Effect of acute physical exercise on inhibitory control in young adults: High-intensity indoor cycling session
Cada vez hay más pruebas de que el ejercicio físico (EF) puede mejorar el rendimiento cognitivo. Sin embargo, todavía se están estudiando los criterios relativos a la intensidad, duración y frecuencia del EF. Nuestra hipótesis es que las intensidades elevadas de EF tienen efectos sobre el control in...
- Autores:
-
Aguirre Loaiza, Héctor Haney
Arias, Ianelleen
Bonilla, Sergio
Ramírez, Ramón
Ramírez Herrera, Sandra
Nanez, Jonathan
Barbosa Granados, Sergio Humberto
Arenas Granada, Jaime
- Tipo de recurso:
- Article of investigation
- Fecha de publicación:
- 2022
- Institución:
- Universidad Cooperativa de Colombia
- Repositorio:
- Repositorio UCC
- Idioma:
- OAI Identifier:
- oai:repository.ucc.edu.co:20.500.12494/52430
- Acceso en línea:
- https://doi.org/10.1016/j.physbeh.2022.113902
https://hdl.handle.net/20.500.12494/52430
- Palabra clave:
- Neurociencia cognitiva
Psicología del ejercicio
Funciones ejecutivas
Ejercicio físico
Rendimiento cognitivo
Cognitive neuroscience
Exercise psychology
Executive functions
Physical exercise
Cognitive performance
- Rights
- closedAccess
- License
- Atribución – No comercial – Sin Derivar
id |
COOPER2_f2df50e92b236edf0b6ae1b9397c0536 |
---|---|
oai_identifier_str |
oai:repository.ucc.edu.co:20.500.12494/52430 |
network_acronym_str |
COOPER2 |
network_name_str |
Repositorio UCC |
repository_id_str |
|
dc.title.none.fl_str_mv |
Effect of acute physical exercise on inhibitory control in young adults: High-intensity indoor cycling session |
title |
Effect of acute physical exercise on inhibitory control in young adults: High-intensity indoor cycling session |
spellingShingle |
Effect of acute physical exercise on inhibitory control in young adults: High-intensity indoor cycling session Neurociencia cognitiva Psicología del ejercicio Funciones ejecutivas Ejercicio físico Rendimiento cognitivo Cognitive neuroscience Exercise psychology Executive functions Physical exercise Cognitive performance |
title_short |
Effect of acute physical exercise on inhibitory control in young adults: High-intensity indoor cycling session |
title_full |
Effect of acute physical exercise on inhibitory control in young adults: High-intensity indoor cycling session |
title_fullStr |
Effect of acute physical exercise on inhibitory control in young adults: High-intensity indoor cycling session |
title_full_unstemmed |
Effect of acute physical exercise on inhibitory control in young adults: High-intensity indoor cycling session |
title_sort |
Effect of acute physical exercise on inhibitory control in young adults: High-intensity indoor cycling session |
dc.creator.fl_str_mv |
Aguirre Loaiza, Héctor Haney Arias, Ianelleen Bonilla, Sergio Ramírez, Ramón Ramírez Herrera, Sandra Nanez, Jonathan Barbosa Granados, Sergio Humberto Arenas Granada, Jaime |
dc.contributor.author.none.fl_str_mv |
Aguirre Loaiza, Héctor Haney Arias, Ianelleen Bonilla, Sergio Ramírez, Ramón Ramírez Herrera, Sandra Nanez, Jonathan Barbosa Granados, Sergio Humberto Arenas Granada, Jaime |
dc.subject.none.fl_str_mv |
Neurociencia cognitiva Psicología del ejercicio Funciones ejecutivas Ejercicio físico Rendimiento cognitivo |
topic |
Neurociencia cognitiva Psicología del ejercicio Funciones ejecutivas Ejercicio físico Rendimiento cognitivo Cognitive neuroscience Exercise psychology Executive functions Physical exercise Cognitive performance |
dc.subject.other.none.fl_str_mv |
Cognitive neuroscience Exercise psychology Executive functions Physical exercise Cognitive performance |
description |
Cada vez hay más pruebas de que el ejercicio físico (EF) puede mejorar el rendimiento cognitivo. Sin embargo, todavía se están estudiando los criterios relativos a la intensidad, duración y frecuencia del EF. Nuestra hipótesis es que las intensidades elevadas de EF tienen efectos sobre el control inhibitorio. Por este motivo, nuestro objetivo fue estudiar el efecto del EF agudo sobre el CI en jóvenes estudiantes sanos de una licenciatura en educación física y ejercicio mediante una sesión de 20 minutos de ciclismo indoor a una intensidad del 80-90% FCmáx. Ideamos un diseño de grupo experimental (n = 9) en relación con un grupo de control (n = 10) con medidas de CI antes y después de la prueba. Se administró una tarea Stroop (dos condiciones) a estudiantes de pregrado (Mage = 23.3, SD = 1.6) de un programa de licenciatura en Educación Física y Ciencias del Deporte de una universidad pública de Colombia. El MANOVA computado no mostró un efecto de interacción entre la tarea experimental de Stroop A-B x medida x grupo. Sin embargo, se obtuvo un efecto principal de reducción del tiempo de respuesta después de la EF en el grupo experimental. Se observaron otros efectos principales en el número de ensayos correctos e incorrectos en la condición Stroop-B. El grupo experimental mostró menos respuestas correctas después de la EP, y el grupo de control mostró menos errores. Se concluye que la PE de alta intensidad confiere efectos favorables sobre el control inhibitorio. |
publishDate |
2022 |
dc.date.issued.none.fl_str_mv |
2022-10-01 |
dc.date.accessioned.none.fl_str_mv |
2023-08-14T20:23:18Z |
dc.date.available.none.fl_str_mv |
2023-08-14T20:23:18Z |
dc.type.none.fl_str_mv |
Artículos Científicos |
dc.type.hasVersion.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coarversion.none.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
format |
http://purl.org/coar/resource_type/c_2df8fbb1 |
status_str |
publishedVersion |
dc.identifier.issn.none.fl_str_mv |
00319384 |
dc.identifier.uri.none.fl_str_mv |
https://doi.org/10.1016/j.physbeh.2022.113902 https://hdl.handle.net/20.500.12494/52430 |
dc.identifier.bibliographicCitation.none.fl_str_mv |
Aguirre-Loaiza, Arias, I., Bonilla, S., Ramírez, R., Ramírez-Herrera, S., Nanez, J., Barbosa-Granados, S., & Arenas-Granada, J. (2022). Effect of acute physical exercise on inhibitory control in young adults: High-intensity indoor cycling session. Physiology & Behavior, 254, 113902–113902. https://doi.org/10.1016/j.physbeh.2022.113902 |
identifier_str_mv |
00319384 Aguirre-Loaiza, Arias, I., Bonilla, S., Ramírez, R., Ramírez-Herrera, S., Nanez, J., Barbosa-Granados, S., & Arenas-Granada, J. (2022). Effect of acute physical exercise on inhibitory control in young adults: High-intensity indoor cycling session. Physiology & Behavior, 254, 113902–113902. https://doi.org/10.1016/j.physbeh.2022.113902 |
url |
https://doi.org/10.1016/j.physbeh.2022.113902 https://hdl.handle.net/20.500.12494/52430 |
dc.relation.isversionof.none.fl_str_mv |
https://www.sciencedirect.com/science/article/pii/S0031938422002086 |
dc.relation.ispartofjournal.none.fl_str_mv |
Physiology & Behavior |
dc.relation.references.none.fl_str_mv |
