MS/MS analysis of four scorpion venoms from Colombia: a descriptive approach

Background: Scorpions are widely known for the neurotoxic effects of their venoms, which contain peptides affecting ionic channels. Although Colombia is recognized for its scorpion diversity, only a few studies are available describing the venom content. Methods: In this descriptive study, we analyz...

Full description

Autores:
Estrada Gómez, Sebastián
Vargas Muñoz, Leidy Johana
Saldarriaga Córdoba, Mónica María
Van der Meijden, Arie
Tipo de recurso:
Article of investigation
Fecha de publicación:
2021
Institución:
Universidad Cooperativa de Colombia
Repositorio:
Repositorio UCC
Idioma:
OAI Identifier:
oai:repository.ucc.edu.co:20.500.12494/46383
Acceso en línea:
https://hdl.handle.net/20.500.12494/46383
Palabra clave:
Scorpion
Venom
Colombia
MS analysis
Toxins
Sodium channels
Rights
openAccess
License
Atribución
id COOPER2_eb7096f5ac2391764e3ea82aeec42ad2
oai_identifier_str oai:repository.ucc.edu.co:20.500.12494/46383
network_acronym_str COOPER2
network_name_str Repositorio UCC
repository_id_str
dc.title.spa.fl_str_mv MS/MS analysis of four scorpion venoms from Colombia: a descriptive approach
title MS/MS analysis of four scorpion venoms from Colombia: a descriptive approach
spellingShingle MS/MS analysis of four scorpion venoms from Colombia: a descriptive approach
Scorpion
Venom
Colombia
MS analysis
Toxins
Sodium channels
title_short MS/MS analysis of four scorpion venoms from Colombia: a descriptive approach
title_full MS/MS analysis of four scorpion venoms from Colombia: a descriptive approach
title_fullStr MS/MS analysis of four scorpion venoms from Colombia: a descriptive approach
title_full_unstemmed MS/MS analysis of four scorpion venoms from Colombia: a descriptive approach
title_sort MS/MS analysis of four scorpion venoms from Colombia: a descriptive approach
dc.creator.fl_str_mv Estrada Gómez, Sebastián
Vargas Muñoz, Leidy Johana
Saldarriaga Córdoba, Mónica María
Van der Meijden, Arie
dc.contributor.advisor.none.fl_str_mv Estrada Gómez, Sebastián
Vargas Muñoz, Leidy Johana
dc.contributor.author.none.fl_str_mv Estrada Gómez, Sebastián
Vargas Muñoz, Leidy Johana
Saldarriaga Córdoba, Mónica María
Van der Meijden, Arie
dc.subject.spa.fl_str_mv Scorpion
Venom
Colombia
MS analysis
Toxins
Sodium channels
topic Scorpion
Venom
Colombia
MS analysis
Toxins
Sodium channels
description Background: Scorpions are widely known for the neurotoxic effects of their venoms, which contain peptides affecting ionic channels. Although Colombia is recognized for its scorpion diversity, only a few studies are available describing the venom content. Methods: In this descriptive study, we analyzed the MS/MS sequence, electrophoretic and chromatographic profile linked to a bioinformatics analysis of the scorpions Chactas reticulatus (Chactidae), Opisthacanthus elatus (Hormuridae), Centruroides edwardsii (Buthidae) and Tityus asthenes (Buthidae) from Colombia. Results: Each scorpion showed a specific electrophoretic and chromatographic profile. The electrophoretic profiles indicate the presence of high molecular mass compounds in all venoms, with a predominance of low molecular mass compounds in the Buthidae species. Chromatographic profiles showed a similar pattern as the electrophoretic profiles. From the MS/MS analysis of the chromatographic collected fractions, we obtained internal peptide sequences corresponding to proteins reported in scorpions from the respective family of the analyzed samples. Some of these proteins correspond to neurotoxins affecting ionic channels, antimicrobial peptides and metalloproteinaselike fragments. In the venom of Tityus asthenes, the MSn analysis allowed the detection of two toxins affecting sodium channels covering 50% and 84% of the sequence respectively, showing 100% sequence similarity. Two sequences from Tityus asthenes showed sequence similarity with a phospholipase from Opisthacanthus cayaporum indicating the presence of this type of toxin in this species for the first time. One sequence matching a hypothetical secreted protein from Hottentotta judaicus was found in three of the studied venoms. We found that this protein is common in the Buthidae family whereas it has been reported in other families – such as Scorpionidae – and may be part of the evolutionary puzzle of venoms in these arachnids. Conclusion: Buthidae venoms from Colombia can be considered an important source of peptides similar to toxins affecting ionic channels. An interesting predicted antimicrobial peptide was detected in three of the analyzed venoms.
