Assessment of endocrine disruptor effects of levonorgestrel and itsphotoproducts: Environmental implications of released fractions after theirphotocatalytic removal

The presence of levonorgestrel (LNG) in water bodies via direct discharge and human excretion has been reported worldwide, but its effects on the reproduction of aquatic species and humans are still unknown. Owing to its recalcitrant properties, LNG is not completely removed during wastewater treatm...

Full description

Autores:
Narvaez, Jhon Fredy
Grant, Hannah
Correa, Vanesa
Porras López, Jazmín
Bueno Sánchez, Julio César
Ocampo Duque, Luz Fanny
Rios Sossa, Ramiro
Quintana Castillo, Juan Carlos
Tipo de recurso:
Article of journal
Fecha de publicación:
2019
Institución:
Universidad Cooperativa de Colombia
Repositorio:
Repositorio UCC
Idioma:
OAI Identifier:
oai:repository.ucc.edu.co:20.500.12494/16453
Acceso en línea:
https://hdl.handle.net/20.500.12494/16453
Palabra clave:
Endocrine disruptor
Photocatalytic degradation
BeWo cell line
β-hCG hormone
Photocatalytic removal
Levonorgestrel
Rights
openAccess
License
Atribución
id COOPER2_f04de3f00b5b744934158cd1f36b948e
oai_identifier_str oai:repository.ucc.edu.co:20.500.12494/16453
network_acronym_str COOPER2
network_name_str Repositorio UCC
repository_id_str
dc.title.spa.fl_str_mv Assessment of endocrine disruptor effects of levonorgestrel and itsphotoproducts: Environmental implications of released fractions after theirphotocatalytic removal
title Assessment of endocrine disruptor effects of levonorgestrel and itsphotoproducts: Environmental implications of released fractions after theirphotocatalytic removal
spellingShingle Assessment of endocrine disruptor effects of levonorgestrel and itsphotoproducts: Environmental implications of released fractions after theirphotocatalytic removal
Endocrine disruptor
Photocatalytic degradation
BeWo cell line
β-hCG hormone
Photocatalytic removal
Levonorgestrel
title_short Assessment of endocrine disruptor effects of levonorgestrel and itsphotoproducts: Environmental implications of released fractions after theirphotocatalytic removal
title_full Assessment of endocrine disruptor effects of levonorgestrel and itsphotoproducts: Environmental implications of released fractions after theirphotocatalytic removal
title_fullStr Assessment of endocrine disruptor effects of levonorgestrel and itsphotoproducts: Environmental implications of released fractions after theirphotocatalytic removal
title_full_unstemmed Assessment of endocrine disruptor effects of levonorgestrel and itsphotoproducts: Environmental implications of released fractions after theirphotocatalytic removal
title_sort Assessment of endocrine disruptor effects of levonorgestrel and itsphotoproducts: Environmental implications of released fractions after theirphotocatalytic removal
dc.creator.fl_str_mv Narvaez, Jhon Fredy
Grant, Hannah
Correa, Vanesa
Porras López, Jazmín
Bueno Sánchez, Julio César
Ocampo Duque, Luz Fanny
Rios Sossa, Ramiro
Quintana Castillo, Juan Carlos
dc.contributor.author.none.fl_str_mv Narvaez, Jhon Fredy
Grant, Hannah
Correa, Vanesa
Porras López, Jazmín
Bueno Sánchez, Julio César
Ocampo Duque, Luz Fanny
Rios Sossa, Ramiro
Quintana Castillo, Juan Carlos
dc.subject.spa.fl_str_mv Endocrine disruptor
Photocatalytic degradation
BeWo cell line
β-hCG hormone
Photocatalytic removal
Levonorgestrel
topic Endocrine disruptor
Photocatalytic degradation
BeWo cell line
β-hCG hormone
Photocatalytic removal
Levonorgestrel
description The presence of levonorgestrel (LNG) in water bodies via direct discharge and human excretion has been reported worldwide, but its effects on the reproduction of aquatic species and humans are still unknown. Owing to its recalcitrant properties, LNG is not completely removed during wastewater treatment plants, and many species may be exposed to low traces of this compound from discharged effluents. Thus, in this study, a photocatalytic process for removing LNG along with screening of endocrine disruptor effects for risk assessment was applied. Although the removal rate of LNG by ultraviolet C (UV-C) radiation was>90%, reproductive toxicity testing using the BeWo cell line exposed to LNG and its degraded fraction showed the reduced production of basal human chorionic gonadotropin hormone (β-hCG) by more than 73%, from 8.90 mIU mL−1 to<2.39 mIU mL−1, with both LNG and the degraded fraction. β-hCG hormone has been implicated in the viability of trophoblastic cells during the first trimester of pregnancy; therefore, degraded fractions and waterborne LNG may affect reproduction in some aquatic species and humans with low level of exposure.