J. Etnier, Y.-.K. Chang, F.-.T. Chen, Chronic exercise and cognitive function, Handb. Sport Psychol., John Wiley & Sons, Ltd (2020) 795–814, https://doi.org/ 10.1002/9781119568124.ch38. J. Won, A.J. Alfini, L.R. Weiss, C.S. Michelson, D.D. Callow, S.M. Ranadive, R. J. Gentili, J.C. Smith, Semantic memory activation after acute exercise in healthy older adults, J. Int. Neuropsychol. Soc. (2019) 1–12, https://doi.org/10.1017/ S1355617719000171 J. Xiong, M. Ye, L. Wang, G. Zheng, Effects of physical exercise on executive function in cognitively healthy older adults: a systematic review and meta-analysis of randomized controlled trials: physical exercise for executive function, Int. J. Nurs. Stud. 114 (2021), 103810, https://doi.org/10.1016/j.ijnurstu.2020.103810 C. Di Lorito, A. Long, A. Byrne, R. Harwood, J. Gladman, S. Schneider, P. Logan, A. Bosco, V. van der Wardt, Exercise interventions for older adults: a systematic review of meta-analyses, J. Sport Heal. Sci. 10 (2021) 29–47, https://doi.org/ 10.1016/j.jshs.2020.06.003. X. Sun, Y. Li, L. Cai, Y. Wang, Effects of physical activity interventions on cognitive performance of overweight or obese children and adolescents: a systematic review and meta-analysis, Pediatr. Res. (2020), https://doi.org/10.1038/s41390-020- 0941-3. S. Hsieh, T. Chueh, C. Huang, S. Kao, C. Hillman, Y.-.K. Chang, T. Hung, Systematic review of the acute and chronic effects of high-intensity interval training on executive function across the lifespan, J. Sports Sci. 00 (2020) 1–13, https://doi. org/10.1080/02640414.2020.1803630 B. Haverkamp, R. Wiersma, K. Vertessen, H. van Ewijk, J. Oosterlaan, E. Hartman, Effects of physical activity interventions on cognitive outcomes and academic performance in adolescents and young adults: a meta-analysis, J. Sports Sci. 38 (2020) 2637–2660, https://doi.org/10.1080/02640414.2020.1794763. A.F. Kramer, K.I. Erickson, S.J. Colcombe, Exercise, cognition, and the aging brain, J. Appl. Physiol. 101 (2006) 1237–1242, https://doi.org/10.1152/ japplphysiol.000500.2006 M. Oberste, S. Sharma, W. Bloch, P. Zimmer, Acute exercise-induced set shifting benefits in healthy adults and its moderators: a systematic review and metaanalysis, Front. Psychol. 12 (2021), 528352, https://doi.org/10.3389/ fpsyg.2021.528352. C.-.H. Wu, C.I. Karageorghis, C.-.C. Wang, C.-.H. Chu, S.-.C. Kao, T.-.M. Hung, Y.-. K. Chang, Effects of acute aerobic and resistance exercise on executive function: an ERP study, J. Sci. Med. Sport. (2019), https://doi.org/10.1016/j. jsams.2019.07.009. F.-.T. Chen, J. Etnier, C.-.H. Wu, Y.-.M. Cho, T.-.M. Hung, Y.-.K. Chang, Doseresponse relationship between exercise duration and executive function in older adults, J. Clin. Med. 7 (2018) 279, https://doi.org/10.3390/jcm7090279 A. Miyake, N.P. Friedman, M.J. Emerson, A.H. Witzki, A. Howerter, T.D. Wager, The unity and diversity of executive functions and their contributions to complex “Frontal Lobe” tasks: a latent variable analysis, Cogn. Psychol. 41 (2000) 49–100, https://doi.org/10.1006/cogp.1999.0734. N. Friedman, A. Miyake, Unity and diversity of executive functions: individual differences as a window on cognitive structure, Cortex 86 (2017) 186–204, https:// doi.org/10.1016/J.CORTEX.2016.04.023. P.D. Tomporowski, C.L. Davis, P.H. Miller, J.A. Naglieri, Exercise and children’s intelligence, cognition, and academic achievement, Educ. Psychol. Rev. 20 (2008) 111–131, https://doi.org/10.1007/s10648-007-9057-0. Y.-.K. Chang, C.-.H. Chu, C.-.C. Wang, Y.-.C. Wang, T.-.F. Song, C.-.L. Tsai, J. Etnier, Dose-response relation between exercise duration and cognition, Med. Sci. Sport. Exerc. 47 (2015) 159–165, https://doi.org/10.1249/MSS.0000000000000383. A.K. Gejl, A. Bugge, M.T. Ernst, J. Tarp, C. Hillman, M. Have, K. Froberg, L. B. Andersen, The acute effects of short bouts of exercise on inhibitory control in adolescents, Ment. Health Phys. Act. 15 (2018) 34–39, https://doi.org/10.1016/j. mhpa.2018.06.003. X. Li, Z. Wang, Y. Wang, X. Li, D. Li, Effect of exercise on inhibitory control is dosedependent for adolescents, Sport. Med. Heal. Sci. 4 (2022) 54–60, https://doi.org/ 10.1016/J.SMHS.2021.10.005. C.M. Stillman, J. Cohen, M.E. Lehman, K.I. Erickson, Mediators of physical activity on neurocognitive function: a review at multiple levels of analysis, Front. Hum. Neurosci. 10 (2016) 626, https://doi.org/10.3389/fnhum.2016.00626. K. Erickson, R. Prakash, M. Voss, L. Chaddock, L. Hu, K. Morris, S. White, T. W´ojcicki, E. McAuley, A. Kramer, Aerobic fitness is associated with hippocampal volume in elderly humans, Hippocampus 19 (2009) 1030–1039, https://doi.org/ 10.1002/hipo.20547. P. Rasmussen, P. Brassard, H. Adser, M.V. Pedersen, L. Leick, E. Hart, N.H. Secher, B.K. Pedersen, H. Pilegaard, Evidence for a release of brain-derived neurotrophic factor from the brain during exercise, Exp. Physiol. 94 (2009) 1062–1069, https:// doi.org/10.1113/expphysiol.2009.048512. H. Tsukamoto, T. Suga, S. Takenaka, D. Tanaka, T. Takeuchi, T. Hamaoka, T. Isaka, T. Hashimoto, Greater impact of acute high-intensity interval exercise on postexercise executive function compared to moderate-intensity continuous exercise, Physiol. Behav. 155 (2016) 224–230, https://doi.org/10.1016/j. physbeh.2015.12.021. T. Hashimoto, H. Tsukamoto, S. Ando, S. Ogoh, Effect of exercise on brain health: the potential role of lactate as a myokine, Metabolites 11 (2021) 1–12, https://doi. org/10.3390/METABO11120813. K. Gunnell, V. Poitras, A. LeBlanc, K. Schibli, K. Barbeau, N. Hedayati, M. Ponitfex, G. Goldfield, C. Dunlap, E. Lehan, M. Tremblay, Physical activity and brain structure, brain function, and cognition in children and youth: a systematic review of randomized controlled trials, Ment. Health Phys. Act. 20 (2018), 100377, https://doi.org/10.1016/J.MHPA.2018.11.002 S. Tremblay, A. Pascual-Leone, H. Th´eoret, A review of the effects of physical activity and sports concussion on brain function and anatomy, Int. J. Psychophysiol. 132 (2018) 167–175, https://doi.org/10.1016/J. IJPSYCHO.2017.09.005. C.N. Wong, L. Chaddock-Heyman, M.W. Voss, A.Z. Burzynska, C. Basak, K. I. Erickson, R.S. Prakash, A.N. Szabo-Reed, S.M. Phillips, T. Wojcicki, E.L. Mailey, E. McAuley, A.F. Kramer, Brain activation during dual-task processing is associated with cardiorespiratory fitness and performance in older adults, Front. Aging Neurosci. 7 (2015), https://doi.org/10.3389/fnagi.2015.00154 L. Biazus-Sehn, F. Schuch, J. Firth, F. Stigger, Effects of physical exercise on cognitive function of older adults with mild cognitive impairment: a systematic review and meta-analysis, Arch. Gerontol. Geriatr. 89 (2020), 104048, https://doi. org/10.1016/j.archger.2020.104048 C. Alves, B. Gualano, P. Takao, P. Avakian, R. Fernandes, D. Morine, M. Takito, Effects of acute physical exercise on executive functions: a comparison between aerobic and strength exercise, J. Sport Exerc. Psychol. 34 (2012) 539–549, https:// doi.org/10.1123/jsep.34.4.539. L. Barella, J. Etnier, Y.-.K. Chang, The immediate and delayed effects of an acute bout of exercise on cognitive performance of healthy older adults, J. Aging Phys. Act. 18 (2010) 87–98, https://doi.org/10.1123/JAPA.18.1.87. L. Chaddock, K. Erickson, R. Prakash, M. Voss, M. VanPatter, M. Pontifex, C. Hillman, A. Kramer, A functional MRI investigation of the association between childhood aerobic fitness and neurocognitive control, Biol. Psychol. 89 (2012) 260–268, https://doi.org/10.1016/j.biopsycho.2011.10.017. L. Verburgh, M. K¨onigs, E.J.A. Scherder, J. Oosterlaan, Physical exercise and executive functions in preadolescent children, adolescents and young adults : a meta-analysis, (2013). https://doi.org/10.1136/bjsports-2012-091441 C. Hillman, N. Logan, T. Shigeta, A review of acute physical activity effects on brain and cognition in children, Transl. J. Am. Sport Med. 4 (2019) 132–136. L.M. Hatch, K.J. Dring, R.A. Williams, C. Sunderland, M.E. Nevill, S.B. Cooper, Effect of differing durations of high-intensity intermittent activity on cognitive function in adolescents, Int. J. Environ. Res. Public Heal. 2021 18 (2021) 11594, https://doi.org/10.3390/IJERPH182111594. Page 1159418 S.C. Kao, N. Baumgartner, C. Nagy, H.L. Fu, C.T. Yang, C.H. Wang, Acute effects of aerobic exercise on conflict suppression, response inhibition, and processing efficiency underlying inhibitory control processes: an ERP and SFT study, Psychophysiology (2022) e14032, https://doi.org/10.1111/PSYP.14032. Y.-.K. Chang, J. Labban, J. Gapin, J. Etnier, The effects of acute exercise on cognitive performance: a meta-analysis, Brain Res. 1453 (2012) 87–101, https:// doi.org/10.1016/j.brainres.2012.02.068. S. Ludyga, M. Gerber, S. Brand, W. M¨ohring, U. Pühse, Do different cognitive domains mediate the association between moderate-to-vigorous physical activity and adolescents’ off-task behaviour in the classroom? Br. J. Educ. Psychol. 