Numerical study using finite element method for the thermal response of fiber specklegram sensors with changes in the length of the sensing zone
La respuesta de los sensores de fibra de specklegram (FSS) se da en función de las variaciones en la distribución de la intensidad del patrón de interferencia modal o patrón de moteado inducido por perturbaciones externas. En el presente trabajo se estudia el comportamiento de un esquema de detecció...
- Autores:
-
Universidad Cooperativa de Colombia
Velez Hoyos, Francisco Javier
Aristizabal Tique, Víctor Hugo
Arango, Juan David
Gomez, jorge Alberto
Quijano, Jairo Camilo
Herrera-Ramirez, Jorge
- Tipo de recurso:
- Article of investigation
- Fecha de publicación:
- 2021
- Institución:
- Universidad Cooperativa de Colombia
- Repositorio:
- Repositorio UCC
- Idioma:
- OAI Identifier:
- oai:repository.ucc.edu.co:20.500.12494/46345
- Acceso en línea:
- https://hdl.handle.net/20.500.12494/46345
- Palabra clave:
- sensores de fibra óptica, métodos electromagnéticos computacionales, aproximación numérica y análisis, detección y sensores ópticos, interferometría de Speckle.
fiber optics sensors, computational electromagnetic methods, numerical approximation and analysis, optical sensing and sensors, speckle interferometry.
- Rights
- openAccess
- License
- Atribución
id |
COOPER2_f1302db617ec811ae3f378ffe58bff7b |
---|---|
oai_identifier_str |
oai:repository.ucc.edu.co:20.500.12494/46345 |
network_acronym_str |
COOPER2 |
network_name_str |
Repositorio UCC |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Numerical study using finite element method for the thermal response of fiber specklegram sensors with changes in the length of the sensing zone |
title |
Numerical study using finite element method for the thermal response of fiber specklegram sensors with changes in the length of the sensing zone |
spellingShingle |
Numerical study using finite element method for the thermal response of fiber specklegram sensors with changes in the length of the sensing zone sensores de fibra óptica, métodos electromagnéticos computacionales, aproximación numérica y análisis, detección y sensores ópticos, interferometría de Speckle. fiber optics sensors, computational electromagnetic methods, numerical approximation and analysis, optical sensing and sensors, speckle interferometry. |
title_short |
Numerical study using finite element method for the thermal response of fiber specklegram sensors with changes in the length of the sensing zone |
title_full |
Numerical study using finite element method for the thermal response of fiber specklegram sensors with changes in the length of the sensing zone |
title_fullStr |
Numerical study using finite element method for the thermal response of fiber specklegram sensors with changes in the length of the sensing zone |
title_full_unstemmed |
Numerical study using finite element method for the thermal response of fiber specklegram sensors with changes in the length of the sensing zone |
title_sort |
Numerical study using finite element method for the thermal response of fiber specklegram sensors with changes in the length of the sensing zone |
dc.creator.fl_str_mv |
Universidad Cooperativa de Colombia Velez Hoyos, Francisco Javier Aristizabal Tique, Víctor Hugo Arango, Juan David Gomez, jorge Alberto Quijano, Jairo Camilo Herrera-Ramirez, Jorge |
dc.contributor.author.none.fl_str_mv |
Universidad Cooperativa de Colombia Velez Hoyos, Francisco Javier Aristizabal Tique, Víctor Hugo Arango, Juan David Gomez, jorge Alberto Quijano, Jairo Camilo Herrera-Ramirez, Jorge |
dc.subject.spa.fl_str_mv |
sensores de fibra óptica, métodos electromagnéticos computacionales, aproximación numérica y análisis, detección y sensores ópticos, interferometría de Speckle. |
topic |
sensores de fibra óptica, métodos electromagnéticos computacionales, aproximación numérica y análisis, detección y sensores ópticos, interferometría de Speckle. fiber optics sensors, computational electromagnetic methods, numerical approximation and analysis, optical sensing and sensors, speckle interferometry. |