publishDate 2019
dc.date.issued.none.fl_str_mv 2019-02-27
dc.date.accessioned.none.fl_str_mv 2020-01-29T16:45:44Z
dc.date.available.none.fl_str_mv 2020-01-29T16:45:44Z
dc.type.none.fl_str_mv Artículo
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.coarversion.none.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.type.version.none.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.issn.spa.fl_str_mv 0304-3894
dc.identifier.uri.spa.fl_str_mv 10.1016/j.jhazmat.2019.02.095
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12494/16453
dc.identifier.bibliographicCitation.spa.fl_str_mv Narváez, J.F., Grant, H., Correa Gil, V., Porras, J., Bueno Sanchez, J.C., Fanny Ocampo Duque, L.F., Ríos Sossa, R. y Quintana-Castillo, J.C. (2019) Assessment of endocrine disruptor effects of levonorgestrel and its photoproducts: Environmental implications of released fractions after their photocatalytic removal, Journal of Hazardous Materials,Volume 371, 2019, Pages 273-279. Recuperado de: https://www.sciencedirect.com/science/article/pii/S0304389419302389
identifier_str_mv 0304-3894
10.1016/j.jhazmat.2019.02.095
Narváez, J.F., Grant, H., Correa Gil, V., Porras, J., Bueno Sanchez, J.C., Fanny Ocampo Duque, L.F., Ríos Sossa, R. y Quintana-Castillo, J.C. (2019) Assessment of endocrine disruptor effects of levonorgestrel and its photoproducts: Environmental implications of released fractions after their photocatalytic removal, Journal of Hazardous Materials,Volume 371, 2019, Pages 273-279. Recuperado de: https://www.sciencedirect.com/science/article/pii/S0304389419302389
url https://hdl.handle.net/20.500.12494/16453
dc.relation.isversionof.spa.fl_str_mv https://www.sciencedirect.com/science/article/pii/S0304389419302389
dc.relation.ispartofjournal.spa.fl_str_mv Journal of Hazardous Materials
dc.relation.references.spa.fl_str_mv J.P. Besse, J. Garric, Progestagens for human use, exposure and hazard assessment for the aquatic environment, Environ. Pollut. 157 (2009) 3485–3494.
J. Narvaez, C. Jimenez, Pharmaceutical products in the environment: sources, effects and risks, Vitae, Rev. La Fac. Química Farm. 19 (2012) 93–108
R.E. Alcock, a. Sweetman, K.C. Jones, Assessment of organic contanhnant fate in waste water treatment plants I: selected compounds and physicochemical properties, Chemosphere 38 (1999) 2247–2262
H.J. Geyer, et al., Bioaccumulation and occurrence of endocrine-disrupting chemicals (EDCs), persistent organic pollutants (POPs), and other organic compounds in fish and other organisms including humans, Handb. Environ. Chem. 2 (2000) 1–166.
T. Manickum, W. John, Occurrence, fate and environmental risk assessment of endocrine disrupting compounds at the wastewater treatment works in Pietermaritzburg (South Africa), Sci. Total Environ. 468–469 (2014) 584–597.
A. Ramirez, et al., Occurence of pharmaceuticals and personal care products in fish: results of a national pilot study in the United States, Environ. Toxicol. Chem. 28 (2009) 2587–2597
M. Durand, et al., On the mechanisms of action of short-term levonorgestrel administration in emergency contraception, Contraception 64 (2001) 227–234
L. Viglino, K. Aboulfadl, M. Prévost, S. Sauvé, Analysis of natural and synthetic estrogenic endocrine disruptors in environmental waters using online preconcentration coupled with LC-APPI-MS/MS, Talanta 76 (2008) 1088–1096.
J. Zeilinger, et al., Effects of synthetic gestagens on fish reproduction, Environ. Toxicol. Chem. 28 (2009) 2663–2670
M. Contraceptive, C. Alvin, A. Bebb, D. Anawalt, W. Mellon, Combined administration of levonorgestrel and testosterone induces more rapid and effective suppression of spermatogenesis than testosterone alone: a promising male contraceptive approach, J. Clin. Endocrinol. Metab. 81 (1996) 4–9
O.C. King, J.P. van de Merwe, J.A. McDonald, F.D.L. Leusch, Concentrations of levonorgestrel and ethinylestradiol in wastewater effluents: is the progestin also cause for concern? Environ. Toxicol. Chem. 35 (2016) 1378–1385
D. Nasuhoglu, D. Berk, V. Yargeau, Photocatalytic removal of 17α-ethinylestradiol (EE2) and levonorgestrel (LNG) from contraceptive pill manufacturing plant wastewater under UVC radiation, Chem. Eng. J. 185–186 (2012) 52–60.
G. Li, et al., Phytoremediation of levonorgestrel in aquatic environment by hydrophytes, J. Environ. Sci. (China) 26 (2014) 1869–1873
M. Guedes Maniero, D. Maia Bila, M. Dezotti, Degradation and estrogenic activity removal of 17β-estradiol and 17α-ethinylestradiol by ozonation and O3/H2O2, Sci. Total Environ. 407 (2008) 105–115.
B. Lomonte, et al., An MTT-based method for the in vivo quantification of myotoxic activity of snake venoms and its neutralization by antibodies, J. Immunol. Methods 161 (1993) 231–237.