92 (2022) 194–211, https://doi.org/10.1111/BJEP.12445. M. Audiffren, P. Tomporowski, J. Zagrodnik, Acute aerobic exercise and information processing: energizing motor processes during a choice reaction time task, Acta Psychol. (Amst). 129 (2008) 410–419, https://doi.org/10.1016/j. actpsy.2008.09.006. K. Coles, P. Tomporowski, Effects of acute exercise on executive processing, shortterm and long-term memory, J. Sports Sci. 26 (2008) 333–344, https://doi.org/ 10.1080/02640410701591417. M.B. Pontifex, C. Hillman, B. Fernhall, K.M. Thompson, T.A. Valentini, The effect of acute aerobic and resistance exercise on working memory, Med. Sci. Sports Exerc. 41 (2009) 927–934, https://doi.org/10.1249/MSS.0b013e3181907d69 S. Ludyga, M. Gerber, S. Brand, E. Holsboer-Trachsler, U. Pühse, Acute effects of moderate aerobic exercise on specific aspects of executive function in different age and fitness groups: a meta-analysis, Psychophysiology 53 (2016) 1611–1626, https://doi.org/10.1111/psyp.12736 E.S. Drollette, M.N. Johnson, C.C. Meadows, No change in inhibitory control or P3 following different high-intensity interval exercise modalities, Brain Sci. 12 (2022) 185, https://doi.org/10.3390/brainsci12020185. A. Naderi, F. Shaabani, A. Esmaeili, Z. Salman, E. Borella, H. Degens, Effects of low and moderate acute resistance exercise on executive function in community-living older adults, Sport. Exerc. Perform. Psychol. 8 (2019) 106–122, https://doi.org/ 10.1037/spy0000135. K. Soga, T. Shishido, R. Nagatomi, Executive function during and after acute moderate aerobic exercise in adolescents, Psychol. Sport Exerc. 16 (2015) 7–17, https://doi.org/10.1016/j.psychsport.2014.08.010. Y.-.K. Chang, B. Alderman, C. Chu, C. Wang, T. Song, F. Chen, Acute exercise has a general facilitative effect on cognitive function: a combined ERP temporal dynamics and BDNF study, Psychophysiology 54 (2017) 289–300, https://doi.org/ 10.1111/PSYP.12784. S. Cooper, S. Bandelow, M. Nute, K. Dring, R. Stannard, J. Morris, M. Nevill, Sprintbased exercise and cognitive function in adolescents, Prev. Med. Reports. 4 (2016) 155–161, https://doi.org/10.1016/j.pmedr.2016.06.004 E. Du Rietz, A. Barker, G. Michelini, A. Rommel, I. Vainieri, P. Asherson, J. Kuntsi, Beneficial effects of acute high-intensity exercise on electrophysiological indices of attention processes in young adult men, Behav. Brain Res. 359 (2019) 474–484, https://doi.org/10.1016/j.bbr.2018.11.024 D. Moreau, E. Chou, The acute effect of high-intensity exercise on executive function: a meta-analysis, Perspect. Psychol. Sci. 14 (2019) 734–764, https://doi. org/10.1177/1745691619850568. H. Aguirre-Loaiza, J. Arenas, I. Arias, A. Franco-Jímenez, S. Barbosa-Granados, S. Ramos-Bermúdez, F. Ayala-Zuluaga, C. Nú˜nez, A. García-Mas, Effect of acute physical exercise on executive functions and emotional recognition: analysis of moderate to high intensity in young adults, Front. Psychol. (2019) 10, https://doi. org/10.3389/fpsyg.2019.02774. P. De Souto Barreto, J. Delrieu, S. Andrieu, B. Vellas, Y. Rolland, Physical activity and cognitive function in middle-aged and older adults, Mayo Clin. Proc. 91 (2016) 1515–1524, https://doi.org/10.1016/j.mayocp.2016.06.032 C. Hillman, M.B. Pontifex, D.M. Castelli, N. a. Khan, L.B. Raine, M.R. Scudder, E. S. Drollette, R.D. Moore, C.-.T. Wu, K. Kamijo, Effects of the FITKids randomized controlled trial on executive control and brain function, Pediatrics 134 (2014) e1063–e1071, https://doi.org/10.1542/peds.2013-3219. L. Li, W.-.W. Men, Y.-.K. Chang, M.-.X. Fan, L. Ji, G.-.X. Wei, Acute aerobic exercise increases cortical activity during working memory: a functional MRI study in female college students, PLoS ONE 9 (2014) e99222, https://doi.org/10.1371/ journal.pone.0099222. S. Browne, M. Flynn, B. O’Neill, G. Howatson, P. Bell, C. Haskell-Ramsay, Effects of acute high-intensity exercise on cognitive performance in trained individuals: a systematic review, Prog. Brain Res. (2017) 161–187, https://doi.org/10.1016/bs. pbr.2017.06.003. M.B. Pontifex, A.L. McGowan, M.C. Chandler, K.L. Gwizdala, A.C. Parks, K. Fenn, K. Kamijo, A primer on investigating the after effects of acute bouts of physical activity on cognition, Psychol. Sport Exerc. 40 (2019) 1–22, https://doi.org/ 10.1016/j.psychsport.2018.08.015. V. Clemente-Su´arez, Cortical arousal and central nervous system fatigue after a mountain marathon - Dialnet, Cult. Cienc. y Deport. 12 (2017) 143–148. https ://dialnet.unirioja.es/servlet/articulo?codigo=6080180. accessed May 6, 2022. V. Sember, G. Jurak, M. Kovaˇc, S. Morrison, G. Starc, Children’s Physical Activity, Academic Performance, and Cognitive Functioning: A Systematic Review and Meta-Analysis, Front. Public Heal. 8 (2020). https://doi.org/10.3389/ fpubh.2020.00307. F. Herold, N. Aye, N. Lehmann, M. Taubert, N.G. Mueller, The contribution of functional magnetic resonance imaging to the understanding of the effects of acute physical exercise on cognition, Brain Sci. 10 (2020), https://doi.org/10.3390/ brainsci10030175. S. Ludyga, M. Gerber, K. Kamijo, Exercise types and working memory components during development, Trends Cogn. Sci. 26 (2022) 1–13, https://doi.org/10.1016/j. tics.2021.12.004. M.B. Pontifex, A.L. McGowan, M.C. Chandler, K.L. Gwizdala, A.C. Parks, K. Fenn, K. Kamijo, A primer on investigating the after effects of acute bouts of physical activity on cognition, Psychol. Sport Exerc. 40 (2019) 1–22, https://doi.org/ 10.1016/j.psychsport.2018.08.015. M. Zapata, L. C´ardenas, J. Cuartas, INECO Frontal Screening (IFS): una herramienta psicom´etrica para evaluar la disfunci´on ejecutiva en policonsumidores, Suma Psicol´ogica 26 (2019) 119–126, https://doi.org/ 10.14349/sumapsi.2019.v26.n2.8. T. Torralva, M. Roca, E. Gleichgerrcht, P. L´opez, F. Manes, INECO Frontal Screening (IFS): a brief, sensitive, and specific tool to assess executive functions in dementia, J. Int. Neuropsychol. Soc. 15 (2009) 777–786, https://doi.org/10.1017/ S1355617709990415. C.E. Garber, B. Blissmer, M.R. Deschenes, B.A. Franklin, M.J. Lamonte, I.-.M. Lee, D.C. Nieman, D.P. Swain, American college of sports medicine, American college of sports medicine position stand. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: guidance for prescribing exercise, Med. Sci. Sports Exerc. 43 (2011) 1334–1359, https://doi.org/10.1249/MSS.0b013e318213fefb J. Flores, F. Ostrosky, A. Lozano, BANFE-2. Batería Neuropsicol´ogica De Funciones Ejecutivas y L´obulos Frontales-2, 1a ed., M´exico, DF, 2014. S.C. Slade, C.E. Dionne, M. Underwood, R. Buchbinder, Consensus on Exercise Reporting Template (CERT): explanation and Elaboration Statement, Br. J. Sports Med. 50 (2016) 1428–1437, https://doi.org/10.1136/bjsports-2016-096651 V.H. Heywar, Evaluaci´on De La Aptitud Física y Prescripci´on del Ejercicio, 5a edici´on, Madrid, Espa˜na, 2008. M. Karvonen, E. Kentala, O. Mustala, The effects of training on heart rate; a longitudinal study, Ann. Med. Exp. Biol. Fenn. 35 (1957) 307–315. http://www. ncbi.nlm.nih.gov/pubmed/13470504. accessed May 31, 2019. World Medical Association, World Medical Association declaration of Helsinki: ethical principles for medical research involving human subjects, JAMA - J. Am. Med. Assoc. 310 (2013) 2191–2194. https://doi.org/10.1001/jama.2013.281053. Ministerio de Salud - República de Colombia, Resoluci´on 8430, Bogot´a DC., 1993 (1993) 1–19. V. Labelle, L. Bosquet, S. Mekary, L. Bherer, Decline in executive control during acute bouts of exercise as a function of exercise intensity and fitness level, Brain Cogn. 81 (2013) 10–17, https://doi.org/10.1016/j.bandc.2012.10.001. D. Salas-Gomez, M. Fernandez-Gorgojo, A. Pozueta, I. Diaz-Ceballos, M. Lamarain, C. Perez, M. Kazimierczak, P. Sanchez-Juan, Physical activity is associated with better executive function in university students, Front. Hum. Neurosci 14 (2020) 1–8, https://doi.org/10.3389/fnhum.2020.00011. R. Browne, E. Costa, M. Sales, A. Fonteles, J. Moraes, J. Barros, Acute effect of vigorous aerobic exercise on the inhibitory control in adolescents, Rev. Paul. Pediatr. 