dc.subject.other.spa.fl_str_mv |
fiber optics sensors, computational electromagnetic methods, numerical approximation and analysis, optical sensing and sensors, speckle interferometry. |
description |
La respuesta de los sensores de fibra de specklegram (FSS) se da en función de las variaciones en la distribución de la intensidad del patrón de interferencia modal o patrón de moteado inducido por perturbaciones externas. En el presente trabajo se estudia el comportamiento de un esquema de detección FSS bajo perturbaciones térmicas. Se estudia mediante simulaciones computacionales de los patrones de moteado. Estas simulaciones son generadas aplicando el método de elementos finitos (MEF) a la interferencia modal en fibras ópticas en función de la perturbación térmica y de la longitud de la zona de detección. Un análisis de correlación se realiza un análisis de correlación de las imágenes generadas en las simulaciones para evaluar la dependencia entre los cambios en los granos del patrón de manchas y la intensidad de la perturbación aplicada. La simulación numérica La simulación numérica muestra cómo la característica de construcción de la longitud de la zona de detección, combinada con el de la imagen, puede manipularse para controlar el rendimiento metrológico de los sensores |
publishDate |
2021 |
dc.date.issued.none.fl_str_mv |
2021-07-01 |
dc.date.accessioned.none.fl_str_mv |
2022-09-12T16:50:20Z |
dc.date.available.none.fl_str_mv |
2022-09-12T16:50:20Z |
dc.type.none.fl_str_mv |
Artículos Científicos |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coarversion.none.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.none.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
http://purl.org/coar/resource_type/c_2df8fbb1 |
status_str |
publishedVersion |
dc.identifier.issn.spa.fl_str_mv |
01342452 |
dc.identifier.uri.spa.fl_str_mv |
10.18287/2412-6179-CO-852 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12494/46345 |
dc.identifier.bibliographicCitation.spa.fl_str_mv |
Arango Moreno, Juan David & Vélez, Y & Aristizabal, Victor & Velez, Francisco & Alberto, Gómez & Quijano, Jairo & Herrera Ramirez, Jorge. (2021). Numerical study using finite element method for the thermal response of fiber specklegram sensors with changes in the length of the sensing zone. Computer Optics. 45. 534-540. 10.18287/2412-6179-CO-852. |
identifier_str_mv |
01342452 10.18287/2412-6179-CO-852 Arango Moreno, Juan David & Vélez, Y & Aristizabal, Victor & Velez, Francisco & Alberto, Gómez & Quijano, Jairo & Herrera Ramirez, Jorge. (2021). Numerical study using finite element method for the thermal response of fiber specklegram sensors with changes in the length of the sensing zone. Computer Optics. 45. 534-540. 10.18287/2412-6179-CO-852. |
url |
https://hdl.handle.net/20.500.12494/46345 |
dc.relation.ispartofjournal.spa.fl_str_mv |
Computer Optics |
dc.relation.references.spa.fl_str_mv |
[1] Campanella CE, Cuccovillo A, Campanella C, Yurt A, Passaro VMN. Fibre Bragg Grating based strain sensors: Review of technology and applications. Sensors 2018; 18(9): 3115. DOI: 10.3390/s18093115.[2] Gómez JA, Salazar Á. Self-correlation fiber specklegram sensor using volume characteristics of speckle patterns. Opt Lasers Eng 2012; 50(5): 812-815. DOI: 10.1016/j.optlaseng.2012.01.002. [3] Goodman JW. Speckle phenomena in optics: Theory and applications. 