Análisis económico del engorde de tilapia roja (Oreochromis sp) en sistemas biofloc implementando energía fotovoltaica

La edición 2020 de El estado mundial de la pesca y la acuicultura de la FAO, tiene como tema central La sostenibilidad en acción. Mostrando los Objetivos de Desarrollo Sostenible que promueven el crecimiento económico, mediante estrategias que se adapten al cambio climático. Sin embargo, es necesari...

Full description

Autores:
Espinel Herrera, Edison Alexander
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2021
Institución:
Universidad Cooperativa de Colombia
Repositorio:
Repositorio UCC
Idioma:
spa
OAI Identifier:
oai:repository.ucc.edu.co:20.500.12494/55409
Acceso en línea:
https://hdl.handle.net/20.500.12494/55409
Palabra clave:
Sistemas
Analisis
Producciòn
Peces
Systems
Analysis
Production
Fish
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-nd/4.0/
id COOPER2_f364271aad1528e1b849ee625cf6cfaf
oai_identifier_str oai:repository.ucc.edu.co:20.500.12494/55409
network_acronym_str COOPER2
network_name_str Repositorio UCC
repository_id_str
dc.title.spa.fl_str_mv Análisis económico del engorde de tilapia roja (Oreochromis sp) en sistemas biofloc implementando energía fotovoltaica
title Análisis económico del engorde de tilapia roja (Oreochromis sp) en sistemas biofloc implementando energía fotovoltaica
spellingShingle Análisis económico del engorde de tilapia roja (Oreochromis sp) en sistemas biofloc implementando energía fotovoltaica
Sistemas
Analisis
Producciòn
Peces
Systems
Analysis
Production
Fish
title_short Análisis económico del engorde de tilapia roja (Oreochromis sp) en sistemas biofloc implementando energía fotovoltaica
title_full Análisis económico del engorde de tilapia roja (Oreochromis sp) en sistemas biofloc implementando energía fotovoltaica
title_fullStr Análisis económico del engorde de tilapia roja (Oreochromis sp) en sistemas biofloc implementando energía fotovoltaica
title_full_unstemmed Análisis económico del engorde de tilapia roja (Oreochromis sp) en sistemas biofloc implementando energía fotovoltaica
title_sort Análisis económico del engorde de tilapia roja (Oreochromis sp) en sistemas biofloc implementando energía fotovoltaica
dc.creator.fl_str_mv Espinel Herrera, Edison Alexander
dc.contributor.advisor.none.fl_str_mv Cala Delgado, Daniel Leonardo
dc.contributor.author.none.fl_str_mv Espinel Herrera, Edison Alexander
dc.subject.proposal.spa.fl_str_mv Sistemas
Analisis
Producciòn
Peces
topic Sistemas
Analisis
Producciòn
Peces
Systems
Analysis
Production
Fish
dc.subject.proposal.eng.fl_str_mv Systems
Analysis
Production
Fish
description La edición 2020 de El estado mundial de la pesca y la acuicultura de la FAO, tiene como tema central La sostenibilidad en acción. Mostrando los Objetivos de Desarrollo Sostenible que promueven el crecimiento económico, mediante estrategias que se adapten al cambio climático. Sin embargo, es necesario evaluar inversiones y análisis de costo-beneficio de las diferentes estrategias productivas. Estas valoraciones se deben realizar considerando las especificaciones locales de los sistemas de producción. Fueron analizados aspectos económicos de la producción de Tilapia roja (Oreochromis sp) en sistema biofloc (BFT) con diferentes fuentes de energía eléctrica. Se realizo el seguimiento productivo y registros de indicadores económicos de la Asociación piscícola el Vergel en el Departamento de Arauca, una producción de tilapia roja monosexo con 9 tanques de 143 m3, con sistema de abastecimiento y aireación independiente. Se consideraron los tratamientos con densidad de 5000 peces/m3 TEF5000 (Tanques con Energía Fotovoltaica); TEC5000 (Tanques con Energía Convencional)., y densidad de 6500 peces/m3 TEF6500; TEC6500; TEFC6500 (Tanques con Energía Fotovoltaica Completa); TEFV6500 (Tanques con Energía Fotovoltaica Venta). Los resultados de calidad de agua y desempeño zootécnico en todos los tratamientos se mantuvieron dentro de los rangos sugeridos para la especie, el oxígeno disuelto se disminuye a lo largo de la producción, debido a que los peces incrementan su tamaño y aumenta la biomasa. Los resultados del análisis económico muestran que los costos de inversión inicial aumenta cuando la tecnología usada para modificar la fuente de energía eléctrica contempla paneles solaras y baterías acumuladoras, el mayor costo de inversión se ve representado por el tratamiento TEFC6500, sin embargo, este tratamiento es el que menos costo operativo efectivo (EOC) tiene, debido al no consumo de energía de red eléctrica convencional, pero el Costo operativo total (TOC) se ve directamente aumentado por la depreciación y el costo del mantenimiento del sistema. En los costos de producción de todos los tratamientos el alimento represento el mayor porcentaje en el análisis económico, seguido de la mano de obra en TEC, TEF y TEFV, la depreciación en TEFC fue el segundo mayor costo. La energía fue el tercer mayor costo en TEC y TEF. El precio de venta fue el factor más relevante en la maximización del retorno financiero porque el costo del producto en la venta está por debajo del costo de producción. La implementación de fuentes de energía eléctrica mejora la viabilidad de la producción de tilapia roja en sistema biofloc, sin embargo, es necesario buscar estrategias de mejorar los precios de venta del producto para que la viabilidad económica sea posible.
publishDate 2021
dc.date.issued.none.fl_str_mv 2021-11-22
dc.date.accessioned.none.fl_str_mv 2024-04-12T16:50:51Z
dc.date.available.none.fl_str_mv 2024-04-12T16:50:51Z
dc.type.none.fl_str_mv Trabajo de grado - Pregrado
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.content.none.fl_str_mv Text
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.redcol.none.fl_str_mv http://purl.org/redcol/resource_type/TP
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_7a1f
status_str acceptedVersion
dc.identifier.citation.none.fl_str_mv Espinel Herrera, E. A. (2024). Análisis económico del engorde de tilapia roja (Oreochromis sp) en sistemas biofloc implementando energía fotovoltaica. [Tesis de pregrado, Universidad Cooperativa de Colombia]. Repositorio Institucional Universidad Cooperativa de Colombia. https://hdl.handle.net/20.500.12494/55409
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12494/55409
identifier_str_mv Espinel Herrera, E. A. (2024). Análisis económico del engorde de tilapia roja (Oreochromis sp) en sistemas biofloc implementando energía fotovoltaica. [Tesis de pregrado, Universidad Cooperativa de Colombia]. Repositorio Institucional Universidad Cooperativa de Colombia. https://hdl.handle.net/20.500.12494/55409
url https://hdl.handle.net/20.500.12494/55409
dc.language.iso.none.fl_str_mv spa
language spa
dc.relation.references.none.fl_str_mv Amin, E. A., Gouda, E. A., & Samra, A. (2020). Utilization of Renewable Energy Technology in Performing some Agricultural Operations. Journal of Soil Sciences and Agricultural Engineering, 11(11), 617-620.
Avnimelech, Y. 2009. Biofloc technology. A practical guide book. The World Aquaculture Society, Baton Rouge.
Badiola, M., Basurko, O. C., Gabiña, G., & Mendiola, D. (2017). Integration of energy audits in the Life Cycle Assessment methodology to improve the environmental performance assessment of Recirculating Aquaculture Systems. Journal of Cleaner Production, 157, 155-166.