34 (2016) 154–161, https://doi.org/10.1016/j.rppede.2016.01.005. A.P. Quintero, K.J. Bonilla-Vargas, J.E. Correa-Bautista, M.A. Domínguez-Sanch´ez, H.R. Triana-Reina, G.P. Velasco-Orjuela, A. García-Hermoso, E. Villa-Gonz´alez, I. Esteban-Cornejo, M. Correa-Rodríguez, R. Ramírez-V´elez, Acute effect of three different exercise training modalities on executive function in overweight inactive men: a secondary analysis of the BrainFit study, Physiol. Behav. 197 (2018) 22–28, https://doi.org/10.1016/j.physbeh.2018.09.010. J.C. Basso, A. Shang, M. Elman, R. Karmouta, W.A. Suzuki, Acute exercise improves prefrontal cortex but not hippocampal function in healthy adults, J. Int. Neuropsychol. Soc. 21 (2015) 791–801, https://doi.org/10.1017/ S135561771500106X. S. Tian, H. Mou, F. Qiu, Sustained effects of high-intensity interval exercise and moderate-intensity continuous exercise on inhibitory control, Int. J. Environ. Res. Public Heal. 18 (18) (2021) 2687, https://doi.org/10.3390/IJERPH18052687, 2021Page2687 T.T. Shigeta, T.P. Morris, D.H. Henry, A. Kucyi, P. Bex, A.F. Kramer, C.H. Hillman, Acute exercise effects on inhibitory control and the pupillary response in young adults, Int. J. Psychophysiol. 170 (2021) 218–228, https://doi.org/10.1016/j. ijpsycho.2021.08.006. K.E. Zuniga, M. Mueller, A.R. Santana, W.L. Kelemen, Acute aerobic exercise improves memory across intensity and fitness levels, Memory 27 (2019) 628–636, https://doi.org/10.1080/09658211.2018.1546875. H. Chang, K. Kim, Y.-.J. Jung, M. Kato, Effects of acute high-intensity resistance exercise on cognitive function and oxygenation in prefrontal cortex, J. Exerc. Nutr. Biochem. 21 (2017) 1–8, https://doi.org/10.20463/jenb.2017.0012 S. Vazou, C. Pesce, K. Lakes, A. Smiley-Oyen, More than one road leads to Rome: a narrative review and meta-analysis of physical activity intervention effects on cognition in youth, Int. J. Sport Exerc. Psychol. 17 (2019) 153–178, https://doi. org/10.1080/1612197X.2016.1223423 G. Olivo, J. Nilsson, B. Garz´on, A. Lebedev, A. Wåhlin, O. Tarassova, M. Ekblom, M. L¨ovd´en, Immediate effects of a single session of physical exercise on cognition and cerebral blood flow: a randomized controlled study of older adults, Neuroimage 225 (2021), 117500, https://doi.org/10.1016/j. neuroimage.2020.117500. J. Won, A. Alfini, L. Weiss, D. Callow, C. Smith, Brain activation during executive control after acute exercise in older adults, Int. J. Psychophysiol. 146 (2019) 240–248, https://doi.org/10.1016/j.ijpsycho.2019.10.002. J. Chmura, K. Nazar, H. Kaciuba-Uscilko, Choice reaction time during graded exercise in relation to blood lactate and plasma catecholamine thresholds, Int. J. Sports Med. 15 (1994) 172–176, https://doi.org/10.1055/S-2007-1021042/BIB. J.S. Lee, H.Y. Shin, H.J. Kim, Y.K. Jang, N.-.Y. Jung, J. Lee, Y.J. Kim, P. Chun, J.-. J. Yang, J.-.M. Lee, M. Kang, K.-.C. Park, D.L. Na, S.W. Seo, Combined effects of physical exercise and education on age-related cortical thinning in cognitively normal individuals, Sci. Rep. 6 (2016) 24284, https://doi.org/10.1038/srep24284. F.S. Stigger, M.A. Zago Marcolino, K.M. Portela, R.D.M. Plentz, Effects of exercise on inflammatory, oxidative, and neurotrophic biomarkers on cognitively impaired individuals diagnosed with dementia or mild cognitive impairment: a systematic review and meta-analysis, J. Gerontol. Ser. A. 74 (2019) 616–624, https://doi.org/ 10.1093/gerona/gly173. C. Coetsee, E. Terblanche, The effect of three different exercise training modalities on cognitive and physical function in a healthy older population, Eur. Rev. Aging Phys. Act. 14 (2017) 1–10, https://doi.org/10.1186/s11556-017-0183-5. L. Shapiro, S. Spaulding, Embodied Cognition and Sport, in: M. Cappucio (Ed.), Hanb. Emodied Cogn. Sport Psychol., MIT Press, London, 2019: pp. 3–22. M. Schmidt, M. Mavilidi, A. Singh, C. Englert, Combining physical and cognitive training to improve kindergarten children’s executive functions: a cluster randomized controlled trial, Contemp. Educ. Psychol. 63 (2020), 101908, https:// doi.org/10.1016/j.cedpsych.2020.101908. M. Schmidt, V. Benzing, A.R. Wallman-jones, M. Mavilidi, D. Lubans, F. Paas, Embodied learning in the classroom: effects on primary school children’s attention and foreign language vocabulary learning, Psychol. Sport Exerc. (2019), https:// doi.org/10.1016/j.psychsport.2018.12.017 L.M. Vecchio, Y. Meng, K. Xhima, N. Lipsman, C. Hamani, I. Aubert, The neuroprotective effects of exercise: maintaining a healthy brain throughout aging, Brain Plast. 4 (2018) 17–52, https://doi.org/10.3233/bpl-180069. A. Tyndall, C. Clark, T. Anderson, D. Hogan, M. Hill, R. Longman, M. Poulin, Protective effects of exercise on cognition and brain health in older adults, Exerc. Sport Sci. Rev. 46 (2018) 215–223, https://doi.org/10.1249/ JES.0000000000000161 |
dc.rights.license.none.fl_str_mv |
Atribución – No comercial – Sin Derivar |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/closedAccess |
dc.rights.coar.none.fl_str_mv |
http://purl.org/coar/access_right/c_14cb |
rights_invalid_str_mv |
Atribución – No comercial – Sin Derivar http://purl.org/coar/access_right/c_14cb |
eu_rights_str_mv |
closedAccess |
dc.format.extent.none.fl_str_mv |
113902–113902 |
dc.coverage.temporal.none.fl_str_mv |
254 |
dc.publisher.none.fl_str_mv |
Universidad Cooperativa de Colombia, Facultad de Ciencias Sociales, Psicología, Pereira |
dc.publisher.program.none.fl_str_mv |
Psicología |
dc.publisher.place.none.fl_str_mv |
Pereira |
publisher.none.fl_str_mv |
Universidad Cooperativa de Colombia, Facultad de Ciencias Sociales, Psicología, Pereira |
institution |
Universidad Cooperativa de Colombia |
bitstream.url.fl_str_mv |
https://repository.ucc.edu.co/bitstreams/110d4a8c-f8b5-4c8e-beff-abdbdcb9114a/download |
bitstream.checksum.fl_str_mv |
3bce4f7ab09dfc588f126e1e36e98a45 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Cooperativa de Colombia |
repository.mail.fl_str_mv |
bdigital@metabiblioteca.com |
_version_ |
1811564976294330368 |
spelling |
Aguirre Loaiza, Héctor HaneyArias, IanelleenBonilla, SergioRamírez, RamónRamírez Herrera, SandraNanez, JonathanBarbosa Granados, Sergio HumbertoArenas Granada, Jaime2542023-08-14T20:23:18Z2023-08-14T20:23:18Z2022-10-0100319384https://doi.org/10.1016/j.physbeh.2022.113902https://hdl.handle.net/20.500.12494/52430Aguirre-Loaiza, Arias, I., Bonilla, S., Ramírez, R., Ramírez-Herrera, S., Nanez, J., Barbosa-Granados, S., & Arenas-Granada, J. (2022). Effect of acute physical exercise on inhibitory control in young adults: High-intensity indoor cycling session. Physiology & Behavior, 254, 113902–113902. https://doi.org/10.1016/j.physbeh.2022.113902Cada vez hay más pruebas de que el ejercicio físico (EF) puede mejorar el rendimiento cognitivo. Sin embargo, todavía se están estudiando los criterios relativos a la intensidad, duración y frecuencia del EF. Nuestra hipótesis es que las intensidades elevadas de EF tienen efectos sobre el control inhibitorio. Por este motivo, nuestro objetivo fue estudiar el efecto del EF agudo sobre el CI en jóvenes estudiantes sanos de una licenciatura en educación física y ejercicio mediante una sesión de 20 minutos de ciclismo indoor a una intensidad del 80-90% FCmáx. Ideamos un diseño de grupo experimental (n = 9) en relación con un grupo de control (n = 10) con medidas de CI antes y después de la prueba. Se administró una tarea Stroop (dos condiciones) a estudiantes de pregrado (Mage = 23.3, SD = 1.6) de un programa de licenciatura en Educación Física y Ciencias del Deporte de una universidad pública de Colombia. El MANOVA computado no mostró un efecto de interacción entre la tarea experimental de Stroop A-B x medida x grupo. Sin embargo, se obtuvo un efecto principal de reducción del tiempo de