publishDate 2021
dc.date.issued.none.fl_str_mv 2021-07-09
dc.date.accessioned.none.fl_str_mv 2022-09-14T14:43:20Z
dc.date.available.none.fl_str_mv 2022-09-14T14:43:20Z
dc.type.none.fl_str_mv Artículos Científicos
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coarversion.none.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.type.version.none.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.issn.spa.fl_str_mv 1678-9199
dc.identifier.uri.spa.fl_str_mv 10.1590/1678-9199-JVATITD-2020-0173
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12494/46383
dc.identifier.bibliographicCitation.spa.fl_str_mv Estrada-Gómez S, Vargas-Muñoz LJ, Saldarriaga-Córdoba MM, van der Meijden A. MS/MS analysis of four scorpion venoms from Colombia: a descriptive approach. J Venom Anim Toxins Incl Trop Dis. 2021 Jul 9;27:e20200173. doi: 10.1590/1678-9199-JVATITD-2020-0173. PMID: 34290759; PMCID: PMC8277192.https://repository.ucc.edu.co/handle/20.500.12494/46383
identifier_str_mv 1678-9199
10.1590/1678-9199-JVATITD-2020-0173
Estrada-Gómez S, Vargas-Muñoz LJ, Saldarriaga-Córdoba MM, van der Meijden A. MS/MS analysis of four scorpion venoms from Colombia: a descriptive approach. J Venom Anim Toxins Incl Trop Dis. 2021 Jul 9;27:e20200173. doi: 10.1590/1678-9199-JVATITD-2020-0173. PMID: 34290759; PMCID: PMC8277192.https://repository.ucc.edu.co/handle/20.500.12494/46383
url https://hdl.handle.net/20.500.12494/46383
dc.relation.ispartofjournal.spa.fl_str_mv Journal of Venomous Animals and Toxins Including Tropical Diseases
dc.relation.references.spa.fl_str_mv van der Meijden A, Koch B, van der Valk T, Vargas-Muñoz LJ, Estrada-Gómez S. Target-Specificity in Scorpions; Comparing Lethality of Scorpion Venoms across Arthropods and Vertebrates. Toxins (Basel). 2017 Oct 4;9(10):312.
Ortiz E, Gurrola GB, Schwartz EF, Possani LD. Scorpion venom components as potential candidates for drug development. Toxicon. 2015 Jan;93:125-35.
Vargas LJ, Estrada-Gomez S. Purification and Characterization of Venom Components as Source for Antibiotics. Mini-Rev Org Chem. 2014 May;11(1):15-27
Vargas Munoz LJ, Estrada-Gomez S, Escobar J. Snake and scorpion toxins venoms, a natural source of molecules with antimicrobial activity. CURARE. 2015;2.
Almaaytah A, Tarazi S, Mhaidat N, Al-Balas Q, Mukattash TL. Mauriporin, a Novel Cationic α-Helical Peptide with Selective Cytotoxic Activity Against Prostate Cancer Cell Lines from the Venom of the Scorpion Androctonus mauritanicus. Int J Pept Res Ther. 2013 May 21;19:281-93.
Estrada G, Villegas E, Corzo G. Spider venoms: a rich source of acylpolyamines and peptides as new leads for CNS drugs. Nat Prod Rep. 2007 Feb;24(1):145-61.
Rash LD, Hodgson WC. Pharmacology and biochemistry of spider venoms. Toxicon. 2002 Mar;40(3):225-54.
Cao LY, Dai C, Li ZJ, Fan Z, Song Y, Wu YL, et al. Antibacterial Activity and Mechanism of a Scorpion Venom Peptide Derivative in vitro and in vivo. Plos One. 2012;7(7):e40135.