Badiola, M., Basurko, O. C., Piedrahita, R., Hundley, P., & Mendiola, D. (2018). Energy use in recirculating aquaculture systems (RAS): a review. Aquacultural engineering, 81, 57-70.
Badiola, M., Mendiola, D., & Bostock, J. (2012). Recirculating Aquaculture Systems (RAS) analysis: Main issues on management and future challenges. Aquacultural Engineering, 51, 26-35.
Betanzo-Torres, E. A., Piñar-Álvarez, M. D. L. Á., Sandoval-Herazo, L. C., Molina-Navarro, A., Rodríguez-Montoro, I., & González-Moreno, R. H. (2020). Factors That Limit the Adoption of Biofloc Technology in Aquaculture Production in Mexico. Water, 12(10), 2775.
Brú-Cordero, S. B., Pertúz-Buelvas, V., Ayazo-Genes, J., Atencio-García, V. J., & Pardo-Carrasco, S. (2017). Biocultivo de cachama blanca Piaractus brachypomus y tilapia nilótica Oreochromis niloticus en biofloc alimentadas con dietas de origen vegetal. Revista de la Facultad de Medicina Veterinaria y de Zootecnia, 64(1), 44-60.
Château, P. A., Wunderlich, R. F., Wang, T. W., Lai, H. T., Chen, C. C., & Chang, F. J. (2019). Mathematical modeling suggests high potential for the deployment of floating photovoltaic on fish ponds. Science of the total environment, 687, 654-666. Choi, H., Na, J., Lee, H., & Noh, J. (2021). The Effect of Remodeling Replacement of Photovoltaic Power Generation System in Fish Farm: Analysis of Energy Saving Effect through Simulation. Current Photovoltaic Research, 9(1), 11-16.
Clough, S., Mamo, J., Hoevenaars, K., Bardocz, T., Petersen, P., Rosendorf, P., ... & Hoinkis, J. (2020). Innovative technologies to promote sustainable recirculating aquaculture in Eastern Africa—A case study of a Nile tilapia (Oreochromis niloticus) hatchery in Kisumu, Kenya. Integrated Environmental Assessment and Management, 16(6), 934-941.
Collazos-Lasso, L. F., & Arias-Castellanos, J. A. (2015). Fundamentos de la tecnología biofloc (BFT). Una alternativa para la piscicultura en Colombia. Una revisión. Orinoquia, 19(1), 77-86.
Costa, J. I., Sabbag, O. J., & Martins, M. I. E. G. (2018). Economic evaluation of tilapia production in cages in the middle Paranapanema-SP. Custos E Agronegocio On Line, 14(4), 259-281.
Crab, R., Defoirdt, T., Bossier, P., & Verstraete, W. (2012). Biofloc technology in aquaculture: beneficial effects and future challenges. Aquaculture, 356, 351-356. https://doi.org/10.1016/j.aquaculture.2012.04.046
De Almeida, M. S., Carrijo-Mauad, J. R., Gimenes, R. M. T., Gaona, C. A. P., Furtado, P. S., Poersch, L. H., ... & Foes, G. K. (2021). Bioeconomic analysis of the production of marine shrimp in greenhouses using the biofloc technology system. Aquaculture International, 29(2), 723-741.
De Almeida, M. S., Carrijo-Mauad, J. R., Gimenes, R. M. T., Gaona, C. A. P., Furtado, P. S., Poersch, L. H., ... & Fóes, G. K. (2021). Bioeconomic analysis of the production of marine shrimp in greenhouses using the biofloc technology system. Aquaculture International, 29(2), 723-741
Ebeling, J. M., Timmons, M. B., & Bisogni, J. J. (2006). Engineering analysis of the stoichiometry of photoautotrophic, autotrophic, and heterotrophic removal of ammonia–nitrogen in aquaculture systems. Aquaculture, 257(1-4), 346-358.
Ekasari, J., & Maryam, S. (2012). Evaluation of biofloc technology application on water quality and production performance of red tilapia Oreochromis sp. cultured at different stocking densities. Hayati journal of Biosciences, 19(2), 73-80. https://doi.org/10.4308/hjb.19.2.73
Engle, C. R., Kumar, G., & van Senten, J. (2020). Cost drivers and profitability of US pond, raceway, and RAS aquaculture. Journal of the World Aquaculture Society, 51(4), 847-873.
Farghally, H. M., Atia, D. M., El-Madany, H. T., & Fahmy, F. H. (2014). Control methodologies based on geothermal recirculating aquaculture system. Energy, 78, 826-833.
Fuller, R. J. (2007). Solar heating systems for recirculation aquaculture. Aquacultural Engineering, 36(3), 250-260.
Ghamkhar, R., Boxman, S. E., Main, K. L., Zhang, Q., Trotz, M. A., & Hicks, A. (2020). Life Cycle Assessment of Aquaculture Systems: Does Burden Shifting Occur with an Increase in Production Intensity?. Aquacultural Engineering, 102130. Kim, Y., & Zhang, Q. Modeling of energy intensity in aquaculture: Future energy use of global aquaculture (2018)SDRP Journal of Aquaculture, Fisheries & Fish Science 2(1) ,60-89
Kim, Y., Wang, M., Kinyua, M., Cools, C., Zhang, Q., & Ergas, S. J. (2015). Alternative Energy Sources for Florida Aquaculture Systems Final Report. Florida: Department of Civil and Environmental Engineering, University of South Florida. Retrieved May, 3, 2016.
King, A. S., Elliott, N. G., Macleod, C. K., James, M. A., & Dambacher, J. M. (2018). Making better decisions: Utilizing qualitative signed digraphs modeling to enhance aquaculture production technology selection. Marine Policy, 91, 22-33.
Kobayashi, M., Msangi, S., Batka, M., Vannuccini, S., Dey, M. M., Anderson, J.L., 2015. Fish to 2030: the role and opportunity for aquaculture. Aquaculture economics & management, 19(3), 282-300. http://dx.doi.org/10.1080/13657305.2015.994240.
Koyuncu, T. (2020, March). Economic Analysis of Solar Powered and on-Grid Trout Fish Growing Systems. In IOP Conference Series: Earth and Environmental Science (Vol. 464, No. 1, p. 012009). IOP Publishing.
Kubitza, F. (2011). Criação de tilapia em sistema com bioflocos sem renovação de agua. Panorama da Aquicultura, 21(125), 14-23.
Lee, Kyu Tae. Energy-Saving Biofloc Culture System Using Solar Energy. 2018. Liu, Y., Rosten, T. W., Henriksen, K., Hognes, E. S., Summerfelt, S., & Vinci, B. (2016). Comparative economic performance and carbon footprint of two farming models for producing Atlantic salmon (Salmo salar): Land-based closed containment system in freshwater and open net pen in seawater. Aquacultural Engineering, 71, 1-12.
Luo, G., Gao, Q., Wang, C., Liu, W., Sun, D., Li, L., & Tan, H. (2014). Growth, digestive activity, welfare, and partial cost-effectiveness of genetically improved farmed tilapia (Oreochromis niloticus) cultured in a recirculating aquaculture system and an indoor biofloc system. Aquaculture, 422, 1-7.
Malpartida Pasco, J. J., Carvalho Filho, J. W., de Espirito Santo, C. M., & Vinatea, L. (2018). Production of Nile tilapia Oreochromis niloticus grown in BFT using two aeration systems. Aquaculture Research, 49(1), 222-231. https://doi.org/10.1111/are.13451
Manduca, L. G., da Silva, M. A., de Alvarenga, É. R., de Oliveira Alves, G. F., Ferreira, N. H., de Alencar Teixeira, E., ... & Turra, E. M. (2021). Effects of different stocking densities on Nile tilapia performance and profitability of a biofloc system with a minimum water exchange. Aquaculture, 530, 735814.