respuesta después de la EF en el grupo experimental. Se observaron otros efectos principales en el número de ensayos correctos e incorrectos en la condición Stroop-B. El grupo experimental mostró menos respuestas correctas después de la EP, y el grupo de control mostró menos errores. Se concluye que la PE de alta intensidad confiere efectos favorables sobre el control inhibitorio.There is growing evidence that physical exercise (PE) may boost cognitive performance. However, criteria regarding PE intensity, duration, and frequency are still being studied. We hypothesize that high PE intensities have effects on inhibitory control. For this reason, our aim was to study the effect of acute PE on IC in healthy young students of a bachelor’s degree in physical education and exercise via a 20-minute indoor cycling session at 80–90% HRmax intensity. We devised an experimental group design (n = 9) relative to a control group (n = 10) with pre-and-post-test IC measures. A Stroop task (two conditions) was administered to undergraduate students (Mage = 23.3, SD = 1.6) of a bachelor’s degree program in Physical Education and Sports Sciences from a public university in Colombia. The computed MANOVA did not show an interaction effect between the experimental task of Stroop A-B x measure x group. However, a main effect of reduced response time was obtained after PE in the experimental group. Other main effects were observed in the number of correct and incorrect trials in the Stroop-B condition. The experimental group showed fewer correct answers after PE, and the control group showed fewer errors. It is concluded that high-intensity PE confers favorable effects on inhibitory control.https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001149229https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000003480https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000119796https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001569476https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001540415http://scienti.colciencias.gov.co:8081/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001355807https://orcid.org/0000-0002-2582-4941https://orcid.org/0000-0003-0194-0945https://orcid.org/0000-0003-2902-5343https://orcid.org/0000-0002-2053-2421https://orcid.org/0000-0002-2582-2495https://orcid.org/0000-0002-6976-483Xhttps://scienti.minciencias.gov.co/gruplac/jsp/visualiza/visualizagr.jsp?nro=00000000019115haney.aguirre@ucp.edu.coiarias@elpoli.edu.cosandraramirez@elpoli.edu.cojonathan.nanez@ucp.edu.cosergio.barbosag@campusucc.edu.cojaimearenas@elpoli.edu.cohttps://scholar.google.es/citations?user=AgzCp0YAAAAJ&hl=eshttps://scholar.google.com/citations?user=ZzJGI3cAAAAJ&hl=enhttps://scholar.google.es/citations?user=RoziXGMAAAAJ&hl=eshttps://scholar.google.es/citations?user=JQFwqzoAAAAJ&hl=es113902–113902Universidad Cooperativa de Colombia, Facultad de Ciencias Sociales, Psicología, PereiraPsicologíaPereirahttps://www.sciencedirect.com/science/article/pii/S0031938422002086Physiology & BehaviorJ. Etnier, Y.-.K. Chang, F.-.T. Chen, Chronic exercise and cognitive function, Handb. Sport Psychol., John Wiley & Sons, Ltd (2020) 795–814, https://doi.org/ 10.1002/9781119568124.ch38.J. Won, A.J. Alfini, L.R. Weiss, C.S. Michelson, D.D. Callow, S.M. Ranadive, R. J. Gentili, J.C. Smith, Semantic memory activation after acute exercise in healthy older adults, J. Int. Neuropsychol. Soc. (2019) 1–12, https://doi.org/10.1017/ S1355617719000171J. Xiong, M. Ye, L. Wang, G. Zheng, Effects of physical exercise on executive function in cognitively healthy older adults: a systematic review and meta-analysis of randomized controlled trials: physical exercise for executive function, Int. J. Nurs. Stud. 114 (2021), 103810, https://doi.org/10.1016/j.ijnurstu.2020.103810C. Di Lorito, A. Long, A. Byrne, R. Harwood, J. Gladman, S. Schneider, P. Logan, A. Bosco, V. van der Wardt, Exercise interventions for older adults: a systematic review of meta-analyses, J. Sport Heal. Sci. 10 (2021) 29–47, https://doi.org/ 10.1016/j.jshs.2020.06.003.X. Sun, Y. Li, L. Cai, Y. Wang, Effects of physical activity interventions on cognitive performance of overweight or obese children and adolescents: a systematic review and meta-analysis, Pediatr. Res. (2020), https://doi.org/10.1038/s41390-020- 0941-3.S. Hsieh, T. Chueh, C. Huang, S. Kao, C. Hillman, Y.-.K. Chang, T. Hung, Systematic review of the acute and chronic effects of high-intensity interval training on executive function across the lifespan, J. Sports Sci. 00 (2020) 1–13, https://doi. org/10.1080/02640414.2020.1803630B. Haverkamp, R. Wiersma, K. Vertessen, H. van Ewijk, J. Oosterlaan, E. Hartman, Effects of physical activity interventions on cognitive outcomes and academic performance in adolescents and young adults: a meta-analysis, J. Sports Sci. 38 (2020) 2637–2660, https://doi.org/10.1080/02640414.2020.1794763.A.F. Kramer, K.I. Erickson, S.J. Colcombe, Exercise, cognition, and the aging brain, J. Appl. Physiol. 101 (2006) 1237–1242, https://doi.org/10.1152/ japplphysiol.000500.2006M. Oberste, S. Sharma, W. Bloch, P. Zimmer, Acute exercise-induced set shifting benefits in healthy adults and its moderators: a systematic review and metaanalysis, Front. Psychol. 12 (2021), 528352, https://doi.org/10.3389/ fpsyg.2021.528352.C.-.H. Wu, C.I. Karageorghis, C.-.C. Wang, C.-.H. Chu, S.-.C. Kao, T.-.M. Hung, Y.-. K. Chang, Effects of acute aerobic and resistance exercise on executive function: an ERP study, J. Sci. Med. Sport. (2019), https://doi.org/10.1016/j. jsams.2019.07.009.F.-.T. Chen, J. Etnier, C.-.H. Wu, Y.-.M. Cho, T.-.M. Hung, Y.-.K. Chang, Doseresponse relationship between exercise duration and executive function in older adults, J. Clin. Med. 7 (2018) 279, https://doi.org/10.3390/jcm7090279A. Miyake, N.P. Friedman, M.J. Emerson, A.H. Witzki, A. Howerter, T.D. Wager, The unity and diversity of executive functions and their contributions to complex “Frontal Lobe” tasks: a latent variable analysis, Cogn. Psychol. 41 (2000) 49–100, https://doi.org/10.1006/cogp.1999.0734.N. Friedman, A. Miyake, Unity and diversity of executive functions: individual differences as a window on cognitive structure, Cortex 86 (2017) 186–204, https:// doi.org/10.1016/J.CORTEX.2016.04.023.P.D. Tomporowski, C.L. Davis, P.H. Miller, J.A. Naglieri, Exercise and children’s intelligence, cognition, and academic achievement, Educ. Psychol. Rev. 20 (2008) 111–131, https://doi.org/10.1007/s10648-007-9057-0.Y.-.K. Chang, C.-.H. Chu, C.-.C. Wang, Y.-.C. Wang, T.-.F. Song, C.-.L. Tsai, J. Etnier, Dose-response relation between exercise duration and cognition, Med. Sci. Sport. Exerc. 47 (2015) 159–165, https://doi.org/10.1249/MSS.0000000000000383.A.K. Gejl, A. Bugge, M.T. Ernst, J. Tarp, C. Hillman, M. Have, K. Froberg, L. B. Andersen, The acute effects of short bouts of exercise on inhibitory control in adolescents, Ment. Health Phys. Act. 15 (2018) 34–39, https://doi.org/10.1016/j. mhpa.2018.06.003.X. Li, Z. Wang, Y. Wang, X. Li, D. Li, Effect of exercise on inhibitory control is dosedependent for adolescents, Sport. Med. Heal. Sci. 4 (2022) 54–60, https://doi.org/ 10.1016/J.SMHS.2021.10.005.C.M. Stillman, J. Cohen, M.E. Lehman, K.I. Erickson, Mediators of physical activity on neurocognitive function: a review at multiple levels of analysis, Front. Hum. Neurosci. 10 (2016) 626, https://doi.org/10.3389/fnhum.2016.00626.K. Erickson, R. Prakash, M. Voss, L. Chaddock, L. Hu, K. Morris, S. White, T. W´ojcicki, E. McAuley, A. Kramer, Aerobic fitness is associated with hippocampal volume in elderly humans, Hippocampus 19 (2009) 1030–1039, https://doi.org/ 10.1002/hipo.20547.P. Rasmussen, P. Brassard, H. Adser, M.V. Pedersen, L. Leick, E. Hart, N.H. Secher, B.K. Pedersen, H. Pilegaard, Evidence for a release of brain-derived neurotrophic factor from the brain during exercise, Exp. Physiol. 