B.A. Logue, E. Manandhar, Percent residual accuracy for quantifying goodness-of-fit of linear calibration curves, Talanta 189 (2018) 527–533
J.J. Berzas, J. Rodríguez, G. Castañeda, Simultaneous determination of ethinylestradiol and levonorgestrel in oral contraceptives by derivative spectrophotometry, Analyst 122 (1997) 41–44
T. Tang, et al., Adsorption properties and degradation dynamics of endocrine disrupting chemical levonorgestrel in soils, J. Agric. Food Chem. 60 (2012) 3999–4004.
R.A. Pattillo, et al., Control mechanisms for gonadotrophic hormone production in vitro, In Vitro 6 (1970) 205–214.
D.J. Caldwell, et al., An assessment of potential exposure and risk from estrogens in drinking water, Environ. Health Perspect. 118 (2010) 338–344.
J.R. Latendresse, et al., Genistein and ethinyl estradiol dietary exposure in multigenerational and chronic studies induce similar proliferative lesions in mammary gland of male Sprague-Dawley rats, Reprod. Toxicol. 28 (2009) 342–353.
M.D. Jurgens, et al., The potential for estradiol and ethyinylestradiol degradation in English rivers, Environ. Toxicol. Chem. 21 (2002) 480–488.
levonorgestrel in wastewater samples by a newly developed indirect competitive enzyme- linked immunosorbent assay (ELISA) coupled with solid phase extraction, Anal. Chim. Acta 628 (2008) 73–79.
D.M. Leech, M.T. Snyder, R.G. Wetzel, Natural organic matter and sunlight accelerate the degradation of 17ß-estradiol in water, Sci. Total Environ. 407 (2009) 2087–2092.
M. Shalev, et al., Monitoring of progestins: development of immunochemical methods for purification and detection of levonorgestrel, Anal. Chim. Acta 665 (2010) 176–184.
T.A. Ternes, et al., Behavior and occurrence of estrogens in municipal sewage treatment plants – I. Investigations in Germany, Canada and Brazil, Sci. Total Environ. 225 (1999) 81–90.
J. Shi, S. Fujisawa, S. Nakai, M. Hosomi, Biodegradation of natural and synthetic estrogens by nitrifying activated sludge and ammonia-oxidizing bacterium Nitrosomonas europaea, Water Res. 38 (2004) 2322–2329.
Hashem AlAani, Shahir Hashem, François Karabet, Photocatalytic (UV-A/TiO2) and photolytic (UV-A) degradation of steroid hormones: ethinyl estradiol, levonorgestrel, and progesterone, Int. J. ChemTech Res. 10 (2017) 1061–1070.
V. Contardo-Jara, et al., Molecular effects and bioaccumulation of levonorgestrel in the non-target organism Dreissena polymorpha, Environ. Pollut. 159 (2011) 38–44.
Jhon Narváez, J. Berrio, Sara Correa, J. Palacio, F. Molina, Degradación hidrlítica de clorpirifós y evaluación de la toxicidad del extracto, Rev. Politécnica ISSN 10 (2014) 15.
F. Maranghi, et al., Reproductive toxicity and thyroid effects in Sprague Dawley rats exposed to low doses of ethylenethiourea, Food Chem. Toxicol. 59 (2013) 261–271.
C. Ticconi, et al., Pregnancy-promoting actions of HCG in human myometrium and fetal membranes, Placenta 28 (2007) 137–143.
N. Kane, R. Kelly, P.T.K. Saunders, H.O.D. Critchley, Proliferation of uterine natural killer cells is induced by human chorionic gonadotropin and mediated via the mannose receptor, Endocrinology 150 (2009) 2882–2888.
A.U. Oz, J.M. Kingston, S. Shahabi, C.D. Hsu, L. Cole, The role of hyperglycosylated hCG in trophoblast invasion and the prediction of subsequent pre-eclampsia, Prenat. Diagn. 22 (2002) 478–481.
L.A. Cole, hCG, five independent molecules, Clin. Chim. Acta 413 (2012) 48–65.
E. Honkisz, D. Zieba-Przybylska, A.K. Wojtowicz, The effect of triclosan on hormone secretion and viability of human choriocarcinoma JEG-3 cells, Reprod. Toxicol. 34 (2012) 385–392.