2nd ed. Bellingham: SPIE Press; 2020. [4] Leal-Junior AG, Frizera A, Marques C, Pontes MJ. Optical fiber specklegram sensors for mechanical measurements: A review. IEEE Sens J 2020; 20(2): 569-576. DOI: 10.1109/JSEN.2019.2944906. [5] Wu S, Yin S, Yu FTS. Sensing with fiber specklegrams. Appl Opt 1991; 30(31): 4468-4470. DOI: 10.1364/AO.30.004468. [6] Efendioglu HS. A review of fiber-optic modal modulated sensors: Specklegram and modal power distribution sensing. IEEE Sens J 2017; 17(7): 2055-2064. DOI: 10.1109/JSEN.2017.2658683. [7] Cabral TD, Fujiwara E, Warren-Smith SC, Ebendorff- Heidepriem H, Cordeiro CMB. Multimode exposed core fiber specklegram sensor. Opt Lett 2020; 45(12): 3212- 3215. DOI: 10.1364/OL.391812. [8] Qian S, Xu Y, Zhong L, Su L. Investigation on sensitivity enhancement for optical fiber speckle sensors. Opt Express 2016; 24(10): 10829-10840. DOI: 10.1364/OE.24.010829. [9] Wu P, Zhu S, Hong M, Chen F, Liu H. Specklegram temperature sensor based on femtosecond laser inscribed depressed cladding waveguides in Nd:YAG crystal. Opt Laser Technol 2019; 113: 11-14. DOI: 10.1016/j.optlastec.2018.12.004. [10] Castaño LF, Gutiérrez LC, Quijano JC, Herrera-Ramírez JA, Hoyos A, Vélez FJ, et al. Temperature measurement by means of fiber specklegram sensors (FSS). Opt Pura y Apl 2018; 51(3): 1-7. DOI: 10.7149/OPA.51.3.50306. [11] Feng F, Chen W, Chen D, Lin W, Chen SC. In-situ ultrasensitive label-free DNA hybridization detection using optical fiber specklegram. Sensors Actuators, B Chem 2018; 272: 160-165. DOI: 10.1016/j.snb.2018.05.099. [12] Gåsvik KJ. Optical metrology. Chichester: John Wiley and Sons Ltd; 2002. ISBN: 0-470-84300-4. [13] Hoyos A, Gómez ND, Gómez JA. Fiber specklegram sensors (FSS) for measuring high frequency mechanical perturbations. Proc SPIE 2013; 8785: 8785BH. DOI: 10.1117/12.2026075. [14] Fujiwara E, Da Silva LE, Cabral TD, De Freitas HE, Wu YT, Cordeiro CMDB. Optical fiber specklegram chemical sensor based on a concatenated multimode fiber structure. J Light Technol 2019; 37(19): 5041-5047. DOI: 10.1109/JLT.2019.2927332. [15] Aristizabal VH, Hoyos A, Rueda E, Gomez ND, Gomez JA. Effect of wavelength on metrological characteristics of nonholographic fiber specklegram sensor. Photonic Sensors 2015; 5(1): 1-5. DOI: 10.1007/s13320-014-0210-3. [16] Zhang Z, Ansari F. Fiber-optic laser speckle-intensity crack sensor for embedment in concrete. Sensors Actuators A Phys 2006; 126(1): 107-111. DOI: 10.1016/j.sna.2005.10.002. [17] Darío Gómez N, Gómez JA. Effects of the speckle size on non-holographic fiber specklegram sensors. Opt Lasers Eng 2013; 51(11): 1291-1295. DOI: 10.1016/j.optlaseng.2013.05.007. |
dc.rights.license.none.fl_str_mv |
Atribución |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.none.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Atribución http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
534-540 |
dc.coverage.temporal.spa.fl_str_mv |
45(4) |
dc.publisher.spa.fl_str_mv |
Universidad Cooperativa de Colombia sede Medellín, Facultad de Ingeniería Institution of Russian Academy of Sciences, Image Processing Systems Institute of RAS |
dc.publisher.program.spa.fl_str_mv |
Ingeniería Civil |
dc.publisher.place.spa.fl_str_mv |
Medellín |
institution |
Universidad Cooperativa de Colombia |
bitstream.url.fl_str_mv |
https://repository.ucc.edu.co/bitstreams/34d6b81e-5714-4513-ba30-201f7284d290/download https://repository.ucc.edu.co/bitstreams/73ec6a43-8ef6-4972-aea1-363f0fb8b271/download https://repository.ucc.edu.co/bitstreams/dfebabf9-b87a-429b-a9af-fe345eed9db3/download https://repository.ucc.edu.co/bitstreams/e0198ec0-081e-4b8f-91b2-af755bf3695f/download |
bitstream.checksum.fl_str_mv |
5a27209708a9c43267b75df9c5239941 8a4605be74aa9ea9d79846c1fba20a33 8891f58915acd10ff956ec7bf6df1cf9 1ca67204c1df5c09053d66513f78cc33 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Cooperativa de Colombia |
repository.mail.fl_str_mv |
bdigital@metabiblioteca.com |
_version_ |
1811565641384067072 |
spelling |