94 (2009) 1062–1069, https:// doi.org/10.1113/expphysiol.2009.048512.H. Tsukamoto, T. Suga, S. Takenaka, D. Tanaka, T. Takeuchi, T. Hamaoka, T. Isaka, T. Hashimoto, Greater impact of acute high-intensity interval exercise on postexercise executive function compared to moderate-intensity continuous exercise, Physiol. Behav. 155 (2016) 224–230, https://doi.org/10.1016/j. physbeh.2015.12.021.T. Hashimoto, H. Tsukamoto, S. Ando, S. Ogoh, Effect of exercise on brain health: the potential role of lactate as a myokine, Metabolites 11 (2021) 1–12, https://doi. org/10.3390/METABO11120813.K. Gunnell, V. Poitras, A. LeBlanc, K. Schibli, K. Barbeau, N. Hedayati, M. Ponitfex, G. Goldfield, C. Dunlap, E. Lehan, M. Tremblay, Physical activity and brain structure, brain function, and cognition in children and youth: a systematic review of randomized controlled trials, Ment. Health Phys. Act. 20 (2018), 100377, https://doi.org/10.1016/J.MHPA.2018.11.002S. Tremblay, A. Pascual-Leone, H. Th´eoret, A review of the effects of physical activity and sports concussion on brain function and anatomy, Int. J. Psychophysiol. 132 (2018) 167–175, https://doi.org/10.1016/J. IJPSYCHO.2017.09.005.C.N. Wong, L. Chaddock-Heyman, M.W. Voss, A.Z. Burzynska, C. Basak, K. I. Erickson, R.S. Prakash, A.N. Szabo-Reed, S.M. Phillips, T. Wojcicki, E.L. Mailey, E. McAuley, A.F. Kramer, Brain activation during dual-task processing is associated with cardiorespiratory fitness and performance in older adults, Front. Aging Neurosci. 7 (2015), https://doi.org/10.3389/fnagi.2015.00154L. Biazus-Sehn, F. Schuch, J. Firth, F. Stigger, Effects of physical exercise on cognitive function of older adults with mild cognitive impairment: a systematic review and meta-analysis, Arch. Gerontol. Geriatr. 89 (2020), 104048, https://doi. org/10.1016/j.archger.2020.104048C. Alves, B. Gualano, P. Takao, P. Avakian, R. Fernandes, D. Morine, M. Takito, Effects of acute physical exercise on executive functions: a comparison between aerobic and strength exercise, J. Sport Exerc. Psychol. 34 (2012) 539–549, https:// doi.org/10.1123/jsep.34.4.539.L. Barella, J. Etnier, Y.-.K. Chang, The immediate and delayed effects of an acute bout of exercise on cognitive performance of healthy older adults, J. Aging Phys. Act. 18 (2010) 87–98, https://doi.org/10.1123/JAPA.18.1.87.L. Chaddock, K. Erickson, R. Prakash, M. Voss, M. VanPatter, M. Pontifex, C. Hillman, A. Kramer, A functional MRI investigation of the association between childhood aerobic fitness and neurocognitive control, Biol. Psychol. 89 (2012) 260–268, https://doi.org/10.1016/j.biopsycho.2011.10.017.L. Verburgh, M. K¨onigs, E.J.A. Scherder, J. Oosterlaan, Physical exercise and executive functions in preadolescent children, adolescents and young adults : a meta-analysis, (2013). https://doi.org/10.1136/bjsports-2012-091441C. Hillman, N. Logan, T. Shigeta, A review of acute physical activity effects on brain and cognition in children, Transl. J. Am. Sport Med. 4 (2019) 132–136.L.M. Hatch, K.J. Dring, R.A. Williams, C. Sunderland, M.E. Nevill, S.B. Cooper, Effect of differing durations of high-intensity intermittent activity on cognitive function in adolescents, Int. J. Environ. Res. Public Heal. 2021 18 (2021) 11594, https://doi.org/10.3390/IJERPH182111594. Page 1159418S.C. Kao, N. Baumgartner, C. Nagy, H.L. Fu, C.T. Yang, C.H. Wang, Acute effects of aerobic exercise on conflict suppression, response inhibition, and processing efficiency underlying inhibitory control processes: an ERP and SFT study, Psychophysiology (2022) e14032, https://doi.org/10.1111/PSYP.14032.Y.-.K. Chang, J. Labban, J. Gapin, J. Etnier, The effects of acute exercise on cognitive performance: a meta-analysis, Brain Res. 1453 (2012) 87–101, https:// doi.org/10.1016/j.brainres.2012.02.068.S. Ludyga, M. Gerber, S. Brand, W. M¨ohring, U. Pühse, Do different cognitive domains mediate the association between moderate-to-vigorous physical activity and adolescents’ off-task behaviour in the classroom? Br. J. Educ. Psychol. 92 (2022) 194–211, https://doi.org/10.1111/BJEP.12445.M. Audiffren, P. Tomporowski, J. Zagrodnik, Acute aerobic exercise and information processing: energizing motor processes during a choice reaction time task, Acta Psychol. (Amst). 129 (2008) 410–419, https://doi.org/10.1016/j. actpsy.2008.09.006.K. Coles, P. Tomporowski, Effects of acute exercise on executive processing, shortterm and long-term memory, J. Sports Sci. 26 (2008) 333–344, https://doi.org/ 10.1080/02640410701591417.M.B. Pontifex, C. Hillman, B. Fernhall, K.M. Thompson, T.A. Valentini, The effect of acute aerobic and resistance exercise on working memory, Med. Sci. Sports Exerc. 41 (2009) 927–934, https://doi.org/10.1249/MSS.0b013e3181907d69S. Ludyga, M. Gerber, S. Brand, E. Holsboer-Trachsler, U. Pühse, Acute effects of moderate aerobic exercise on specific aspects of executive function in different age and fitness groups: a meta-analysis, Psychophysiology 53 (2016) 1611–1626, https://doi.org/10.1111/psyp.12736E.S. Drollette, M.N. Johnson, C.C. Meadows, No change in inhibitory control or P3 following different high-intensity interval exercise modalities, Brain Sci. 12 (2022) 185, https://doi.org/10.3390/brainsci12020185.A. Naderi, F. Shaabani, A. Esmaeili, Z. Salman, E. Borella, H. Degens, Effects of low and moderate acute resistance exercise on executive function in community-living older adults, Sport. Exerc. Perform. Psychol. 8 (2019) 106–122, https://doi.org/ 10.1037/spy0000135.K. Soga, T. Shishido, R. Nagatomi, Executive function during and after acute moderate aerobic exercise in adolescents, Psychol. Sport Exerc. 16 (2015) 7–17, https://doi.org/10.1016/j.psychsport.2014.08.010.Y.-.K. Chang, B. Alderman, C. Chu, C. Wang, T. Song, F. Chen, Acute exercise has a general facilitative effect on cognitive function: a combined ERP temporal dynamics and BDNF study, Psychophysiology 54 (2017) 289–300, https://doi.org/ 10.1111/PSYP.12784.S. Cooper, S. Bandelow, M. Nute, K. Dring, R. Stannard, J. Morris, M. Nevill, Sprintbased exercise and cognitive function in adolescents, Prev. Med. Reports. 4 (2016) 155–161, https://doi.org/10.1016/j.pmedr.2016.06.004E. Du Rietz, A. Barker, G. Michelini, A. Rommel, I. Vainieri, P. Asherson, J. Kuntsi, Beneficial effects of acute high-intensity exercise on electrophysiological indices of attention processes in young adult men, Behav. Brain Res. 359 (2019) 474–484, https://doi.org/10.1016/j.bbr.2018.11.024D. Moreau, E. Chou, The acute effect of high-intensity exercise on executive function: a meta-analysis, Perspect. Psychol. Sci. 14 (2019) 734–764, https://doi. org/10.1177/1745691619850568.H. Aguirre-Loaiza, J. Arenas, I. Arias, A. Franco-Jímenez, S. Barbosa-Granados, S. Ramos-Bermúdez, F. Ayala-Zuluaga, C. Nú˜nez, A. García-Mas, Effect of acute physical exercise on executive functions and emotional recognition: analysis of moderate to high intensity in young adults, Front. Psychol. (2019) 10, https://doi. org/10.3389/fpsyg.2019.02774.P. De Souto Barreto, J. Delrieu, S. Andrieu, B. Vellas, Y. Rolland, Physical activity and cognitive function in middle-aged and older adults, Mayo Clin. Proc. 91 (2016) 1515–1524, https://doi.org/10.1016/j.mayocp.2016.06.032C. Hillman, M.B. Pontifex, D.M. Castelli, N. a. Khan, L.B. Raine, M.R. Scudder, E. S. Drollette, R.D. Moore, C.-.T. Wu, K. Kamijo, Effects of the FITKids randomized controlled trial on executive control and brain function, Pediatrics 134 (2014) e1063–e1071, https://doi.org/10.1542/peds.2013-3219.L. Li, W.-.W. Men, Y.-.K. Chang, M.-.X. Fan, L. Ji, G.-.X. Wei, Acute aerobic exercise increases cortical activity during working memory: a functional MRI study in female college students, PLoS ONE 9 (2014) e99222, https://doi.org/10.1371/ journal.pone.0099222.S. Browne, M. Flynn, B. O’Neill, G. Howatson, P. Bell, C. Haskell-Ramsay, Effects of acute high-intensity exercise on cognitive performance in trained individuals: a systematic review, Prog. Brain Res. (2017) 161–187, https://doi.org/10.1016/bs. pbr.2017.06.003.M.B. Pontifex, A.L. McGowan, M.C. Chandler, K.L. Gwizdala, A.C. Parks, K. Fenn, K. Kamijo, A primer on investigating the after effects of acute bouts of physical activity on cognition, Psychol. Sport Exerc. 