Cao LY, Li ZJ, Zhang RH, Wu YL, Li WX, Cao ZJ. StCT2, a new antibacterial peptide characterized from the venom of the scorpion Scorpiops tibetanus. Peptides. 2012 Aug;36(2):213-20
Cociancich S, Goyffon M, Bontems F, Bulet P, Bouet F, Menez A, et al. Purification and characterization of a scorpion defensin, a 4kDa antibacterial peptide presenting structural similarities with insect defensins and scorpion toxins. Biochem Biophys Res Commun. 1993 Jul 15;194(1):17-22
Corzo G, Escoubas P, Villegas E, Barnham KJ, He WL, Norton RS, et al. Characterization of unique amphipathic antimicrobial peptides from venom of the scorpion Pandinus imperator. Biochem J. 2001 Oct 1;359(Pt 1):35-45
Corzo G, Villegas E, Gomez-Lagunas F, Possani LD, Belokoneva OS, Nakajima T. Oxyopinins, large amphipathic peptides isolated from the venom of the wolf spider Oxyopes kitabensis with cytolytic properties and positive insecticidal cooperativity with spider neurotoxins. J Biol Chem. 2002 Jun 28;277(26):23627-37.
Diaz P, D’Suze G, Salazar V, Sevcik C, Shannon JD, Sherman NE, et al. Antibacterial activity of six novel peptides from Tityus discrepans scorpion venom. A fluorescent probe study of microbial membrane Na+ permeability changes. Toxicon. 2009 Nov;54(6):802-17
Miyashita M, Sakai A, Matsushita N, Hanai Y, Nakagawa Y, Miyagawa HA. Novel Amphipathic Linear Peptide with Both Insect Toxicity and Antimicrobial Activity from the Venom of the Scorpion Isometrus maculatus. Biosci Biotechnol Biochem. 2010;74(2):364-9
Ramirez-Carreto S, Quintero-Hernandez V, Jimenez-Vargas JM, Corzo G, Possani LD, Becerril B, et al. Gene cloning and functional characterization of four novel antimicrobial-like peptides from scorpions of the family Vaejovidae. Peptides. 2012 Apr;34(2):290-5.
Estrada-Gomez S, Cupitra NI, Arango WM, Munoz LJ. Intraspecific variation of centruroides edwardsii venom from two regions of Colombia. Toxins (Basel). 2014 Jul 14;6(7):2082-96
Estrada-Gómez S, Vargas Muñoz LJ, Saldarriaga-Córdoba M, Quintana Castillo JC. Venom from Opisthacanthus elatus scorpion of Colombia, could be more hemolytic and less neurotoxic than thought. Acta Trop. 2016 Jan;153:70-8.
. Barona J, Batista CV, Zamudio FZ, Gomez-Lagunas F, Wanke E, Otero R, et al. Proteomic analysis of the venom and characterization of toxins specific for Na+ - and K+ -channels from the Colombian scorpion Tityus pachyurus. Biochim Biophys Acta. 2006 Jan;1764(1):76-84
Rincón-Cortés CA, Olamendi-Portugal T, Carcamo-Noriega EN, Santillán EG, Zuñiga FZ, Reyes-Montaño EA, et al. Structural and functional characterization of toxic peptides purified from the venom of the Colombian scorpion Tityus macrochirus. Toxicon. 2019 Nov;169:5-11.
Guerrero-Vargas JA, Mourão CBF, Quintero-Hernández V, Possani LD, Schwartz EF. Identification and Phylogenetic Analysis of Tityus pachyurus and Tityus obscurus Novel Putative Na(+)-Channel Scorpion Toxins. PloS One. 2012 Feb 15;7:e30478.
Otero R, Navio E, Cespedes FA, Nunez MJ, Lozano L, Moscoso ER, et al. Scorpion envenoming in two regions of Colombia: clinical, epidemiological and therapeutic aspects. Trans R Soc Trop Med Hyg. 2004 Dec;98(12):742- 50.
Ward MJ, Ellsworth SA, Nystrom GS. A global accounting of medically significant scorpions: Epidemiology, major toxins, and comparative resources in harmless counterparts. Toxicon. 2018 Sep 1;151:137-55
Gómez JP, Quintana JC, Arbeláez P, Fernández J, Silva JF, Barona J, et al. Picaduras por escorpión Tityus asthenes en Mutatá, Colombia: aspectos epidemiológicos, clínicos y toxinológicos. Biomedica. 2010;30(1):126-39.
Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680-5.
Doumas BT, Bayse DD, Borner DD, Carter RJ, Elevitch F, Garber CC, et al. A candidate Reference Method for determination of total protein in serum. II. Test for transferability. Clin Chem. 1981 Oct;27(10):1651-4
Doumas BT, Bayse DD, Carter RJ, Peters Jr T, Schaffer R. A candidate Reference Method for determination of total protein in serum. I. Development and validation. Clin Chem. 1981 Oct;27(10):1642-50
Zheng K, Wu L, He Z, Yang B, Yang Y. Measurement of the total protein in serum by biuret method with uncertainty evaluation. Measurement. 2017 Dec;112:16-21.