Martin, N. B., Scorvo Filho, J. D., Sanches, E. G., Novato, P. F. C., & Ayrosa, L. M. S. (1995). Custos e retornos na piscicultura em São Paulo. Informações Econômicas, 25(1), 9-47.
Matsunaga, M., Bemelmans, P. F., Toledo, P. D., Dulley, R. D., Okawa, H., & Pedroso, I. A. (1976). Metodologia de custo de produção utilizada pelo IEA. Agricultura em São Paulo, 23(1), 123-139.
Mazzarol TW, Reboud S (2020) Workbook for small business management: theory and practice. 3th edition. Springer: GER Muir, J. F. (2015). Fuel and energy use in the fisheries sector: Approaches, inventories and strategic implications. FAO Fisheries and Aquaculture Circular, (C1080), I.
Naylor, R. L., Goldburg, R. J., Primavera, J. H., Kautsky, N., Beveridge, M. C., Clay, J., & Troell, M. (2000). Effect of aquaculture on world fish supplies. Nature, 405(6790), 1017-1024. https://doi.org/10.1038/35016500
Numpha, P., & Polvongsri, S. (2020). Energy management study of aeration system for Nile tilapia fish pond using solar photovoltaic together with utility grid system. Journal of Science and Agricultural Technology, 1(2), 1-6.
Pelletier, N., André, J., Charef, A., Damalas, D., Green, B., Parker, R., ... & Watson, R. (2014). Energy prices and seafood security. Global environmental change, 24, 30-41.
Pereira, T. M. (2020). Desempenho produtivo de matrinxã (Brycon amazonicus) e tambaqui (Colossoma macropomum) submetidos a baixa salinidade em sistema BFT. 2020. 118 f. Tese (Doutorado em Ciências Pesqueiras nos Trópicos) - Universidade Federal do Amazonas, Manaus, 2020. https://tede.ufam.edu.br/handle/tede/8012 Consulted: 16 May 2021.
Ponce-Marbán, D., Hernández, J. M., & Gasca-Leyva, E. (2006). Simulating the economic viability of Nile tilapia and Australian redclaw crayfish polyculture in Yucatan, Mexico. Aquaculture, 261(1), 151-159.
Ragnarsson, Á. (2014). Geothermal energy in aquaculture. Short Course VI on Utilization of Low-and Medium-Enthalpy Geothermal Resources and Financial Aspects of Utilization, organized by UNU-GTP and LaGeo. Santa Tecla, El Salvador.
Rego, M. A. S., Sabbag, O. J., Soares, R., & Peixoto, S. (2017). Financial viability of inserting the biofloc technology in a marine shrimp Litopenaeus vannamei farm: a case study in the state of Pernambuco, Brazil. Aquaculture international, 25(1), 473-483.
Ridha, M. T., Hossain, M. A., Azad, I. S., & Saburova, M. (2020). Effects of three carbohydrate sources on water quality, water consumption, bacterial count, growth and muscle quality of Nile tilapia (Oreochromis niloticus) in a biofloc system. Aquaculture Research, 51(10), 4225-4237. https://doi.org/10.1111/are.14764
Roque d’orbcastel, E., Blancheton, J. P., & Belaud, A. (2009). Water quality and rainbow trout performance in a Danish Model Farm recirculating system: Comparison with a flow through system. Aquacultural engineering, 40(3), 135-143.
Soliman, N. F., & Yacout, D. M. M. (2016). The prospects of analysing the environmental impacts of Egyptian aquaculture using life cycle assessment. International Journal of Aquaculture, 5.
Sookying, D., Silva, F. S. D., Davis, D. A., & Hanson, T. R. (2011). Effects of stocking density on the performance of Pacific white shrimp Litopenaeus vannamei cultured under pond and outdoor tank conditions using a high soybean meal diet. Aquaculture, 319(1-2), 232-239.
Suárez-Puerto, B., Delgadillo-Díaz, M., Sánchez-Solís, M. J., & Gullian-Klanian, M. (2021). Analysis of the cost-effectiveness and growth of Nile tilapia (Oreochromis niloticus) in biofloc and green water technologies during two seasons. Aquaculture, 538, 736534.
Suhendar, D. T., Zaidy, A. B., & Sachoemar, S. I. (2020). Dissolved Oxygen Profile, Total Suspended Solids, Ammonia, Nitrate, Phosphate And Temperature In Intensive Vanamei Shrimp Ponds. Jurnal Akuatek, 1(1), 1-11.
Toner, D., & Mathies, M. (2002). The Potential for renewable energy usage in aquaculture. Report, Dec.
Troell, M., Tyedmers, P., Kautsky, N., & Rönnbäck, P. (2004). Aquaculture and energy use. Encyclopedia of energy, 1, 97-108.
Ullah, I., & Kim, D. (2018). An optimization scheme for water pump control in smart fish farm with efficient energy consumption. Processes, 6(6), 65.
Yuan, Y., Yuan, Y., Dai, Y., & Gong, Y. (2017). Economic profitability of tilapia farming in China. Aquaculture international, 25(3), 1253-1264.
Zaki, M. A., Alabssawy, A. N., Nour, A. E. A. M., El Basuini, M. F., Dawood, M. A., Alkahtani, S., & Abdel-Daim, M. M. (2020). The impact of stocking density and dietary carbon sources on the growth, oxidative status and stress markers of Nile tilapia (Oreochromis niloticus) reared under biofloc conditions. Aquaculture Reports, 16, 100282. https://doi.org/10.1016/j.aqrep.2020.100282
Zuniga-Jara, S., & Goycolea-Homann, M. (2014). A bioeconomic model for red tilapia culture on the coast of Ecuador. Aquaculture international, 22(2), 339-359.
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.creativecommons.none.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
Attribution-NonCommercial-NoDerivatives 4.0 International
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 29 p.