40 (2019) 1–22, https://doi.org/ 10.1016/j.psychsport.2018.08.015.V. Clemente-Su´arez, Cortical arousal and central nervous system fatigue after a mountain marathon - Dialnet, Cult. Cienc. y Deport. 12 (2017) 143–148. https ://dialnet.unirioja.es/servlet/articulo?codigo=6080180. accessed May 6, 2022.V. Sember, G. Jurak, M. Kovaˇc, S. Morrison, G. Starc, Children’s Physical Activity, Academic Performance, and Cognitive Functioning: A Systematic Review and Meta-Analysis, Front. Public Heal. 8 (2020). https://doi.org/10.3389/ fpubh.2020.00307.F. Herold, N. Aye, N. Lehmann, M. Taubert, N.G. Mueller, The contribution of functional magnetic resonance imaging to the understanding of the effects of acute physical exercise on cognition, Brain Sci. 10 (2020), https://doi.org/10.3390/ brainsci10030175.S. Ludyga, M. Gerber, K. Kamijo, Exercise types and working memory components during development, Trends Cogn. Sci. 26 (2022) 1–13, https://doi.org/10.1016/j. tics.2021.12.004.M.B. Pontifex, A.L. McGowan, M.C. Chandler, K.L. Gwizdala, A.C. Parks, K. Fenn, K. Kamijo, A primer on investigating the after effects of acute bouts of physical activity on cognition, Psychol. Sport Exerc. 40 (2019) 1–22, https://doi.org/ 10.1016/j.psychsport.2018.08.015.M. Zapata, L. C´ardenas, J. Cuartas, INECO Frontal Screening (IFS): una herramienta psicom´etrica para evaluar la disfunci´on ejecutiva en policonsumidores, Suma Psicol´ogica 26 (2019) 119–126, https://doi.org/ 10.14349/sumapsi.2019.v26.n2.8.T. Torralva, M. Roca, E. Gleichgerrcht, P. L´opez, F. Manes, INECO Frontal Screening (IFS): a brief, sensitive, and specific tool to assess executive functions in dementia, J. Int. Neuropsychol. Soc. 15 (2009) 777–786, https://doi.org/10.1017/ S1355617709990415.C.E. Garber, B. Blissmer, M.R. Deschenes, B.A. Franklin, M.J. Lamonte, I.-.M. Lee, D.C. Nieman, D.P. Swain, American college of sports medicine, American college of sports medicine position stand. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: guidance for prescribing exercise, Med. Sci. Sports Exerc. 43 (2011) 1334–1359, https://doi.org/10.1249/MSS.0b013e318213fefbJ. Flores, F. Ostrosky, A. Lozano, BANFE-2. Batería Neuropsicol´ogica De Funciones Ejecutivas y L´obulos Frontales-2, 1a ed., M´exico, DF, 2014.S.C. Slade, C.E. Dionne, M. Underwood, R. Buchbinder, Consensus on Exercise Reporting Template (CERT): explanation and Elaboration Statement, Br. J. Sports Med. 50 (2016) 1428–1437, https://doi.org/10.1136/bjsports-2016-096651V.H. Heywar, Evaluaci´on De La Aptitud Física y Prescripci´on del Ejercicio, 5a edici´on, Madrid, Espa˜na, 2008.M. Karvonen, E. Kentala, O. Mustala, The effects of training on heart rate; a longitudinal study, Ann. Med. Exp. Biol. Fenn. 35 (1957) 307–315. http://www. ncbi.nlm.nih.gov/pubmed/13470504. accessed May 31, 2019.World Medical Association, World Medical Association declaration of Helsinki: ethical principles for medical research involving human subjects, JAMA - J. Am. Med. Assoc. 310 (2013) 2191–2194. https://doi.org/10.1001/jama.2013.281053.Ministerio de Salud - República de Colombia, Resoluci´on 8430, Bogot´a DC., 1993 (1993) 1–19.V. Labelle, L. Bosquet, S. Mekary, L. Bherer, Decline in executive control during acute bouts of exercise as a function of exercise intensity and fitness level, Brain Cogn. 81 (2013) 10–17, https://doi.org/10.1016/j.bandc.2012.10.001.D. Salas-Gomez, M. Fernandez-Gorgojo, A. Pozueta, I. Diaz-Ceballos, M. Lamarain, C. Perez, M. Kazimierczak, P. Sanchez-Juan, Physical activity is associated with better executive function in university students, Front. Hum. Neurosci 14 (2020) 1–8, https://doi.org/10.3389/fnhum.2020.00011.R. Browne, E. Costa, M. Sales, A. Fonteles, J. Moraes, J. Barros, Acute effect of vigorous aerobic exercise on the inhibitory control in adolescents, Rev. Paul. Pediatr. 34 (2016) 154–161, https://doi.org/10.1016/j.rppede.2016.01.005.A.P. Quintero, K.J. Bonilla-Vargas, J.E. Correa-Bautista, M.A. Domínguez-Sanch´ez, H.R. Triana-Reina, G.P. Velasco-Orjuela, A. García-Hermoso, E. Villa-Gonz´alez, I. Esteban-Cornejo, M. Correa-Rodríguez, R. Ramírez-V´elez, Acute effect of three different exercise training modalities on executive function in overweight inactive men: a secondary analysis of the BrainFit study, Physiol. Behav. 197 (2018) 22–28, https://doi.org/10.1016/j.physbeh.2018.09.010.J.C. Basso, A. Shang, M. Elman, R. Karmouta, W.A. Suzuki, Acute exercise improves prefrontal cortex but not hippocampal function in healthy adults, J. Int. Neuropsychol. Soc. 21 (2015) 791–801, https://doi.org/10.1017/ S135561771500106X.S. Tian, H. Mou, F. Qiu, Sustained effects of high-intensity interval exercise and moderate-intensity continuous exercise on inhibitory control, Int. J. Environ. Res. Public Heal. 18 (18) (2021) 2687, https://doi.org/10.3390/IJERPH18052687, 2021Page2687T.T. Shigeta, T.P. Morris, D.H. Henry, A. Kucyi, P. Bex, A.F. Kramer, C.H. Hillman, Acute exercise effects on inhibitory control and the pupillary response in young adults, Int. J. Psychophysiol. 170 (2021) 218–228, https://doi.org/10.1016/j. ijpsycho.2021.08.006.K.E. Zuniga, M. Mueller, A.R. Santana, W.L. Kelemen, Acute aerobic exercise improves memory across intensity and fitness levels, Memory 27 (2019) 628–636, https://doi.org/10.1080/09658211.2018.1546875.H. Chang, K. Kim, Y.-.J. Jung, M. Kato, Effects of acute high-intensity resistance exercise on cognitive function and oxygenation in prefrontal cortex, J. Exerc. Nutr. Biochem. 21 (2017) 1–8, https://doi.org/10.20463/jenb.2017.0012S. Vazou, C. Pesce, K. Lakes, A. Smiley-Oyen, More than one road leads to Rome: a narrative review and meta-analysis of physical activity intervention effects on cognition in youth, Int. J. Sport Exerc. Psychol. 17 (2019) 153–178, https://doi. org/10.1080/1612197X.2016.1223423G. Olivo, J. Nilsson, B. Garz´on, A. Lebedev, A. Wåhlin, O. Tarassova, M. Ekblom, M. L¨ovd´en, Immediate effects of a single session of physical exercise on cognition and cerebral blood flow: a randomized controlled study of older adults, Neuroimage 225 (2021), 117500, https://doi.org/10.1016/j. neuroimage.2020.117500.J. Won, A. Alfini, L. Weiss, D. Callow, C. Smith, Brain activation during executive control after acute exercise in older adults, Int. J. Psychophysiol. 146 (2019) 240–248, https://doi.org/10.1016/j.ijpsycho.2019.10.002.J. Chmura, K. Nazar, H. Kaciuba-Uscilko, Choice reaction time during graded exercise in relation to blood lactate and plasma catecholamine thresholds, Int. J. Sports Med. 15 (1994) 172–176, https://doi.org/10.1055/S-2007-1021042/BIB.J.S. Lee, H.Y. Shin, H.J. Kim, Y.K. Jang, N.-.Y. Jung, J. Lee, Y.J. Kim, P. Chun, J.-. J. Yang, J.-.M. Lee, M. Kang, K.-.C. Park, D.L. Na, S.W. Seo, Combined effects of physical exercise and education on age-related cortical thinning in cognitively normal individuals, Sci. Rep. 6 (2016) 24284, https://doi.org/10.1038/srep24284.F.S. Stigger, M.A. Zago Marcolino, K.M. Portela, R.D.M. Plentz, Effects of exercise on inflammatory, oxidative, and neurotrophic biomarkers on cognitively impaired individuals diagnosed with dementia or mild cognitive impairment: a systematic review and meta-analysis, J. Gerontol. Ser. A. 74 (2019) 616–624, https://doi.org/ 10.1093/gerona/gly173.C. Coetsee, E. Terblanche, The effect of three different exercise training modalities on cognitive and physical function in a healthy older population, Eur. Rev. Aging Phys. Act. 14 (2017) 1–10, https://doi.org/10.1186/s11556-017-0183-5.L. Shapiro, S. Spaulding, Embodied Cognition and Sport, in: M. Cappucio (Ed.), Hanb. Emodied Cogn. Sport Psychol., MIT Press, London, 2019: pp. 3–22.M. Schmidt, M. Mavilidi, A. Singh, C. Englert, Combining physical and cognitive training to improve kindergarten children’s executive functions: a cluster randomized controlled trial, Contemp. Educ. Psychol. 