E.R. Barnea, Modification of pulsatile human chorionic gonadotrophin secretion in first trimester placental explants induced by polycyclic aromatic hydrocarbons, Hum. Reprod. 7 (1992) 305–310
dc.rights.license.none.fl_str_mv Atribución
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Atribución
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 7
dc.coverage.temporal.spa.fl_str_mv 371
dc.publisher.spa.fl_str_mv Diana Aga
Grupo de Investigación INFETTARE, Universidad Cooperativa de Colombia, Cra. 42 #49-137, Medellín, Colombia
dc.publisher.program.spa.fl_str_mv Medicina
dc.publisher.place.spa.fl_str_mv Medellín
institution Universidad Cooperativa de Colombia
bitstream.url.fl_str_mv https://repository.ucc.edu.co/bitstreams/291f3fec-cd88-4d2a-8eec-3e89f704cebb/download
https://repository.ucc.edu.co/bitstreams/370def4f-f1e1-403c-b72f-c596c2d47b1c/download
https://repository.ucc.edu.co/bitstreams/15a3149a-d78f-4259-883a-14e86434b4a3/download
https://repository.ucc.edu.co/bitstreams/c536be3a-2871-46ad-9418-7b616820f81c/download
bitstream.checksum.fl_str_mv c125cbbbf0514845a4eb93f2bac9248a
3bce4f7ab09dfc588f126e1e36e98a45
4ea38ba867875c4154531e324ea8e5b3
16c8032d53967b92d5e984d9cd19e040
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Cooperativa de Colombia
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1814247234341961728
spelling Narvaez, Jhon FredyGrant, HannahCorrea, VanesaPorras López, JazmínBueno Sánchez, Julio CésarOcampo Duque, Luz FannyRios Sossa, RamiroQuintana Castillo, Juan Carlos3712020-01-29T16:45:44Z2020-01-29T16:45:44Z2019-02-270304-389410.1016/j.jhazmat.2019.02.095https://hdl.handle.net/20.500.12494/16453Narváez, J.F., Grant, H., Correa Gil, V., Porras, J., Bueno Sanchez, J.C., Fanny Ocampo Duque, L.F., Ríos Sossa, R. y Quintana-Castillo, J.C. (2019) Assessment of endocrine disruptor effects of levonorgestrel and its photoproducts: Environmental implications of released fractions after their photocatalytic removal, Journal of Hazardous Materials,Volume 371, 2019, Pages 273-279. Recuperado de: https://www.sciencedirect.com/science/article/pii/S0304389419302389The presence of levonorgestrel (LNG) in water bodies via direct discharge and human excretion has been reported worldwide, but its effects on the reproduction of aquatic species and humans are still unknown. Owing to its recalcitrant properties, LNG is not completely removed during wastewater treatment plants, and many species may be exposed to low traces of this compound from discharged effluents. Thus, in this study, a photocatalytic process for removing LNG along with screening of endocrine disruptor effects for risk assessment was applied. Although the removal rate of LNG by ultraviolet C (UV-C) radiation was>90%, reproductive toxicity testing using the BeWo cell line exposed to LNG and its degraded fraction showed the reduced production of basal human chorionic gonadotropin hormone (β-hCG) by more than 73%, from 8.90 mIU mL−1 to<2.39 mIU mL−1, with both LNG and the degraded fraction. β-hCG hormone has been implicated in the viability of trophoblastic cells during the first trimester of pregnancy; therefore, degraded fractions and waterborne LNG may affect reproduction in some aquatic species and humans with low level of exposure.https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000029823https://orcid.org/0000-0002-7923-9158https://scienti.minciencias.gov.co/gruplac/jsp/visualiza/visualizagr.jsp?nro=00000000011355juan.quintanac@campusucc.edu.co7Diana AgaGrupo de Investigación INFETTARE, Universidad Cooperativa de Colombia, Cra. 42 #49-137, Medellín, ColombiaMedicinaMedellínhttps://www.sciencedirect.com/science/article/pii/S0304389419302389Journal of Hazardous MaterialsJ.P. Besse, J. Garric, Progestagens for human use, exposure and hazard assessment for the aquatic environment, Environ. Pollut. 