Universidad Cooperativa de ColombiaVelez Hoyos, Francisco JavierAristizabal Tique, Víctor HugoArango, Juan DavidGomez, jorge AlbertoQuijano, Jairo CamiloHerrera-Ramirez, Jorge45(4)2022-09-12T16:50:20Z2022-09-12T16:50:20Z2021-07-010134245210.18287/2412-6179-CO-852https://hdl.handle.net/20.500.12494/46345Arango Moreno, Juan David & Vélez, Y & Aristizabal, Victor & Velez, Francisco & Alberto, Gómez & Quijano, Jairo & Herrera Ramirez, Jorge. (2021). Numerical study using finite element method for the thermal response of fiber specklegram sensors with changes in the length of the sensing zone. Computer Optics. 45. 534-540. 10.18287/2412-6179-CO-852.La respuesta de los sensores de fibra de specklegram (FSS) se da en función de las variaciones en la distribución de la intensidad del patrón de interferencia modal o patrón de moteado inducido por perturbaciones externas. En el presente trabajo se estudia el comportamiento de un esquema de detección FSS bajo perturbaciones térmicas. Se estudia mediante simulaciones computacionales de los patrones de moteado. Estas simulaciones son generadas aplicando el método de elementos finitos (MEF) a la interferencia modal en fibras ópticas en función de la perturbación térmica y de la longitud de la zona de detección. Un análisis de correlación se realiza un análisis de correlación de las imágenes generadas en las simulaciones para evaluar la dependencia entre los cambios en los granos del patrón de manchas y la intensidad de la perturbación aplicada. La simulación numérica La simulación numérica muestra cómo la característica de construcción de la longitud de la zona de detección, combinada con el de la imagen, puede manipularse para controlar el rendimiento metrológico de los sensoresThe response of fiber specklegram sensors (FSSs) is given as function of variations in the intensity distribution of the modal interference pattern or speckle pattern induced by external disturbances. In the present work, the behavior of a FSS sensing scheme under thermal perturbations is studied by means of computational simulations of the speckle patterns. These simulations are generated by applying the finite element method (FEM) to the modal interference in optical fibers as a function of the thermal disturbance and the length of the sensing zone. A correlation analysis is per-formed on the images generated in the simulations to evaluate the dependence between the changes in the speckle pattern grains and the intensity of the applied disturbance. The numerical simulation shows how the building characteristic of the length of sensing zone, combined with image processing, can be manipulated to control the metrological performance of the sensorsIntroduction, 1. Thermal disturbances representation, 2. Finite Element Method for numerical calculations of propagation modes, 3. Analysis of specklegrams, 4. Simulated system, 5. Specklegram analysis and sensor response, 6. Selection of region of interest (ROI), Conclusionshttps://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000448222https://orcid.org/0000-0002-4267-042Xhttps://scienti.minciencias.gov.co/gruplac/jsp/visualiza/visualizagr.jsp?nro=00000000005961francisco.velezh@campusucc.edu.covictor.aristizabalt@campusucc.edu.cohttps://scholar.google.com/citations?user=CLkAM5AAAAAJ&hl=es534-540Universidad Cooperativa de Colombia sede Medellín, Facultad de IngenieríaInstitution of Russian Academy of Sciences, Image Processing Systems Institute of RASIngeniería CivilMedellínsensores de fibra óptica, métodos electromagnéticos computacionales, aproximación numérica y análisis, detección y sensores ópticos, interferometría de Speckle.fiber optics sensors, computational electromagnetic methods, numerical approximation and analysis, optical sensing and sensors, speckle interferometry.Numerical study using finite element method for the thermal response of fiber specklegram sensors with changes in the length of the sensing zoneArtículos Científicoshttp://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionAtribucióninfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Computer Optics[1] Campanella CE, Cuccovillo A, Campanella C, Yurt A, Passaro VMN. Fibre Bragg Grating based strain sensors: Review of technology and applications. Sensors 2018; 18(9): 3115. DOI: 10.3390/s18093115.[2] Gómez JA, Salazar Á. Self-correlation fiber specklegram sensor using volume characteristics of speckle patterns. Opt Lasers Eng 2012; 50(5): 812-815. DOI: 10.1016/j.optlaseng.2012.01.002. [3] Goodman JW. Speckle phenomena in optics: Theory and applications. 