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad Cooperativa de Colombia, Facultad de Ciencias de la Salud, Medicina Veterinaría y Zootecnia, Bucaramanga
dc.publisher.program.none.fl_str_mv Medicina veterinaria y zootecnia
dc.publisher.faculty.none.fl_str_mv Ciencias de la Salud
dc.publisher.place.none.fl_str_mv Bucaramanga
dc.publisher.branch.none.fl_str_mv Bucaramanga
publisher.none.fl_str_mv Universidad Cooperativa de Colombia, Facultad de Ciencias de la Salud, Medicina Veterinaría y Zootecnia, Bucaramanga
institution Universidad Cooperativa de Colombia
bitstream.url.fl_str_mv https://repository.ucc.edu.co/bitstreams/f3063a4b-0900-4a6d-bf10-96ad8d3a6746/download
https://repository.ucc.edu.co/bitstreams/a3693858-54ef-489d-85ed-81dcf19ae123/download
https://repository.ucc.edu.co/bitstreams/abebe4b1-1028-4ca7-bacc-2af5130504af/download
https://repository.ucc.edu.co/bitstreams/c0eaf2fd-efd9-4b44-8b45-e731619b2dc7/download
https://repository.ucc.edu.co/bitstreams/70e46ce6-2e23-4c5d-8aff-7c5c16d2b195/download
https://repository.ucc.edu.co/bitstreams/3061c23b-5f26-47e5-acae-103a0a7d5dd8/download
https://repository.ucc.edu.co/bitstreams/666b56eb-f0ad-4827-b6ed-a381750b4143/download
https://repository.ucc.edu.co/bitstreams/503e4c28-d183-4798-9a7e-9da68039d997/download
https://repository.ucc.edu.co/bitstreams/d217c7ff-5baa-4895-8ab2-c5568cff8e74/download
https://repository.ucc.edu.co/bitstreams/a6f53058-f427-414e-948a-0bf19e5838d6/download
https://repository.ucc.edu.co/bitstreams/73b41ae0-cabb-46c0-bb80-7990ee57d453/download
bitstream.checksum.fl_str_mv 3bce4f7ab09dfc588f126e1e36e98a45
4460e5956bc1d1639be9ae6146a50347
ff2f929663d16859705ad9b1e47880c4
b93d164acaabc2668cf2893482210d39
eff31fe4770a2314b2f63db06839b532
f66f6b6d86d73a766396ab2961034b05
bd1630315967f9dd8a14065d8c27a41d
96bdb078617cdd8a0758195127d5f37c
4703a8c699f33b009dabfaa5344ede1b
14f1e060d0c44587727e9ebb5e7e40db
8703fa987ec89fee64456275ead0e136
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Cooperativa de Colombia
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1808788926258741248
spelling Cala Delgado, Daniel LeonardoEspinel Herrera, Edison Alexander2024-04-12T16:50:51Z2024-04-12T16:50:51Z2021-11-22Espinel Herrera, E. A. (2024). Análisis económico del engorde de tilapia roja (Oreochromis sp) en sistemas biofloc implementando energía fotovoltaica. [Tesis de pregrado, Universidad Cooperativa de Colombia]. Repositorio Institucional Universidad Cooperativa de Colombia. https://hdl.handle.net/20.500.12494/55409https://hdl.handle.net/20.500.12494/55409La edición 2020 de El estado mundial de la pesca y la acuicultura de la FAO, tiene como tema central La sostenibilidad en acción. Mostrando los Objetivos de Desarrollo Sostenible que promueven el crecimiento económico, mediante estrategias que se adapten al cambio climático. Sin embargo, es necesario evaluar inversiones y análisis de costo-beneficio de las diferentes estrategias productivas. Estas valoraciones se deben realizar considerando las especificaciones locales de los sistemas de producción. Fueron analizados aspectos económicos de la producción de Tilapia roja (Oreochromis sp) en sistema biofloc (BFT) con diferentes fuentes de energía eléctrica. Se realizo el seguimiento productivo y registros de indicadores económicos de la Asociación piscícola el Vergel en el Departamento de Arauca, una producción de tilapia roja monosexo con 9 tanques de 143 m3, con sistema de abastecimiento y aireación independiente. Se consideraron los tratamientos con densidad de 5000 peces/m3 TEF5000 (Tanques con Energía Fotovoltaica); TEC5000 (Tanques con Energía Convencional)., y densidad de 6500 peces/m3 TEF6500; TEC6500; TEFC6500 (Tanques con Energía Fotovoltaica Completa); TEFV6500 (Tanques con Energía Fotovoltaica Venta). Los resultados de calidad de agua y desempeño zootécnico en todos los tratamientos se mantuvieron dentro de los rangos sugeridos para la especie, el oxígeno disuelto se disminuye a lo largo de la producción, debido a que los peces incrementan su tamaño y aumenta la biomasa. Los resultados del análisis económico muestran que los costos de inversión inicial aumenta cuando la tecnología usada para modificar la fuente de energía eléctrica contempla paneles solaras y baterías acumuladoras, el mayor costo de inversión se ve representado por el tratamiento TEFC6500, sin embargo, este tratamiento es el que menos costo operativo efectivo (EOC) tiene, debido al no consumo de energía de red eléctrica convencional, pero el Costo operativo total (TOC) se ve directamente aumentado por la depreciación y el costo del mantenimiento del sistema. En los costos de producción de todos los tratamientos el alimento represento el mayor porcentaje en el análisis económico, seguido de la mano de obra en TEC, TEF y TEFV, la depreciación en TEFC fue el segundo mayor costo. La energía fue el tercer mayor costo en TEC y TEF. El precio de venta fue el factor más relevante en la maximización del retorno financiero porque el costo del producto en la venta está por debajo del costo de producción. La implementación de fuentes de energía eléctrica mejora la viabilidad de la producción de tilapia roja en sistema biofloc, sin embargo, es necesario buscar estrategias de mejorar los precios de venta del producto para que la viabilidad económica sea posible.The 2020 edition of FAO's The State of World Fisheries and Aquaculture has as its central theme Sustainability in Action. Showing the Sustainable Development Goals that promote economic growth, through strategies that adapt to climate change. However, it is necessary to evaluate investments and cost-benefit analysis of different production strategies. These assessments must be made considering the local specifications of the production systems. Economic aspects of the production of red tilapia (Oreochromis sp) in a biofloc system (BFT) were analyzed with different sources of electrical energy. Productive monitoring and records of