157 (2009) 3485–3494.J. Narvaez, C. Jimenez, Pharmaceutical products in the environment: sources, effects and risks, Vitae, Rev. La Fac. Química Farm. 19 (2012) 93–108R.E. Alcock, a. Sweetman, K.C. Jones, Assessment of organic contanhnant fate in waste water treatment plants I: selected compounds and physicochemical properties, Chemosphere 38 (1999) 2247–2262H.J. Geyer, et al., Bioaccumulation and occurrence of endocrine-disrupting chemicals (EDCs), persistent organic pollutants (POPs), and other organic compounds in fish and other organisms including humans, Handb. Environ. Chem. 2 (2000) 1–166.T. Manickum, W. John, Occurrence, fate and environmental risk assessment of endocrine disrupting compounds at the wastewater treatment works in Pietermaritzburg (South Africa), Sci. Total Environ. 468–469 (2014) 584–597.A. Ramirez, et al., Occurence of pharmaceuticals and personal care products in fish: results of a national pilot study in the United States, Environ. Toxicol. Chem. 28 (2009) 2587–2597M. Durand, et al., On the mechanisms of action of short-term levonorgestrel administration in emergency contraception, Contraception 64 (2001) 227–234L. Viglino, K. Aboulfadl, M. Prévost, S. Sauvé, Analysis of natural and synthetic estrogenic endocrine disruptors in environmental waters using online preconcentration coupled with LC-APPI-MS/MS, Talanta 76 (2008) 1088–1096.J. Zeilinger, et al., Effects of synthetic gestagens on fish reproduction, Environ. Toxicol. Chem. 28 (2009) 2663–2670M. Contraceptive, C. Alvin, A. Bebb, D. Anawalt, W. Mellon, Combined administration of levonorgestrel and testosterone induces more rapid and effective suppression of spermatogenesis than testosterone alone: a promising male contraceptive approach, J. Clin. Endocrinol. Metab. 81 (1996) 4–9O.C. King, J.P. van de Merwe, J.A. McDonald, F.D.L. Leusch, Concentrations of levonorgestrel and ethinylestradiol in wastewater effluents: is the progestin also cause for concern? Environ. Toxicol. Chem. 35 (2016) 1378–1385D. Nasuhoglu, D. Berk, V. Yargeau, Photocatalytic removal of 17α-ethinylestradiol (EE2) and levonorgestrel (LNG) from contraceptive pill manufacturing plant wastewater under UVC radiation, Chem. Eng. J. 185–186 (2012) 52–60.G. Li, et al., Phytoremediation of levonorgestrel in aquatic environment by hydrophytes, J. Environ. Sci. (China) 26 (2014) 1869–1873M. Guedes Maniero, D. Maia Bila, M. Dezotti, Degradation and estrogenic activity removal of 17β-estradiol and 17α-ethinylestradiol by ozonation and O3/H2O2, Sci. Total Environ. 407 (2008) 105–115.B. Lomonte, et al., An MTT-based method for the in vivo quantification of myotoxic activity of snake venoms and its neutralization by antibodies, J. Immunol. Methods 161 (1993) 231–237.B.A. Logue, E. Manandhar, Percent residual accuracy for quantifying goodness-of-fit of linear calibration curves, Talanta 189 (2018) 527–533J.J. Berzas, J. Rodríguez, G. Castañeda, Simultaneous determination of ethinylestradiol and levonorgestrel in oral contraceptives by derivative spectrophotometry, Analyst 122 (1997) 41–44T. Tang, et al., Adsorption properties and degradation dynamics of endocrine disrupting chemical levonorgestrel in soils, J. Agric. Food Chem. 60 (2012) 3999–4004.R.A. Pattillo, et al., Control mechanisms for gonadotrophic hormone production in vitro, In Vitro 6 (1970) 205–214.D.J. Caldwell, et al., An assessment of potential exposure and risk from estrogens in drinking water, Environ. Health Perspect. 