2nd ed. Bellingham: SPIE Press; 2020. [4] Leal-Junior AG, Frizera A, Marques C, Pontes MJ. Optical fiber specklegram sensors for mechanical measurements: A review. IEEE Sens J 2020; 20(2): 569-576. DOI: 10.1109/JSEN.2019.2944906. [5] Wu S, Yin S, Yu FTS. Sensing with fiber specklegrams. Appl Opt 1991; 30(31): 4468-4470. DOI: 10.1364/AO.30.004468. [6] Efendioglu HS. A review of fiber-optic modal modulated sensors: Specklegram and modal power distribution sensing. IEEE Sens J 2017; 17(7): 2055-2064. DOI: 10.1109/JSEN.2017.2658683. [7] Cabral TD, Fujiwara E, Warren-Smith SC, Ebendorff- Heidepriem H, Cordeiro CMB. Multimode exposed core fiber specklegram sensor. Opt Lett 2020; 45(12): 3212- 3215. DOI: 10.1364/OL.391812. [8] Qian S, Xu Y, Zhong L, Su L. Investigation on sensitivity enhancement for optical fiber speckle sensors. Opt Express 2016; 24(10): 10829-10840. DOI: 10.1364/OE.24.010829. [9] Wu P, Zhu S, Hong M, Chen F, Liu H. Specklegram temperature sensor based on femtosecond laser inscribed depressed cladding waveguides in Nd:YAG crystal. Opt Laser Technol 2019; 113: 11-14. DOI: 10.1016/j.optlastec.2018.12.004. [10] Castaño LF, Gutiérrez LC, Quijano JC, Herrera-Ramírez JA, Hoyos A, Vélez FJ, et al. Temperature measurement by means of fiber specklegram sensors (FSS). Opt Pura y Apl 2018; 51(3): 1-7. DOI: 10.7149/OPA.51.3.50306. [11] Feng F, Chen W, Chen D, Lin W, Chen SC. In-situ ultrasensitive label-free DNA hybridization detection using optical fiber specklegram. Sensors Actuators, B Chem 2018; 272: 160-165. DOI: 10.1016/j.snb.2018.05.099. [12] Gåsvik KJ. Optical metrology. Chichester: John Wiley and Sons Ltd; 2002. ISBN: 0-470-84300-4. [13] Hoyos A, Gómez ND, Gómez JA. Fiber specklegram sensors (FSS) for measuring high frequency mechanical perturbations. Proc SPIE 2013; 8785: 8785BH. DOI: 10.1117/12.2026075. [14] Fujiwara E, Da Silva LE, Cabral TD, De Freitas HE, Wu YT, Cordeiro CMDB. Optical fiber specklegram chemical sensor based on a concatenated multimode fiber structure. J Light Technol 2019; 37(19): 5041-5047. DOI: 10.1109/JLT.2019.2927332. [15] Aristizabal VH, Hoyos A, Rueda E, Gomez ND, Gomez JA. Effect of wavelength on metrological characteristics of nonholographic fiber specklegram sensor. Photonic Sensors 2015; 5(1): 1-5. DOI: 10.1007/s13320-014-0210-3. [16] Zhang Z, Ansari F. Fiber-optic laser speckle-intensity crack sensor for embedment in concrete. Sensors Actuators A Phys 2006; 126(1): 107-111. DOI: 10.1016/j.sna.2005.10.002. [17] Darío Gómez N, Gómez JA. Effects of the speckle size on non-holographic fiber specklegram sensors. Opt Lasers Eng 2013; 51(11): 1291-1295. DOI: 10.1016/j.optlaseng.2013.05.007.PublicationORIGINAL2021-ART_Numerical study using Finite Element Method.pdf2021-ART_Numerical study using Finite Element Method.pdfapplication/pdf1109470https://repository.ucc.edu.co/bitstreams/34d6b81e-5714-4513-ba30-201f7284d290/download5a27209708a9c43267b75df9c5239941MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repository.ucc.edu.co/bitstreams/73ec6a43-8ef6-4972-aea1-363f0fb8b271/download8a4605be74aa9ea9d79846c1fba20a33MD52THUMBNAIL2021-ART_Numerical study using Finite Element Method.pdf.jpg2021-ART_Numerical study using Finite Element Method.pdf.jpgGenerated Thumbnailimage/jpeg5964https://repository.ucc.edu.co/bitstreams/dfebabf9-b87a-429b-a9af-fe345eed9db3/download8891f58915acd10ff956ec7bf6df1cf9MD53TEXT2021-ART_Numerical study using Finite Element Method.pdf.txt2021-ART_Numerical study using Finite Element Method.pdf.txtExtracted texttext/plain31966https://repository.ucc.edu.co/bitstreams/e0198ec0-081e-4b8f-91b2-af755bf3695f/download1ca67204c1df5c09053d66513f78cc33MD5420.500.12494/46345oai:repository.ucc.edu.co:20.500.12494/463452024-08-20 16:24:11.854open.accesshttps://repository.ucc.edu.coRepositorio Institucional Universidad Cooperativa de Colombiabdigital@metabiblioteca.comTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |