY2lhIGRpZmVyZW50ZXMgbyBhIGRlamFyIGRlIGRpc3RyaWJ1aXJsYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGVzdGEgTGljZW5jaWEgZW4gY3VhbHF1aWVyIG1vbWVudG87IGVuIGVsIGVudGVuZGlkbywgc2luIGVtYmFyZ28sIHF1ZSBlc2EgZWxlY2Npw7NuIG5vIHNlcnZpcsOhIHBhcmEgcmV2b2NhciBlc3RhIGxpY2VuY2lhIG8gcXVlIGRlYmEgc2VyIG90b3JnYWRhICwgYmFqbyBsb3MgdMOpcm1pbm9zIGRlIGVzdGEgbGljZW5jaWEpLCB5IGVzdGEgbGljZW5jaWEgY29udGludWFyw6EgZW4gcGxlbm8gdmlnb3IgeSBlZmVjdG8gYSBtZW5vcyBxdWUgc2VhIHRlcm1pbmFkYSBjb21vIHNlIGV4cHJlc2EgYXRyw6FzLiBMYSBMaWNlbmNpYSByZXZvY2FkYSBjb250aW51YXLDoSBzaWVuZG8gcGxlbmFtZW50ZSB2aWdlbnRlIHkgZWZlY3RpdmEgc2kgbm8gc2UgbGUgZGEgdMOpcm1pbm8gZW4gbGFzIGNvbmRpY2lvbmVzIGluZGljYWRhcyBhbnRlcmlvcm1lbnRlLgo4LiBWYXJpb3MuCmEuCUNhZGEgdmV6IHF1ZSBVc3RlZCBkaXN0cmlidXlhIG8gcG9uZ2EgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBvIHVuYSBPYnJhIENvbGVjdGl2YSwgZWwgTGljZW5jaWFudGUgb2ZyZWNlcsOhIGFsIGRlc3RpbmF0YXJpbyB1bmEgbGljZW5jaWEgZW4gbG9zIG1pc21vcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBxdWUgbGEgbGljZW5jaWEgb3RvcmdhZGEgYSBVc3RlZCBiYWpvIGVzdGEgTGljZW5jaWEuCmIuCVNpIGFsZ3VuYSBkaXNwb3NpY2nDs24gZGUgZXN0YSBMaWNlbmNpYSByZXN1bHRhIGludmFsaWRhZGEgbyBubyBleGlnaWJsZSwgc2Vnw7puIGxhIGxlZ2lzbGFjacOzbiB2aWdlbnRlLCBlc3RvIG5vIGFmZWN0YXLDoSBuaSBsYSB2YWxpZGV6IG5pIGxhIGFwbGljYWJpbGlkYWQgZGVsIHJlc3RvIGRlIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEgeSwgc2luIGFjY2nDs24gYWRpY2lvbmFsIHBvciBwYXJ0ZSBkZSBsb3Mgc3VqZXRvcyBkZSBlc3RlIGFjdWVyZG8sIGFxdcOpbGxhIHNlIGVudGVuZGVyw6EgcmVmb3JtYWRhIGxvIG3DrW5pbW8gbmVjZXNhcmlvIHBhcmEgaGFjZXIgcXVlIGRpY2hhIGRpc3Bvc2ljacOzbiBzZWEgdsOhbGlkYSB5IGV4aWdpYmxlLgpjLglOaW5nw7puIHTDqXJtaW5vIG8gZGlzcG9zaWNpw7NuIGRlIGVzdGEgTGljZW5jaWEgc2UgZXN0aW1hcsOhIHJlbnVuY2lhZGEgeSBuaW5ndW5hIHZpb2xhY2nDs24gZGUgZWxsYSBzZXLDoSBjb25zZW50aWRhIGEgbWVub3MgcXVlIGVzYSByZW51bmNpYSBvIGNvbnNlbnRpbWllbnRvIHNlYSBvdG9yZ2FkbyBwb3IgZXNjcml0byB5IGZpcm1hZG8gcG9yIGxhIHBhcnRlIHF1ZSByZW51bmNpZSBvIGNvbnNpZW50YS4KZC4JRXN0YSBMaWNlbmNpYSByZWZsZWphIGVsIGFjdWVyZG8gcGxlbm8gZW50cmUgbGFzIHBhcnRlcyByZXNwZWN0byBhIGxhIE9icmEgYXF1w60gbGljZW5jaWFkYS4gTm8gaGF5IGFycmVnbG9zLCBhY3VlcmRvcyBvIGRlY2xhcmFjaW9uZXMgcmVzcGVjdG8gYSBsYSBPYnJhIHF1ZSBubyBlc3TDqW4gZXNwZWNpZmljYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gRWwgTGljZW5jaWFudGUgbm8gc2UgdmVyw6EgbGltaXRhZG8gcG9yIG5pbmd1bmEgZGlzcG9zaWNpw7NuIGFkaWNpb25hbCBxdWUgcHVlZGEgc3VyZ2lyIGVuIGFsZ3VuYSBjb211bmljYWNpw7NuIGVtYW5hZGEgZGUgVXN0ZWQuIEVzdGEgTGljZW5jaWEgbm8gcHVlZGUgc2VyIG1vZGlmaWNhZGEgc2luIGVsIGNvbnNlbnRpbWllbnRvIG11dHVvIHBvciBlc2NyaXRvIGRlbCBMaWNlbmNpYW50ZSB5IFVzdGVkLgo= |