economic indicators were carried out for the El Vergel Fish Association in the Department of Arauca, a production of single-sex red tilapia with 9 tanks of 143 m3, with an independent supply and aeration system. Treatments with a density of 5000 fish/m3 TEF5000 (Tanks with Photovoltaic Energy) were considered; TEC5000 (Conventional Energy Tanks), and density of 6500 fish/m3 TEF6500; TEC6500; TEFC6500 (Full Photovoltaic Tanks); TEFV6500 (Tanks with Photovoltaic Energy for Sale). The results of water quality and zootechnical performance in all treatments remained within the ranges suggested for the species, dissolved oxygen decreases throughout production, because the fish increase their size and biomass increases. The results of the economic analysis show that the initial investment costs increase when the technology used to modify the source of electrical energy includes solar panels and storage batteries, the highest investment cost is represented by the TEFC6500 treatment, however, this treatment is the one with the least effective operating cost (EOC), due to the non-consumption of conventional electrical grid energy, but the Total Operating Cost (TOC) is directly increased by depreciation and the cost of system maintenance. In the production costs of all treatments, food represented the highest percentage in the economic analysis, followed by labor in TEC, TEF and TEFV, depreciation in TEFC was the second highest cost. Energy was the third largest cost in TEC and TEF. The sales price was the most relevant factor in maximizing financial return because the cost of the product in sale is below the cost of production. The implementation of electrical energy sources improves the viability of the production of red tilapia in a biofloc system, however, it is necessary to seek strategies to improve the sales prices of the product so that economic viability is possible.Resumen. -- 1. Introducción. -- 2. Materiales y métodos. -- 2.1. Ubicación experimental. -- 2.2. Diseño experimental. -- 2.4. Desempeño Zootécnico. -- 2.5.Evaluación económica. -- 3. Resultados. -- 3.1. Calidad de agua. -- 3.2. Desempeño Zootécnico. -- 3.3. Análisis económico. -- 4. Discusión. -- 5. Conclusión. -- 6. Referencias.PregradoMedico Veterinario29 p.application/pdfspaUniversidad Cooperativa de Colombia, Facultad de Ciencias de la Salud, Medicina Veterinaría y Zootecnia, BucaramangaMedicina veterinaria y zootecniaCiencias de la SaludBucaramangaBucaramangahttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://purl.org/coar/access_right/c_abf2Análisis económico del engorde de tilapia roja (Oreochromis sp) en sistemas biofloc implementando energía fotovoltaicaTrabajo de grado - Pregradohttp://purl.org/coar/resource_type/c_7a1fTextinfo:eu-repo/semantics/bachelorThesishttp://purl.org/redcol/resource_type/TPinfo:eu-repo/semantics/acceptedVersionAmin, E. A., Gouda, E. A., & Samra, A. (2020). Utilization of Renewable Energy Technology in Performing some Agricultural Operations. Journal of Soil Sciences and Agricultural Engineering, 11(11), 617-620.Avnimelech, Y. 2009. Biofloc technology. A practical guide book. The World Aquaculture Society, Baton Rouge.Badiola, M., Basurko, O. C., Gabiña, G., & Mendiola, D. (2017). Integration of energy audits in the Life Cycle Assessment methodology to improve the environmental performance assessment of Recirculating Aquaculture Systems. Journal of Cleaner Production, 157, 155-166.Badiola, M., Basurko, O. C., Piedrahita, R., Hundley, P., & Mendiola, D. (2018). Energy use in recirculating aquaculture systems (RAS): a review. Aquacultural engineering, 81, 57-70.Badiola, M., Mendiola, D., & Bostock, J. (2012). Recirculating Aquaculture Systems (RAS) analysis: Main issues on management and future challenges. Aquacultural Engineering, 51, 26-35.Betanzo-Torres, E. A., Piñar-Álvarez, M. D. L. Á., Sandoval-Herazo, L. C., Molina-Navarro, A., Rodríguez-Montoro, I., & González-Moreno, R. H. (2020). Factors That Limit the Adoption of Biofloc Technology in Aquaculture Production in Mexico. Water, 12(10), 2775.Brú-Cordero, S. B., Pertúz-Buelvas, V., Ayazo-Genes, J., Atencio-García, V. J., & Pardo-Carrasco, S. (2017). Biocultivo de cachama blanca Piaractus brachypomus y tilapia nilótica Oreochromis niloticus en biofloc alimentadas con dietas de origen vegetal. Revista de la Facultad de Medicina Veterinaria y de Zootecnia, 64(1), 44-60.Château, P. A., Wunderlich, R. F., Wang, T. W., Lai, H. T., Chen, C. C., & Chang, F. J. (2019). Mathematical modeling suggests high potential for the deployment of floating photovoltaic on fish ponds. Science of the total environment, 687, 654-666. Choi, H., Na, J., Lee, H., & Noh, J. (2021). The Effect of Remodeling Replacement of Photovoltaic Power Generation System in Fish Farm: Analysis of Energy Saving Effect through Simulation. Current Photovoltaic Research, 9(1), 11-16.Clough, S., Mamo, J., Hoevenaars, K., Bardocz, T., Petersen, P., Rosendorf, P., ... & Hoinkis, J. (2020). Innovative technologies to promote sustainable recirculating aquaculture in Eastern Africa—A case study of a Nile tilapia (Oreochromis niloticus) hatchery in Kisumu, Kenya. Integrated Environmental Assessment and Management, 16(6), 934-941.Collazos-Lasso, L. F., & Arias-Castellanos, J. A. (2015). Fundamentos de la tecnología biofloc (BFT). Una alternativa para la piscicultura en Colombia. Una revisión. Orinoquia, 19(1), 77-86.Costa, J. I., Sabbag, O. J., & Martins, M. I. E. G. (2018). Economic evaluation of tilapia production in cages in the middle Paranapanema-SP. Custos E Agronegocio On Line, 14(4), 259-281.Crab, R., Defoirdt, T., Bossier, P., & Verstraete, W. (2012). Biofloc technology in aquaculture: beneficial effects and future challenges. Aquaculture, 356, 351-356. https://doi.org/10.1016/j.aquaculture.2012.04.046De Almeida, M. S., Carrijo-Mauad, J. R., Gimenes, R. M. T., Gaona, C. A. P., Furtado, P. S., Poersch, L. H., ... & Foes, G. K. (2021). Bioeconomic analysis of the