63 (2020), 101908, https:// doi.org/10.1016/j.cedpsych.2020.101908.M. Schmidt, V. Benzing, A.R. Wallman-jones, M. Mavilidi, D. Lubans, F. Paas, Embodied learning in the classroom: effects on primary school children’s attention and foreign language vocabulary learning, Psychol. Sport Exerc. (2019), https:// doi.org/10.1016/j.psychsport.2018.12.017L.M. Vecchio, Y. Meng, K. Xhima, N. Lipsman, C. Hamani, I. Aubert, The neuroprotective effects of exercise: maintaining a healthy brain throughout aging, Brain Plast. 4 (2018) 17–52, https://doi.org/10.3233/bpl-180069.A. Tyndall, C. Clark, T. Anderson, D. Hogan, M. Hill, R. Longman, M. Poulin, Protective effects of exercise on cognition and brain health in older adults, Exerc. Sport Sci. Rev. 46 (2018) 215–223, https://doi.org/10.1249/ JES.0000000000000161Neurociencia cognitivaPsicología del ejercicioFunciones ejecutivasEjercicio físicoRendimiento cognitivoCognitive neuroscienceExercise psychologyExecutive functionsPhysical exerciseCognitive performanceEffect of acute physical exercise on inhibitory control in young adults: High-intensity indoor cycling sessionArtículos Científicosinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/articleAtribución – No comercial – Sin Derivarinfo:eu-repo/semantics/closedAccesshttp://purl.org/coar/access_right/c_14cbPublicationLICENSElicense.txtlicense.txttext/plain; charset=utf-84334https://repository.ucc.edu.co/bitstreams/110d4a8c-f8b5-4c8e-beff-abdbdcb9114a/download3bce4f7ab09dfc588f126e1e36e98a45MD5120.500.12494/52430oai:repository.ucc.edu.co:20.500.12494/524302024-08-10 09:35:39.193metadata.onlyhttps://repository.ucc.edu.coRepositorio Institucional Universidad Cooperativa de Colombiabdigital@metabiblioteca.comVU5JVkVSU0lEQUQgQ09PUEVSQVRJVkEgREUgQ09MT01CSUEKUkVQT1NJVE9SSU9TIElOU1RJVFVDSU9OQUxFUwpMSUNFTkNJQSBERSBVU08KClBvciBtZWRpbyBkZWwgcHJlc2VudGUgZG9jdW1lbnRvLCBlbCBBdXRvcihlcyksIG1heW9yIChlcykgZGUgZWRhZCwgcXVpZW4gZW4gYWRlbGFudGUgc2UgZGVub21pbmFyw6EgZWwgQVVUT1IsIGNvbmZpZXJlIGEgbGEgVU5JVkVSU0lEQUQgQ09PUEVSQVRJVkEgREUgQ09MT01CSUEsIGNvbiBOSVQuIDg2MC0wMjk5MjQtNywgdW5hIExJQ0VOQ0lBIERFIFVTTyBkZSBvYnJhLCBiYWpvIGxhcyBzaWd1aWVudGVzIGNvbmRpY2lvbmVzLgoKQ0zDgVVTVUxBUwoKUFJJTUVSQS4gT2JqZXRvLiBFTCBBVVRPUiBwb3IgZXN0ZSBhY3RvIGF1dG9yaXphIGxhIHV0aWxpemFjacOzbiBkZSBsYSBvYnJhLCBkZSBjb25mb3JtaWRhZCBjb24gbG8gZXN0aXB1bGFkbyBhIGNvbnRpbnVhY2nDs246IAoKKGEpIFBhcmEgZWZlY3RvcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSBzZSBhdXRvcml6YSBsYSByZXByb2R1Y2Npw7NuIGRlIGxhIG9icmEgYW50ZXJpb3JtZW50ZSBjaXRhZGEsIGxhIGN1YWwgc2UgYWxvamFyw6EgZW4gZm9ybWF0byBkaWdpdGFsIGVuIGxhcyBwbGF0YWZvcm1hcyBvIHJlcG9zaXRvcmlvcyBhZG1pbmlzdHJhZG9zIHBvciBsYSBVTklWRVJTSURBRCBvIGVuIG90cm8gdGlwbyBkZSByZXBvc2l0b3Jpb3MgZXh0ZXJub3MgbyBww6FnaW5hcyB3ZWIgZXNjb2dpZG9zIHBvciBsYSBVTklWRVJTSURBRCwgcGFyYSBmaW5lcyBkZSBkaWZ1c2nDs24geSBkaXZ1bGdhY2nDs24uIEFkaWNpb25hbG1lbnRlLCBzZSBhdXRvcml6YSBhIHF1ZSBsb3MgdXN1YXJpb3MgaW50ZXJub3MgeSBleHRlcm5vcyBkZSBkaWNoYXMgcGxhdGFmb3JtYXMgbyByZXBvc2l0b3Jpb3MgcmVwcm9kdXpjYW4gbyBkZXNjYXJndWVuIGxhIG9icmEsIHNpbiDDoW5pbW8gZGUgbHVjcm8sIHBhcmEgZmluZXMgcHJpdmFkb3MsIGVkdWNhdGl2b3MgbyBhY2Fkw6ltaWNvczsgc2llbXByZSB5IGN1YW5kbyBubyBzZSB2aW9sZW4gYWN1ZXJkb3MgY29uIGVkaXRvcmVzLCBwZXJpb2RvcyBkZSBlbWJhcmdvIG8gYWN1ZXJkb3MgZGUgY29uZmlkZW5jaWFsaWRhZCBxdWUgYXBsaXF1ZW4uCgooYikgU2UgYXV0b3JpemEgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBkZSBsYSBvYnJhIG1lbmNpb25hZGEsIGVuIGFjY2VzbyBhYmllcnRvLCBwYXJhIHN1IHV0aWxpemFjacOzbiBlbiBsYXMgcGxhdGFmb3JtYXMgbyByZXBvc2l0b3Jpb3MgYWRtaW5pc3RyYWRvcyBwb3IgbGEgVU5JVkVSU0lEQUQuCgooYykgTG8gYW50ZXJpb3IgZXN0YXLDoSBzdWpldG8gYSBsYXMgZGVmaW5pY2lvbmVzIGNvbnRlbmlkYXMgZW4gbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MyB5IGxhIExleSAyMyBkZSAxOTgyLgoKClNFR1VOREEuIE9yaWdpbmFsaWRhZCB5IHJlY2xhbWFjaW9uZXMuIEVsIEFVVE9SIGRlY2xhcmEgcXVlIGxhIE9CUkEgZXMgb3JpZ2luYWwgeSBxdWUgZXMgZGUgc3UgY3JlYWNpw7NuIGV4Y2x1c2l2YSwgbm8gZXhpc3RpZW5kbyBpbXBlZGltZW50byBkZSBjdWFscXVpZXIgbmF0dXJhbGV6YSAoZW1iYXJnb3MsIHVzbyBkZSBtYXRlcmlhbCBwcm90ZWdpZG8gcG9yIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGxhIGNvbmNlc2nDs24gZGUgbG9zIGRlcmVjaG9zIHByZXZpc3RvcyBlbiBlc3RlIGFjdWVyZG8uIEVsIEFVVE9SIHJlc3BvbmRlcsOhIHBvciBjdWFscXVpZXIgYWNjacOzbiBkZSByZWl2aW5kaWNhY2nDs24sIHBsYWdpbyB1IG90cmEgY2xhc2UgZGUgcmVjbGFtYWNpw7NuIHF1ZSBhbCByZXNwZWN0byBwdWRpZXJhIHNvYnJldmVuaXIuCgpURVJDRVJBLiBDb250cmFwcmVzdGFjacOzbi4gRWwgQVVUT1IgYXV0b3JpemEgYSBxdWUgc3Ugb2JyYSBzZWEgdXRpbGl6YWRhIGRlIGNvbmZvcm1pZGFkIGNvbiBsYSBjbMOhdXN1bGEgUFJJTUVSQSBkZSBmb3JtYSBncmF0dWl0YSwgZXMgZGVjaXIsIHF1ZSBsYSB1dGlsaXphY2nDs24gZGUgbGEgbWlzbWEgbm8gZ2VuZXJhIG5pbmfDum4gcGFnbyBvIHJlZ2Fsw61hcyBlbiBmYXZvciBkZSBlc3RlLgoKQ1VBUlRBLiBUaXR1bGFyaWRhZCBkZSBkZXJlY2hvcy4gRWwgcHJlc2VudGUgY29udHJhdG8gbm8gdHJhbnNmaWVyZSBsYSB0aXR1bGFyaWRhZCBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBzb2JyZSBsYXMgb2JyYXMgYW50ZXJpb3JtZW50ZSBtZW5jaW9uYWRhcyBhIGxhIFVOSVZFUlNJREFELiDDmm5pY2FtZW50ZSBoYWNlIHJlbGFjacOzbiBhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgZW4gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGFudGVyaW9ybWVudGUgcGFjdGFkb3MuCgpRVUlOVEEuIENyw6lkaXRvcy4gTGEgVU5JVkVSU0lEQUQgc2UgY29tcHJvbWV0ZSBhIGRhciBhbCBBVVRPUiwgZWwgcmVjb25vY2ltaWVudG8gZGVudHJvIGNhZGEgZm9ybWEgZGUgdXRpbGl6YWNpw7NuIGVuIGxhIG9icmEuIExvcyBjcsOpZGl0b3MgZGViZW4gZmlndXJhciBlbiBjYWRhIHVubyBkZSBsb3MgZm9ybWF0b3MgbyByZWdpc3Ryb3MgZGUgcHVibGljYWNpw7NuLiBObyBjb25zdGl0dWlyw6EgdW5hIHZpb2xhY2nDs24gYSBsb3MgZGVyZWNob3MgbW9yYWxlcyBkZWwgYXV0b3IgbGEgbm8gcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBvIGRlbcOhcyB1dGlsaXphY2lvbmVzIGRlIGxhIG9icmEuIExhIHV0aWxpemFjacOzbiBvIG5vIGRlIGxhIG9icmEsIGFzw60gY29tbyBzdSBmb3JtYSBkZSB1dGlsaXphY2nDs24gc2Vyw6EgZmFjdWx0YWQgZXhjbHVzaXZhIGRlIGxhIFVOSVZFUlNJREFELgogClNFWFRBLiBEdXJhY2nDs24geSB0ZXJyaXRvcmlvLiBMYSBwcmVzZW50ZSBsaWNlbmNpYSBkZSB1c28gcXVlIHNlIG90b3JnYSBhIGZhdm9yIGRlIGxhIFVOSVZFUlNJREFEIHRlbmRyw6EgdW5hIGR1cmFjacOzbiBlcXVpdmFsZW50ZSBhbCB0w6lybWlubyBkZSBwcm90ZWNjacOzbiBsZWdhbCBkZSBsYSBvYnJhIHkgcGFyYSB0b2RvcyBsb3MgcGHDrXNlcyBkZWwgbXVuZG8uCgpTw4lQVElNQS4gVXNvIGRlIENyZWF0aXZlIENvbW1vbnMuIEVsIEFVVE9SIGF1dG9yaXphcsOhIGxhIGRpZnVzacOzbiBkZSBzdSBjb250ZW5pZG8gYmFqbyB1bmEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBhdHJpYnVjacOzbiA0LjAgaW50ZXJuYWNpb25hbCwgcXVlIGRlYmVyw6EgaW5jbHVpcnNlIGVuIGVsIGNvbnRlbmlkby4gCgpPQ1RBVkEuIERlcmVjaG8gZGUgZXhjbHVzacOzbi4gQ2FkYSBhdXRvciBwdWVkZSBpbmRpY2FyIGVuIGVsIG1vbWVudG8gZGUgZGVww7NzaXRvIGRlbCBjb250ZW5pZG8gcXVlIGVsIHRleHRvIGNvbXBsZXRvIGRlIGxhIHByb2R1Y2Npw7NuIGFjYWTDqW1pY2EgbyBjaWVudMOtZmljYSBubyBlc3RlIGNvbiBhY2Nlc28gYWJpZXJ0byBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIHBvciBtb3Rpdm9zIGRlIGNvbmZpZGVuY2lhbGlkYWQsIHBvcnF1ZSBzZSBlbmN1ZW50cmUgZW4gdsOtYXMgZGUgb2J0ZW5lciB1biBkZXJlY2hvIGRlIHByb3BpZWRhZCBpbmR1c3RyaWFsIG8gZXhpc3RpciBhY3VlcmRvcyBwcmV2aW9zIGNvbiB0ZXJjZXJvcyAoZWRpdG9yaWFsZXMsIHJldmlzdGFzIGNpZW50w61maWNhcywgb3RyYXMgaW5zdGl0dWNpb25lcykuIEVsIGF1dG9yIHNlIGNvbXByb21ldGUgYSBkZXBvc2l0YXIgbG9zIG1ldGFkYXRvcyBlIGluZm9ybWFyIGVsIHRpZW1wbyBkZSBlbWJhcmdvIGR1cmFudGUgZWwgY3VhbCBlbCB0ZXh0byBjb21wbGV0byB0ZW5kcsOhIGFjY2VzbyByZXN0cmluZ2lkby4gCgpOT1ZFTkEuIEVsIEFVVE9SIGFsIGFjZXB0YXIgZXN0YSBsaWNlbmNpYSBhZHVjZSBxdWUgZXN0YSBwcm9kdWNjacOzbiBzZSBkZXNhcnJvbGzDsyBlbiBlbCBwZXJpb2RvIGVuIHF1ZSBzZSBlbmN1ZW50cmEgY29uIHbDrW5jdWxvcyBjb24gTGEgVW5pdmVyc2lkYWQuCgpEw4lDSU1BLiBOb3JtYXMgYXBsaWNhYmxlcy4gUGFyYSBsYSBpbnRlcnByZXRhY2nDs24geSBjdW1wbGltaWVudG8gZGVsIHByZXNlbnRlIGFjdWVyZG8gbGFzIHBhcnRlcyBzZSBzb21ldGVuIGEgbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgbGEgTGV5IDIzIGRlIDE5ODIgeSBkZW3DoXMgbm9ybWFzIGFwbGljYWJsZXMgZGUgQ29sb21iaWEuIEFkZW3DoXMsIGEgbGFzIG5vcm1hcyBJbnN0aXR1Y2lvbmFsZXMgcXVlIGFwbGlxdWVuLgoKTGEgcHJlc2VudGUgbGljZW5jaWEgc2UgYXV0b3JpemEgZW4gbGEgZmVjaGEgZGUgcHVibGljYWNpw7NuIGVuIGxvcyByZXBvc2l0b3Jpb3MgaW5zdGl0dWNpb25hbGVzLgo= |