. Istvan LJ, Istvan LS. GelAnalyzer 19.1. 2021.
Fernandez J, Gutierrez JM, Angulo Y, Sanz L, Juarez P, Calvete JJ, et al. Isolation of an acidic phospholipase A2 from the venom of the snake Bothrops asper of Costa Rica: biochemical and toxicological characterization. Biochimie. 2010 Mar;92(3):273-83
Chen C, Li Z, Huang H, Suzek BE, Wu CH, UniProt Consortiium. A fast Peptide Match service for UniProt Knowledgebase. Bioinformatics. 2013 Nov 1;29(21):2808-9.
Wu CH, Yeh LSL, Huang H, Arminski L, Castro-Alvear J, Chen Y, et al. The Protein Information Resource. Nucleic Acids Res. 2003 Jan 1;31(1):345-7.
Chen C, Li Z, Huang H, Suzek BE, Wu CH, Consortium U. A fast Peptide Match service for UniProt Knowledgebase. Bioinformatics. 2013 Nov 1;29(21):2808-9.
. Wang G, Li X, Wang Z. APD3: the antimicrobial peptide database as a tool for research and education. Nucleic Acids Res. 2016 Jan 4;44(D1):D1087-93
Estrada-Gomez S, Gomez-Rave L, Vargas-Munoz LJ, van der Meijden A. Characterizing the biological and biochemical profile of six different scorpion venoms from the Buthidae and Scorpionidae family. Toxicon. 2017 May;130:104-15
Sharma PP, Fernández R, Esposito LA, González-Santillán E, Monod L. Phylogenomic resolution of scorpions reveals multilevel discordance with morphological phylogenetic signal. Proc Biol Sci. 2015 Apr 7;282(1804):20142953
Saez NJ, Senff S, Jensen JE, Er SY, Herzig V, Rash LD, et al. Spidervenom peptides as therapeutics. Toxins (Basel). 2010 Dec;2(12):2851-71.
. D’Suze G, Schwartz EF, Garcia-Gomez BI, Sevcik C, Possani LD. Molecular cloning and nucleotide sequence analysis of genes from a cDNA library of the scorpion Tityus discrepans. Biochimie. 2009 Aug;91(8):1010-9
Batista CV, del Pozo L, Zamudio FZ, Contreras S, Becerril B, Wanke E, et al. Proteomics of the venom from the Amazonian scorpion Tityus cambridgei and the role of prolines on mass spectrometry analysis of toxins. J Chromatogr B Analyt Technol Biomed Life Sci. 2004 Apr 15;803(1):55-66.
Batista CV, D’Suze G, Gomez-Lagunas F, Zamudio FZ, Encarnacion S, Sevcik C, et al. Proteomic analysis of Tityus discrepans scorpion venom and amino acid sequence of novel toxins. Proteomics. 2006 Jun;6(12):3718-27.
Garcia-Calvo M, Leonard RJ, Novick J, Stevens SP, Schmalhofer W, Kaczorowski GJ, et al. Purification, characterization, and biosynthesis of margatoxin, a component of Centruroides margaritatus venom that selectively inhibits voltage-dependent potassium channels. J Biol Chem. 1993 Sep 5;268(25):18866-74
Grissmer S, Nguyen AN, Aiyar J, Hanson DC, Mather RJ, Gutman GA, et al. Pharmacological characterization of five cloned voltage-gated K+ channels, types Kv1.1, 1.2, 1.3, 1.5, and 3.1, stably expressed in mammalian cell lines. Mol Pharmacol. 1994 Jun;45(6):1227-34.
de Oliveira UC, Candido DM, Dorce VA, Junqueira-de-Azevedo Ide L. The transcriptome recipe for the venom cocktail of Tityus bahiensis scorpion. Toxicon. 2015 Mar;95:52-61.
de Paula Santos-da-Silva A, Candido DM, Nencioni ALA, Kimura LF, Prezotto-Neto JP, Barbaro KC, et al. Some pharmacological effects of Tityus obscurus venom in rats and mice. Toxicon. 2017 Feb;126:51-8.