production of marine shrimp in greenhouses using the biofloc technology system. Aquaculture International, 29(2), 723-741.De Almeida, M. S., Carrijo-Mauad, J. R., Gimenes, R. M. T., Gaona, C. A. P., Furtado, P. S., Poersch, L. H., ... & Fóes, G. K. (2021). Bioeconomic analysis of the production of marine shrimp in greenhouses using the biofloc technology system. Aquaculture International, 29(2), 723-741Ebeling, J. M., Timmons, M. B., & Bisogni, J. J. (2006). Engineering analysis of the stoichiometry of photoautotrophic, autotrophic, and heterotrophic removal of ammonia–nitrogen in aquaculture systems. Aquaculture, 257(1-4), 346-358.Ekasari, J., & Maryam, S. (2012). Evaluation of biofloc technology application on water quality and production performance of red tilapia Oreochromis sp. cultured at different stocking densities. Hayati journal of Biosciences, 19(2), 73-80. https://doi.org/10.4308/hjb.19.2.73Engle, C. R., Kumar, G., & van Senten, J. (2020). Cost drivers and profitability of US pond, raceway, and RAS aquaculture. Journal of the World Aquaculture Society, 51(4), 847-873.Farghally, H. M., Atia, D. M., El-Madany, H. T., & Fahmy, F. H. (2014). Control methodologies based on geothermal recirculating aquaculture system. Energy, 78, 826-833.Fuller, R. J. (2007). Solar heating systems for recirculation aquaculture. Aquacultural Engineering, 36(3), 250-260.Ghamkhar, R., Boxman, S. E., Main, K. L., Zhang, Q., Trotz, M. A., & Hicks, A. (2020). Life Cycle Assessment of Aquaculture Systems: Does Burden Shifting Occur with an Increase in Production Intensity?. Aquacultural Engineering, 102130. Kim, Y., & Zhang, Q. Modeling of energy intensity in aquaculture: Future energy use of global aquaculture (2018)SDRP Journal of Aquaculture, Fisheries & Fish Science 2(1) ,60-89Kim, Y., Wang, M., Kinyua, M., Cools, C., Zhang, Q., & Ergas, S. J. (2015). Alternative Energy Sources for Florida Aquaculture Systems Final Report. Florida: Department of Civil and Environmental Engineering, University of South Florida. Retrieved May, 3, 2016.King, A. S., Elliott, N. G., Macleod, C. K., James, M. A., & Dambacher, J. M. (2018). Making better decisions: Utilizing qualitative signed digraphs modeling to enhance aquaculture production technology selection. Marine Policy, 91, 22-33.Kobayashi, M., Msangi, S., Batka, M., Vannuccini, S., Dey, M. M., Anderson, J.L., 2015. Fish to 2030: the role and opportunity for aquaculture. Aquaculture economics & management, 19(3), 282-300. http://dx.doi.org/10.1080/13657305.2015.994240.Koyuncu, T. (2020, March). Economic Analysis of Solar Powered and on-Grid Trout Fish Growing Systems. In IOP Conference Series: Earth and Environmental Science (Vol. 464, No. 1, p. 012009). IOP Publishing.Kubitza, F. (2011). Criação de tilapia em sistema com bioflocos sem renovação de agua. Panorama da Aquicultura, 21(125), 14-23.Lee, Kyu Tae. Energy-Saving Biofloc Culture System Using Solar Energy. 2018. Liu, Y., Rosten, T. W., Henriksen, K., Hognes, E. S., Summerfelt, S., & Vinci, B. (2016). Comparative economic performance and carbon footprint of two farming models for producing Atlantic salmon (Salmo salar): Land-based closed containment system in freshwater and open net pen in seawater. Aquacultural Engineering, 71, 1-12.Luo, G., Gao, Q., Wang, C., Liu, W., Sun, D., Li, L., & Tan, H. (2014). Growth, digestive activity, welfare, and partial cost-effectiveness of genetically improved farmed tilapia (Oreochromis niloticus) cultured in a recirculating aquaculture system and an indoor biofloc system. Aquaculture, 422, 1-7.Malpartida Pasco, J. J., Carvalho Filho, J. W., de Espirito Santo, C. M., & Vinatea, L. (2018). Production of Nile tilapia Oreochromis niloticus grown in BFT using two aeration systems. Aquaculture Research, 49(1), 222-231. https://doi.org/10.1111/are.13451Manduca, L. G., da Silva, M. A., de Alvarenga, É. R., de Oliveira Alves, G. F., Ferreira, N. H., de Alencar Teixeira, E., ... & Turra, E. M. (2021). Effects of different stocking densities on Nile tilapia performance and profitability of a biofloc system with a minimum water exchange. Aquaculture, 530, 735814.Martin, N. B., Scorvo Filho, J. D., Sanches, E. G., Novato, P. F. C., & Ayrosa, L. M. S. (1995). Custos e retornos na piscicultura em São Paulo. Informações Econômicas, 25(1), 9-47.Matsunaga, M., Bemelmans, P. F., Toledo, P. D., Dulley, R. D., Okawa, H., & Pedroso, I. A. (1976). Metodologia de custo de produção utilizada pelo IEA. Agricultura em São Paulo, 23(1), 123-139.Mazzarol TW, Reboud S (2020) Workbook for small business management: theory and practice. 3th edition. Springer: GER Muir, J. F. (2015). Fuel and energy use in the fisheries sector: Approaches, inventories and strategic implications. FAO Fisheries and Aquaculture Circular, (C1080), I.Naylor, R. L., Goldburg, R. J., Primavera, J. H., Kautsky, N., Beveridge, M. C., Clay, J., & Troell, M. (2000). Effect of aquaculture on world fish supplies. Nature, 405(6790), 1017-1024. https://doi.org/10.1038/35016500Numpha, P., & Polvongsri, S. (2020). Energy management study of aeration system for Nile tilapia fish pond using solar photovoltaic together with utility grid system. Journal of Science and Agricultural Technology, 1(2), 1-6.Pelletier, N., André, J., Charef, A., Damalas, D., Green, B., Parker, R., ... & Watson, R. (2014). Energy prices and seafood security. Global environmental change, 24, 30-41.Pereira, T. M. (2020). Desempenho produtivo de matrinxã (Brycon amazonicus) e tambaqui (Colossoma macropomum) submetidos a baixa salinidade em sistema BFT. 2020. 