118 (2010) 338–344.J.R. Latendresse, et al., Genistein and ethinyl estradiol dietary exposure in multigenerational and chronic studies induce similar proliferative lesions in mammary gland of male Sprague-Dawley rats, Reprod. Toxicol. 28 (2009) 342–353.M.D. Jurgens, et al., The potential for estradiol and ethyinylestradiol degradation in English rivers, Environ. Toxicol. Chem. 21 (2002) 480–488.levonorgestrel in wastewater samples by a newly developed indirect competitive enzyme- linked immunosorbent assay (ELISA) coupled with solid phase extraction, Anal. Chim. Acta 628 (2008) 73–79.D.M. Leech, M.T. Snyder, R.G. Wetzel, Natural organic matter and sunlight accelerate the degradation of 17ß-estradiol in water, Sci. Total Environ. 407 (2009) 2087–2092.M. Shalev, et al., Monitoring of progestins: development of immunochemical methods for purification and detection of levonorgestrel, Anal. Chim. Acta 665 (2010) 176–184.T.A. Ternes, et al., Behavior and occurrence of estrogens in municipal sewage treatment plants – I. Investigations in Germany, Canada and Brazil, Sci. Total Environ. 225 (1999) 81–90.J. Shi, S. Fujisawa, S. Nakai, M. Hosomi, Biodegradation of natural and synthetic estrogens by nitrifying activated sludge and ammonia-oxidizing bacterium Nitrosomonas europaea, Water Res. 38 (2004) 2322–2329.Hashem AlAani, Shahir Hashem, François Karabet, Photocatalytic (UV-A/TiO2) and photolytic (UV-A) degradation of steroid hormones: ethinyl estradiol, levonorgestrel, and progesterone, Int. J. ChemTech Res. 10 (2017) 1061–1070.V. Contardo-Jara, et al., Molecular effects and bioaccumulation of levonorgestrel in the non-target organism Dreissena polymorpha, Environ. Pollut. 159 (2011) 38–44.Jhon Narváez, J. Berrio, Sara Correa, J. Palacio, F. Molina, Degradación hidrlítica de clorpirifós y evaluación de la toxicidad del extracto, Rev. Politécnica ISSN 10 (2014) 15.F. Maranghi, et al., Reproductive toxicity and thyroid effects in Sprague Dawley rats exposed to low doses of ethylenethiourea, Food Chem. Toxicol. 59 (2013) 261–271.C. Ticconi, et al., Pregnancy-promoting actions of HCG in human myometrium and fetal membranes, Placenta 28 (2007) 137–143.N. Kane, R. Kelly, P.T.K. Saunders, H.O.D. Critchley, Proliferation of uterine natural killer cells is induced by human chorionic gonadotropin and mediated via the mannose receptor, Endocrinology 150 (2009) 2882–2888.A.U. Oz, J.M. Kingston, S. Shahabi, C.D. Hsu, L. Cole, The role of hyperglycosylated hCG in trophoblast invasion and the prediction of subsequent pre-eclampsia, Prenat. Diagn. 22 (2002) 478–481.L.A. Cole, hCG, five independent molecules, Clin. Chim. Acta 413 (2012) 48–65.E. Honkisz, D. Zieba-Przybylska, A.K. Wojtowicz, The effect of triclosan on hormone secretion and viability of human choriocarcinoma JEG-3 cells, Reprod. Toxicol. 34 (2012) 385–392.E.R. Barnea, Modification of pulsatile human chorionic gonadotrophin secretion in first trimester placental explants induced by polycyclic aromatic hydrocarbons, Hum. Reprod. 