118 f. Tese (Doutorado em Ciências Pesqueiras nos Trópicos) - Universidade Federal do Amazonas, Manaus, 2020. https://tede.ufam.edu.br/handle/tede/8012 Consulted: 16 May 2021.Ponce-Marbán, D., Hernández, J. M., & Gasca-Leyva, E. (2006). Simulating the economic viability of Nile tilapia and Australian redclaw crayfish polyculture in Yucatan, Mexico. Aquaculture, 261(1), 151-159.Ragnarsson, Á. (2014). Geothermal energy in aquaculture. Short Course VI on Utilization of Low-and Medium-Enthalpy Geothermal Resources and Financial Aspects of Utilization, organized by UNU-GTP and LaGeo. Santa Tecla, El Salvador.Rego, M. A. S., Sabbag, O. J., Soares, R., & Peixoto, S. (2017). Financial viability of inserting the biofloc technology in a marine shrimp Litopenaeus vannamei farm: a case study in the state of Pernambuco, Brazil. Aquaculture international, 25(1), 473-483.Ridha, M. T., Hossain, M. A., Azad, I. S., & Saburova, M. (2020). Effects of three carbohydrate sources on water quality, water consumption, bacterial count, growth and muscle quality of Nile tilapia (Oreochromis niloticus) in a biofloc system. Aquaculture Research, 51(10), 4225-4237. https://doi.org/10.1111/are.14764Roque d’orbcastel, E., Blancheton, J. P., & Belaud, A. (2009). Water quality and rainbow trout performance in a Danish Model Farm recirculating system: Comparison with a flow through system. Aquacultural engineering, 40(3), 135-143.Soliman, N. F., & Yacout, D. M. M. (2016). The prospects of analysing the environmental impacts of Egyptian aquaculture using life cycle assessment. International Journal of Aquaculture, 5.Sookying, D., Silva, F. S. D., Davis, D. A., & Hanson, T. R. (2011). Effects of stocking density on the performance of Pacific white shrimp Litopenaeus vannamei cultured under pond and outdoor tank conditions using a high soybean meal diet. Aquaculture, 319(1-2), 232-239.Suárez-Puerto, B., Delgadillo-Díaz, M., Sánchez-Solís, M. J., & Gullian-Klanian, M. (2021). Analysis of the cost-effectiveness and growth of Nile tilapia (Oreochromis niloticus) in biofloc and green water technologies during two seasons. Aquaculture, 538, 736534.Suhendar, D. T., Zaidy, A. B., & Sachoemar, S. I. (2020). Dissolved Oxygen Profile, Total Suspended Solids, Ammonia, Nitrate, Phosphate And Temperature In Intensive Vanamei Shrimp Ponds. Jurnal Akuatek, 1(1), 1-11.Toner, D., & Mathies, M. (2002). The Potential for renewable energy usage in aquaculture. Report, Dec.Troell, M., Tyedmers, P., Kautsky, N., & Rönnbäck, P. (2004). Aquaculture and energy use. Encyclopedia of energy, 1, 97-108.Ullah, I., & Kim, D. (2018). An optimization scheme for water pump control in smart fish farm with efficient energy consumption. Processes, 6(6), 65.Yuan, Y., Yuan, Y., Dai, Y., & Gong, Y. (2017). Economic profitability of tilapia farming in China. Aquaculture international, 25(3), 1253-1264.Zaki, M. A., Alabssawy, A. N., Nour, A. E. A. M., El Basuini, M. F., Dawood, M. A., Alkahtani, S., & Abdel-Daim, M. M. (2020). The impact of stocking density and dietary carbon sources on the growth, oxidative status and stress markers of Nile tilapia (Oreochromis niloticus) reared under biofloc conditions. Aquaculture Reports, 16, 100282. https://doi.org/10.1016/j.aqrep.2020.100282Zuniga-Jara, S., & Goycolea-Homann, M. (2014). A bioeconomic model for red tilapia culture on the coast of Ecuador. Aquaculture international, 22(2), 339-359.SistemasAnalisisProducciònPecesSystemsAnalysisProductionFishPublicationLICENSElicense.txtlicense.txttext/plain; charset=utf-84334https://repository.ucc.edu.co/bitstreams/f3063a4b-0900-4a6d-bf10-96ad8d3a6746/download3bce4f7ab09dfc588f126e1e36e98a45MD54CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repository.ucc.edu.co/bitstreams/a3693858-54ef-489d-85ed-81dcf19ae123/download4460e5956bc1d1639be9ae6146a50347MD55ORIGINAL2024_analisis_economico_engorde.pdf2024_analisis_economico_engorde.pdfTrabajo de gradosapplication/pdf437755https://repository.ucc.edu.co/bitstreams/abebe4b1-1028-4ca7-bacc-2af5130504af/downloadff2f929663d16859705ad9b1e47880c4MD562024_analisis_economico_engorde-FormatoLicenciaUso.pdf2024_analisis_economico_engorde-FormatoLicenciaUso.pdfLicencia de usoapplication/pdf194247https://repository.ucc.edu.co/bitstreams/c0eaf2fd-efd9-4b44-8b45-e731619b2dc7/downloadb93d164acaabc2668cf2893482210d39MD572024_analisis_economico_engorde-ActaSustentacion .pdf2024_analisis_economico_engorde-ActaSustentacion .pdfActa de sustentaciónapplication/pdf141295https://repository.ucc.edu.co/bitstreams/70e46ce6-2e23-4c5d-8aff-7c5c16d2b195/downloadeff31fe4770a2314b2f63db06839b532MD58TEXT2024_analisis_economico_engorde.pdf.txt2024_analisis_economico_engorde.pdf.txtExtracted texttext/plain56902https://repository.ucc.edu.co/bitstreams/3061c23b-5f26-47e5-acae-103a0a7d5dd8/downloadf66f6b6d86d73a766396ab2961034b05MD592024_analisis_economico_engorde-FormatoLicenciaUso.pdf.txt2024_analisis_economico_engorde-FormatoLicenciaUso.pdf.txtExtracted texttext/plain5881https://repository.ucc.edu.co/bitstreams/666b56eb-f0ad-4827-b6ed-a381750b4143/downloadbd1630315967f9dd8a14065d8c27a41dMD5112024_analisis_economico_engorde-ActaSustentacion .pdf.txt2024_analisis_economico_engorde-ActaSustentacion .pdf.txtExtracted texttext/plain920https://repository.ucc.edu.co/bitstreams/503e4c28-d183-4798-9a7e-9da68039d997/download96bdb078617cdd8a0758195127d5f37cMD513THUMBNAIL2024_analisis_economico_engorde.pdf.jpg2024_analisis_economico_engorde.pdf.jpgGenerated Thumbnailimage/jpeg7622https://repository.ucc.edu.co/bitstreams/d217c7ff-5baa-4895-8ab2-c5568cff8e74/download4703a8c699f33b009dabfaa5344ede1bMD5102024_analisis_economico_engorde-FormatoLicenciaUso.pdf.jpg2024_analisis_economico_engorde-FormatoLicenciaUso.pdf.jpgGenerated Thumbnailimage/jpeg13260https://repository.ucc.edu.co/bitstreams/a6f53058-f427-414e-948a-0bf19e5838d6/download14f1e060d0c44587727e9ebb5e7e40dbMD5122024_analisis_economico_engorde-ActaSustentacion .pdf.jpg2024_analisis_economico_engorde-ActaSustentacion .pdf.jpgGenerated Thumbnailimage/jpeg11178https://repository.ucc.edu.co/bitstreams/73b41ae0-cabb-46c0-bb80-7990ee57d453/download8703fa987ec89fee64456275ead0e136MD51420.500.12494/55409oai:repository.ucc.edu.co:20.500.12494/554092024-08-09 12:29:46.958http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internationalopen.accesshttps://repository.ucc.edu.coRepositorio Institucional Universidad Cooperativa de Colombiabdigital@metabiblioteca.comVU5JVkVSU0lEQUQgQ09PUEVSQVRJVkEgREUgQ09MT01CSUEKUkVQT1NJVE9SSU9TIElOU1RJVFVDSU9OQUxFUwpMSUNFTkNJQSBERSBVU08KClBvciBtZWRpbyBkZWwgcHJlc2VudGUgZG9jdW1lbnRvLCBlbCBBdXRvcihlcyksIG1heW9yIChlcykgZGUgZWRhZCwgcXVpZW4gZW4gYWRlbGFudGUgc2UgZGVub21pbmFyw6EgZWwgQVVUT1IsIGNvbmZpZXJlIGEgbGEgVU5JVkVSU0lEQUQgQ09PUEVSQVRJVkEgREUgQ09MT01CSUEsIGNvbiBOSVQuIDg2MC0wMjk5MjQtNywgdW5hIExJQ0VOQ0lBIERFIFVTTyBkZSBvYnJhLCBiYWpvIGxhcyBzaWd1aWVudGVzIGNvbmRpY2lvbmVzLgoKQ0zDgVVTVUxBUwoKUFJJTUVSQS4gT2JqZXRvLiBFTCBBVVRPUiBwb3IgZXN0ZSBhY3RvIGF1dG9yaXphIGxhIHV0aWxpemFjacOzbiBkZSBsYSBvYnJhLCBkZSBjb25mb3JtaWRhZCBjb24gbG8gZXN0aXB1bGFkbyBhIGNvbnRpbnVhY2nDs246IAoKKGEpIFBhcmEgZWZlY3RvcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSBzZSBhdXRvcml6YSBsYSByZXByb2R1Y2Npw7NuIGRlIGxhIG9icmEgYW50ZXJpb3JtZW50ZSBjaXRhZGEsIGxhIGN1YWwgc2UgYWxvamFyw6EgZW4gZm9ybWF0byBkaWdpdGFsIGVuIGxhcyBwbGF0YWZvcm1hcyBvIHJlcG9zaXRvcmlvcyBhZG1pbmlzdHJhZG9zIHBvciBsYSBVTklWRVJTSURBRCBvIGVuIG90cm8gdGlwbyBkZSByZXBvc2l0b3Jpb3MgZXh0ZXJub3MgbyBww6FnaW5hcyB3ZWIgZXNjb2dpZG9zIHBvciBsYSBVTklWRVJTSURBRCwgcGFyYSBmaW5lcyBkZSBkaWZ1c2nDs24geSBkaXZ1bGdhY2nDs24uIEFkaWNpb25hbG1lbnRlLCBzZSBhdXRvcml6YSBhIHF1ZSBsb3MgdXN1YXJpb3MgaW50ZXJub3MgeSBleHRlcm5vcyBkZSBkaWNoYXMgcGxhdGFmb3JtYXMgbyByZXBvc2l0b3Jpb3MgcmVwcm9kdXpjYW4gbyBkZXNjYXJndWVuIGxhIG9icmEsIHNpbiDDoW5pbW8gZGUgbHVjcm8sIHBhcmEgZmluZXMgcHJpdmFkb3MsIGVkdWNhdGl2b3MgbyBhY2Fkw6ltaWNvczsgc2llbXByZSB5IGN1YW5kbyBubyBzZSB2aW9sZW4gYWN1ZXJkb3MgY29uIGVkaXRvcmVzLCBwZXJpb2RvcyBkZSBlbWJhcmdvIG8gYWN1ZXJkb3MgZGUgY29uZmlkZW5jaWFsaWRhZCBxdWUgYXBsaXF1ZW4uCgooYikgU2UgYXV0b3JpemEgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBkZSBsYSBvYnJhIG1lbmNpb25hZGEsIGVuIGFjY2VzbyBhYmllcnRvLCBwYXJhIHN1IHV0aWxpemFjacOzbiBlbiBsYXMgcGxhdGFmb3JtYXMgbyByZXBvc2l0b3Jpb3MgYWRtaW5pc3RyYWRvcyBwb3IgbGEgVU5JVkVSU0lEQUQuCgooYykgTG8gYW50ZXJpb3IgZXN0YXLDoSBzdWpldG8gYSBsYXMgZGVmaW5pY2lvbmVzIGNvbnRlbmlkYXMgZW4gbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MyB5IGxhIExleSAyMyBkZSAxOTgyLgoKClNFR1VOREEuIE9yaWdpbmFsaWRhZCB5IHJlY2xhbWFjaW9uZXMuIEVsIEFVVE9SIGRlY2xhcmEgcXVlIGxhIE9CUkEgZXMgb3JpZ2luYWwgeSBxdWUgZXMgZGUgc3UgY3JlYWNpw7NuIGV4Y2x1c2l2YSwgbm8gZXhpc3RpZW5kbyBpbXBlZGltZW50byBkZSBjdWFscXVpZXIgbmF0dXJhbGV6YSAoZW1iYXJnb3MsIHVzbyBkZSBtYXRlcmlhbCBwcm90ZWdpZG8gcG9yIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGxhIGNvbmNlc2nDs24gZGUgbG9zIGRlcmVjaG9zIHByZXZpc3RvcyBlbiBlc3RlIGFjdWVyZG8uIEVsIEFVVE9SIHJlc3BvbmRlcsOhIHBvciBjdWFscXVpZXIgYWNjacOzbiBkZSByZWl2aW5kaWNhY2nDs24sIHBsYWdpbyB1IG90cmEgY2xhc2UgZGUgcmVjbGFtYWNpw7NuIHF1ZSBhbCByZXNwZWN0byBwdWRpZXJhIHNvYnJldmVuaXIuCgpURVJDRVJBLiBDb250cmFwcmVzdGFjacOzbi4gRWwgQVVUT1IgYXV0b3JpemEgYSBxdWUgc3Ugb2JyYSBzZWEgdXRpbGl6YWRhIGRlIGNvbmZvcm1pZGFkIGNvbiBsYSBjbMOhdXN1bGEgUFJJTUVSQSBkZSBmb3JtYSBncmF0dWl0YSwgZXMgZGVjaXIsIHF1ZSBsYSB1dGlsaXphY2nDs24gZGUgbGEgbWlzbWEgbm8gZ2VuZXJhIG5pbmfDum4gcGFnbyBvIHJlZ2Fsw61hcyBlbiBmYXZvciBkZSBlc3RlLgoKQ1VBUlRBLiBUaXR1bGFyaWRhZCBkZSBkZXJlY2hvcy4gRWwgcHJlc2VudGUgY29udHJhdG8gbm8gdHJhbnNmaWVyZSBsYSB0aXR1bGFyaWRhZCBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBzb2JyZSBsYXMgb2JyYXMgYW50ZXJpb3JtZW50ZSBtZW5jaW9uYWRhcyBhIGxhIFVOSVZFUlNJREFELiDDmm5pY2FtZW50ZSBoYWNlIHJlbGFjacOzbiBhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgZW4gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGFudGVyaW9ybWVudGUgcGFjdGFkb3MuCgpRVUlOVEEuIENyw6lkaXRvcy4gTGEgVU5JVkVSU0lEQUQgc2UgY29tcHJvbWV0ZSBhIGRhciBhbCBBVVRPUiwgZWwgcmVjb25vY2ltaWVudG8gZGVudHJvIGNhZGEgZm9ybWEgZGUgdXRpbGl6YWNpw7NuIGVuIGxhIG9icmEuIExvcyBjcsOpZGl0b3MgZGViZW4gZmlndXJhciBlbiBjYWRhIHVubyBkZSBsb3MgZm9ybWF0b3MgbyByZWdpc3Ryb3MgZGUgcHVibGljYWNpw7NuLiBObyBjb25zdGl0dWlyw6EgdW5hIHZpb2xhY2nDs24gYSBsb3MgZGVyZWNob3MgbW9yYWxlcyBkZWwgYXV0b3IgbGEgbm8gcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBvIGRlbcOhcyB1dGlsaXphY2lvbmVzIGRlIGxhIG9icmEuIExhIHV0aWxpemFjacOzbiBvIG5vIGRlIGxhIG9icmEsIGFzw60gY29tbyBzdSBmb3JtYSBkZSB1dGlsaXphY2nDs24gc2Vyw6EgZmFjdWx0YWQgZXhjbHVzaXZhIGRlIGxhIFVOSVZFUlNJREFELgogClNFWFRBLiBEdXJhY2nDs24geSB0ZXJyaXRvcmlvLiBMYSBwcmVzZW50ZSBsaWNlbmNpYSBkZSB1c28gcXVlIHNlIG90b3JnYSBhIGZhdm9yIGRlIGxhIFVOSVZFUlNJREFEIHRlbmRyw6EgdW5hIGR1cmFjacOzbiBlcXVpdmFsZW50ZSBhbCB0w6lybWlubyBkZSBwcm90ZWNjacOzbiBsZWdhbCBkZSBsYSBvYnJhIHkgcGFyYSB0b2RvcyBsb3MgcGHDrXNlcyBkZWwgbXVuZG8uCgpTw4lQVElNQS4gVXNvIGRlIENyZWF0aXZlIENvbW1vbnMuIEVsIEFVVE9SIGF1dG9yaXphcsOhIGxhIGRpZnVzacOzbiBkZSBzdSBjb250ZW5pZG8gYmFqbyB1bmEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBhdHJpYnVjacOzbiA0LjAgaW50ZXJuYWNpb25hbCwgcXVlIGRlYmVyw6EgaW5jbHVpcnNlIGVuIGVsIGNvbnRlbmlkby4gCgpPQ1RBVkEuIERlcmVjaG8gZGUgZXhjbHVzacOzbi4gQ2FkYSBhdXRvciBwdWVkZSBpbmRpY2FyIGVuIGVsIG1vbWVudG8gZGUgZGVww7NzaXRvIGRlbCBjb250ZW5pZG8gcXVlIGVsIHRleHRvIGNvbXBsZXRvIGRlIGxhIHByb2R1Y2Npw7NuIGFjYWTDqW1pY2EgbyBjaWVudMOtZmljYSBubyBlc3RlIGNvbiBhY2Nlc28gYWJpZXJ0byBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIHBvciBtb3Rpdm9zIGRlIGNvbmZpZGVuY2lhbGlkYWQsIHBvcnF1ZSBzZSBlbmN1ZW50cmUgZW4gdsOtYXMgZGUgb2J0ZW5lciB1biBkZXJlY2hvIGRlIHByb3BpZWRhZCBpbmR1c3RyaWFsIG8gZXhpc3RpciBhY3VlcmRvcyBwcmV2aW9zIGNvbiB0ZXJjZXJvcyAoZWRpdG9yaWFsZXMsIHJldmlzdGFzIGNpZW50w61maWNhcywgb3RyYXMgaW5zdGl0dWNpb25lcykuIEVsIGF1dG9yIHNlIGNvbXByb21ldGUgYSBkZXBvc2l0YXIgbG9zIG1ldGFkYXRvcyBlIGluZm9ybWFyIGVsIHRpZW1wbyBkZSBlbWJhcmdvIGR1cmFudGUgZWwgY3VhbCBlbCB0ZXh0byBjb21wbGV0byB0ZW5kcsOhIGFjY2VzbyByZXN0cmluZ2lkby4gCgpOT1ZFTkEuIEVsIEFVVE9SIGFsIGFjZXB0YXIgZXN0YSBsaWNlbmNpYSBhZHVjZSBxdWUgZXN0YSBwcm9kdWNjacOzbiBzZSBkZXNhcnJvbGzDsyBlbiBlbCBwZXJpb2RvIGVuIHF1ZSBzZSBlbmN1ZW50cmEgY29uIHbDrW5jdWxvcyBjb24gTGEgVW5pdmVyc2lkYWQuCgpEw4lDSU1BLiBOb3JtYXMgYXBsaWNhYmxlcy4gUGFyYSBsYSBpbnRlcnByZXRhY2nDs24geSBjdW1wbGltaWVudG8gZGVsIHByZXNlbnRlIGFjdWVyZG8gbGFzIHBhcnRlcyBzZSBzb21ldGVuIGEgbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgbGEgTGV5IDIzIGRlIDE5ODIgeSBkZW3DoXMgbm9ybWFzIGFwbGljYWJsZXMgZGUgQ29sb21iaWEuIEFkZW3DoXMsIGEgbGFzIG5vcm1hcyBJbnN0aXR1Y2lvbmFsZXMgcXVlIGFwbGlxdWVuLgoKTGEgcHJlc2VudGUgbGljZW5jaWEgc2UgYXV0b3JpemEgZW4gbGEgZmVjaGEgZGUgcHVibGljYWNpw7NuIGVuIGxvcyByZXBvc2l0b3Jpb3MgaW5zdGl0dWNpb25hbGVzLgo=