7 (1992) 305–310Endocrine disruptorPhotocatalytic degradationBeWo cell lineβ-hCG hormonePhotocatalytic removalLevonorgestrelAssessment of endocrine disruptor effects of levonorgestrel and itsphotoproducts: Environmental implications of released fractions after theirphotocatalytic removalArtículohttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionAtribucióninfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2PublicationORIGINALHAZMAT-D-18-05031.pdfHAZMAT-D-18-05031.pdfapplication/pdf1050059https://repository.ucc.edu.co/bitstreams/291f3fec-cd88-4d2a-8eec-3e89f704cebb/downloadc125cbbbf0514845a4eb93f2bac9248aMD53LICENSElicense.txtlicense.txttext/plain; charset=utf-84334https://repository.ucc.edu.co/bitstreams/370def4f-f1e1-403c-b72f-c596c2d47b1c/download3bce4f7ab09dfc588f126e1e36e98a45MD54THUMBNAILHAZMAT-D-18-05031.pdf.jpgHAZMAT-D-18-05031.pdf.jpgGenerated Thumbnailimage/jpeg3781https://repository.ucc.edu.co/bitstreams/15a3149a-d78f-4259-883a-14e86434b4a3/download4ea38ba867875c4154531e324ea8e5b3MD55TEXTHAZMAT-D-18-05031.pdf.txtHAZMAT-D-18-05031.pdf.txtExtracted texttext/plain49222https://repository.ucc.edu.co/bitstreams/c536be3a-2871-46ad-9418-7b616820f81c/download16c8032d53967b92d5e984d9cd19e040MD5620.500.12494/16453oai:repository.ucc.edu.co:20.500.12494/164532024-08-10 22:40:51.002restrictedhttps://repository.ucc.edu.coRepositorio Institucional Universidad Cooperativa de Colombiabdigital@metabiblioteca.comVU5JVkVSU0lEQUQgQ09PUEVSQVRJVkEgREUgQ09MT01CSUEKUkVQT1NJVE9SSU9TIElOU1RJVFVDSU9OQUxFUwpMSUNFTkNJQSBERSBVU08KClBvciBtZWRpbyBkZWwgcHJlc2VudGUgZG9jdW1lbnRvLCBlbCBBdXRvcihlcyksIG1heW9yIChlcykgZGUgZWRhZCwgcXVpZW4gZW4gYWRlbGFudGUgc2UgZGVub21pbmFyw6EgZWwgQVVUT1IsIGNvbmZpZXJlIGEgbGEgVU5JVkVSU0lEQUQgQ09PUEVSQVRJVkEgREUgQ09MT01CSUEsIGNvbiBOSVQuIDg2MC0wMjk5MjQtNywgdW5hIExJQ0VOQ0lBIERFIFVTTyBkZSBvYnJhLCBiYWpvIGxhcyBzaWd1aWVudGVzIGNvbmRpY2lvbmVzLgoKQ0zDgVVTVUxBUwoKUFJJTUVSQS4gT2JqZXRvLiBFTCBBVVRPUiBwb3IgZXN0ZSBhY3RvIGF1dG9yaXphIGxhIHV0aWxpemFjacOzbiBkZSBsYSBvYnJhLCBkZSBjb25mb3JtaWRhZCBjb24gbG8gZXN0aXB1bGFkbyBhIGNvbnRpbnVhY2nDs246IAoKKGEpIFBhcmEgZWZlY3RvcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSBzZSBhdXRvcml6YSBsYSByZXByb2R1Y2Npw7NuIGRlIGxhIG9icmEgYW50ZXJpb3JtZW50ZSBjaXRhZGEsIGxhIGN1YWwgc2UgYWxvamFyw6EgZW4gZm9ybWF0byBkaWdpdGFsIGVuIGxhcyBwbGF0YWZvcm1hcyBvIHJlcG9zaXRvcmlvcyBhZG1pbmlzdHJhZG9zIHBvciBsYSBVTklWRVJTSURBRCBvIGVuIG90cm8gdGlwbyBkZSByZXBvc2l0b3Jpb3MgZXh0ZXJub3MgbyBww6FnaW5hcyB3ZWIgZXNjb2dpZG9zIHBvciBsYSBVTklWRVJTSURBRCwgcGFyYSBmaW5lcyBkZSBkaWZ1c2nDs24geSBkaXZ1bGdhY2nDs24uIEFkaWNpb25hbG1lbnRlLCBzZSBhdXRvcml6YSBhIHF1ZSBsb3MgdXN1YXJpb3MgaW50ZXJub3MgeSBleHRlcm5vcyBkZSBkaWNoYXMgcGxhdGFmb3JtYXMgbyByZXBvc2l0b3Jpb3MgcmVwcm9kdXpjYW4gbyBkZXNjYXJndWVuIGxhIG9icmEsIHNpbiDDoW5pbW8gZGUgbHVjcm8sIHBhcmEgZmluZXMgcHJpdmFkb3MsIGVkdWNhdGl2b3MgbyBhY2Fkw6ltaWNvczsgc2llbXByZSB5IGN1YW5kbyBubyBzZSB2aW9sZW4gYWN1ZXJkb3MgY29uIGVkaXRvcmVzLCBwZXJpb2RvcyBkZSBlbWJhcmdvIG8gYWN1ZXJkb3MgZGUgY29uZmlkZW5jaWFsaWRhZCBxdWUgYXBsaXF1ZW4uCgooYikgU2UgYXV0b3JpemEgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBkZSBsYSBvYnJhIG1lbmNpb25hZGEsIGVuIGFjY2VzbyBhYmllcnRvLCBwYXJhIHN1IHV0aWxpemFjacOzbiBlbiBsYXMgcGxhdGFmb3JtYXMgbyByZXBvc2l0b3Jpb3MgYWRtaW5pc3RyYWRvcyBwb3IgbGEgVU5JVkVSU0lEQUQuCgooYykgTG8gYW50ZXJpb3IgZXN0YXLDoSBzdWpldG8gYSBsYXMgZGVmaW5pY2lvbmVzIGNvbnRlbmlkYXMgZW4gbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MyB5IGxhIExleSAyMyBkZSAxOTgyLgoKClNFR1VOREEuIE9yaWdpbmFsaWRhZCB5IHJlY2xhbWFjaW9uZXMuIEVsIEFVVE9SIGRlY2xhcmEgcXVlIGxhIE9CUkEgZXMgb3JpZ2luYWwgeSBxdWUgZXMgZGUgc3UgY3JlYWNpw7NuIGV4Y2x1c2l2YSwgbm8gZXhpc3RpZW5kbyBpbXBlZGltZW50byBkZSBjdWFscXVpZXIgbmF0dXJhbGV6YSAoZW1iYXJnb3MsIHVzbyBkZSBtYXRlcmlhbCBwcm90ZWdpZG8gcG9yIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGxhIGNvbmNlc2nDs24gZGUgbG9zIGRlcmVjaG9zIHByZXZpc3RvcyBlbiBlc3RlIGFjdWVyZG8uIEVsIEFVVE9SIHJlc3BvbmRlcsOhIHBvciBjdWFscXVpZXIgYWNjacOzbiBkZSByZWl2aW5kaWNhY2nDs24sIHBsYWdpbyB1IG90cmEgY2xhc2UgZGUgcmVjbGFtYWNpw7NuIHF1ZSBhbCByZXNwZWN0byBwdWRpZXJhIHNvYnJldmVuaXIuCgpURVJDRVJBLiBDb250cmFwcmVzdGFjacOzbi4gRWwgQVVUT1IgYXV0b3JpemEgYSBxdWUgc3Ugb2JyYSBzZWEgdXRpbGl6YWRhIGRlIGNvbmZvcm1pZGFkIGNvbiBsYSBjbMOhdXN1bGEgUFJJTUVSQSBkZSBmb3JtYSBncmF0dWl0YSwgZXMgZGVjaXIsIHF1ZSBsYSB1dGlsaXphY2nDs24gZGUgbGEgbWlzbWEgbm8gZ2VuZXJhIG5pbmfDum4gcGFnbyBvIHJlZ2Fsw61hcyBlbiBmYXZvciBkZSBlc3RlLgoKQ1VBUlRBLiBUaXR1bGFyaWRhZCBkZSBkZXJlY2hvcy4gRWwgcHJlc2VudGUgY29udHJhdG8gbm8gdHJhbnNmaWVyZSBsYSB0aXR1bGFyaWRhZCBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBzb2JyZSBsYXMgb2JyYXMgYW50ZXJpb3JtZW50ZSBtZW5jaW9uYWRhcyBhIGxhIFVOSVZFUlNJREFELiDDmm5pY2FtZW50ZSBoYWNlIHJlbGFjacOzbiBhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgZW4gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGFudGVyaW9ybWVudGUgcGFjdGFkb3MuCgpRVUlOVEEuIENyw6lkaXRvcy4gTGEgVU5JVkVSU0lEQUQgc2UgY29tcHJvbWV0ZSBhIGRhciBhbCBBVVRPUiwgZWwgcmVjb25vY2ltaWVudG8gZGVudHJvIGNhZGEgZm9ybWEgZGUgdXRpbGl6YWNpw7NuIGVuIGxhIG9icmEuIExvcyBjcsOpZGl0b3MgZGViZW4gZmlndXJhciBlbiBjYWRhIHVubyBkZSBsb3MgZm9ybWF0b3MgbyByZWdpc3Ryb3MgZGUgcHVibGljYWNpw7NuLiBObyBjb25zdGl0dWlyw6EgdW5hIHZpb2xhY2nDs24gYSBsb3MgZGVyZWNob3MgbW9yYWxlcyBkZWwgYXV0b3IgbGEgbm8gcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBvIGRlbcOhcyB1dGlsaXphY2lvbmVzIGRlIGxhIG9icmEuIExhIHV0aWxpemFjacOzbiBvIG5vIGRlIGxhIG9icmEsIGFzw60gY29tbyBzdSBmb3JtYSBkZSB1dGlsaXphY2nDs24gc2Vyw6EgZmFjdWx0YWQgZXhjbHVzaXZhIGRlIGxhIFVOSVZFUlNJREFELgogClNFWFRBLiBEdXJhY2nDs24geSB0ZXJyaXRvcmlvLiBMYSBwcmVzZW50ZSBsaWNlbmNpYSBkZSB1c28gcXVlIHNlIG90b3JnYSBhIGZhdm9yIGRlIGxhIFVOSVZFUlNJREFEIHRlbmRyw6EgdW5hIGR1cmFjacOzbiBlcXVpdmFsZW50ZSBhbCB0w6lybWlubyBkZSBwcm90ZWNjacOzbiBsZWdhbCBkZSBsYSBvYnJhIHkgcGFyYSB0b2RvcyBsb3MgcGHDrXNlcyBkZWwgbXVuZG8uCgpTw4lQVElNQS4gVXNvIGRlIENyZWF0aXZlIENvbW1vbnMuIEVsIEFVVE9SIGF1dG9yaXphcsOhIGxhIGRpZnVzacOzbiBkZSBzdSBjb250ZW5pZG8gYmFqbyB1bmEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBhdHJpYnVjacOzbiA0LjAgaW50ZXJuYWNpb25hbCwgcXVlIGRlYmVyw6EgaW5jbHVpcnNlIGVuIGVsIGNvbnRlbmlkby4gCgpPQ1RBVkEuIERlcmVjaG8gZGUgZXhjbHVzacOzbi4gQ2FkYSBhdXRvciBwdWVkZSBpbmRpY2FyIGVuIGVsIG1vbWVudG8gZGUgZGVww7NzaXRvIGRlbCBjb250ZW5pZG8gcXVlIGVsIHRleHRvIGNvbXBsZXRvIGRlIGxhIHByb2R1Y2Npw7NuIGFjYWTDqW1pY2EgbyBjaWVudMOtZmljYSBubyBlc3RlIGNvbiBhY2Nlc28gYWJpZXJ0byBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIHBvciBtb3Rpdm9zIGRlIGNvbmZpZGVuY2lhbGlkYWQsIHBvcnF1ZSBzZSBlbmN1ZW50cmUgZW4gdsOtYXMgZGUgb2J0ZW5lciB1biBkZXJlY2hvIGRlIHByb3BpZWRhZCBpbmR1c3RyaWFsIG8gZXhpc3RpciBhY3VlcmRvcyBwcmV2aW9zIGNvbiB0ZXJjZXJvcyAoZWRpdG9yaWFsZXMsIHJldmlzdGFzIGNpZW50w61maWNhcywgb3RyYXMgaW5zdGl0dWNpb25lcykuIEVsIGF1dG9yIHNlIGNvbXByb21ldGUgYSBkZXBvc2l0YXIgbG9zIG1ldGFkYXRvcyBlIGluZm9ybWFyIGVsIHRpZW1wbyBkZSBlbWJhcmdvIGR1cmFudGUgZWwgY3VhbCBlbCB0ZXh0byBjb21wbGV0byB0ZW5kcsOhIGFjY2VzbyByZXN0cmluZ2lkby4gCgpOT1ZFTkEuIEVsIEFVVE9SIGFsIGFjZXB0YXIgZXN0YSBsaWNlbmNpYSBhZHVjZSBxdWUgZXN0YSBwcm9kdWNjacOzbiBzZSBkZXNhcnJvbGzDsyBlbiBlbCBwZXJpb2RvIGVuIHF1ZSBzZSBlbmN1ZW50cmEgY29uIHbDrW5jdWxvcyBjb24gTGEgVW5pdmVyc2lkYWQuCgpEw4lDSU1BLiBOb3JtYXMgYXBsaWNhYmxlcy4gUGFyYSBsYSBpbnRlcnByZXRhY2nDs24geSBjdW1wbGltaWVudG8gZGVsIHByZXNlbnRlIGFjdWVyZG8gbGFzIHBhcnRlcyBzZSBzb21ldGVuIGEgbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgbGEgTGV5IDIzIGRlIDE5ODIgeSBkZW3DoXMgbm9ybWFzIGFwbGljYWJsZXMgZGUgQ29sb21iaWEuIEFkZW3DoXMsIGEgbGFzIG5vcm1hcyBJbnN0aXR1Y2lvbmFsZXMgcXVlIGFwbGlxdWVuLgoKTGEgcHJlc2VudGUgbGljZW5jaWEgc2UgYXV0b3JpemEgZW4gbGEgZmVjaGEgZGUgcHVibGljYWNpw7NuIGVuIGxvcyByZXBvc2l0b3Jpb3MgaW5zdGl0dWNpb25hbGVzLgo=