Martin-Eauclaire MF, Pimenta AMC, Bougis PE, De Lima ME. Potassium channel blockers from the venom of the Brazilian scorpion Tityus serrulatus (Lutz and Mello, 1922). Toxicon. 2016 Sep 1;119:253-65.
Vargas Munoz LJ, Estrada-Gomez S, Vasquez J. Toxinas de venenos de serpientes y escorpiones, una fuente natural de moleculas con actividad antimicrobiana. CURARE. 2015;2(2).
Schwartz EF, Camargos TS, Zamudio FZ, Silva LP, Bloch C, Caixeta F, et al. Mass spectrometry analysis, amino acid sequence and biological activity of venom components from the Brazilian scorpion Opisthacanthus cayaporum. Toxicon. 2008 Jun 15;51(8):1499-1508
Estrada-Gomez, S.; Vargas-Munoz, L.J.; Saldarriaga-Cordoba, M.; Cifuentes, Y.; Perafan, C. Identifying different transcribed proteins in the newly described Theraphosidae Pamphobeteus verdolaga. Toxicon. 2017 Apr;129:81-88.
Cheng TC, Long RW, Wu YQ, Guo YB, Liu DL, Peng L, et al. Identification and characterization of toxins in the venom gland of the Chinese bird spider, Haplopelma hainanum, by transcriptomic analysis. Insect Sci. 2016 Jun;23(3):487-99
. Jiang L, Peng L, Chen J, Zhang Y, Xiong X, Liang S. Molecular diversification based on analysis of expressed sequence tags from the venom glands of the Chinese bird spider Ornithoctonus huwena. Toxicon. 2008 Jun 15;51(8):1479-89.
Yuan C, Jin Q, Tang X, Hu W, Cao R, Yang S, et al. Proteomic and peptidomic characterization of the venom from the Chinese bird spider, Ornithoctonus huwena Wang. J Proteome Res. 2007 Jul;6(7):2792-801.
. Borges MH, Figueiredo SG, Leprevost FV, De Lima ME, Cordeiro MN, Diniz MR, et al. Venomous extract protein profile of Brazilian tarantula Grammostola iheringi: searching for potential biotechnological applications. J Proteomics. 2016 Mar 16;136:35-47
Liao Z, Cao J, Li S, Yan X, Hu W, He Q, et al. Proteomic and peptidomic analysis of the venom from Chinese tarantula Chilobrachys jingzhao. Proteomics. 2007 Jun; 7(11):1892-1907
santibáñez-López CE, Cid-Uribe JI, Batista CVF, Ortiz E, Possani LD. Venom Gland Transcriptomic and Proteomic Analyses of the Enigmatic Scorpion Superstitionia donensis (Scorpiones: Superstitioniidae), with Insights on the Evolution of Its Venom Components. Toxins (Basel). 2016 Dec;8(12):367.
He Y, Zhao R, Di Z, Li Z, Xu X, Hong W, et al. Molecular diversity of Chaerilidae venom peptides reveals the dynamic evolution of scorpion venom components from Buthidae to non-Buthidae. J Proteomics. 2013 Aug 26;89:1-14
Ma Y, He Y, Zhao R, Wu Y, Li W, Cao Z. Extreme diversity of scorpion venom peptides and proteins revealed by transcriptomic analysis: implication for proteome evolution of scorpion venom arsenal. J Proteomics. 2012 Feb 16;75(5):1563-76.
dc.rights.license.none.fl_str_mv Atribución
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Atribución
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 1-13
dc.coverage.temporal.spa.fl_str_mv 27
dc.publisher.spa.fl_str_mv Universidad Cooperativa de Colombia, Facultad de Ciencias de la Salud, Medicina, Medellín y Envigado
dc.publisher.program.spa.fl_str_mv Medicina
dc.publisher.place.spa.fl_str_mv Medellín
institution Universidad Cooperativa de Colombia
bitstream.url.fl_str_mv https://repository.ucc.edu.co/bitstreams/bcfed45e-e23e-478f-9472-f41799f78c61/download
https://repository.ucc.edu.co/bitstreams/f0e9f340-b927-4480-b667-5929bd603874/download
https://repository.ucc.edu.co/bitstreams/89768198-fc29-467f-8b97-147d7ba15707/download
https://repository.ucc.edu.co/bitstreams/33898e4c-1595-453d-9ae5-5bb5739c9842/download
https://repository.ucc.edu.co/bitstreams/76dff0ad-0872-494e-9985-c0e64a3f1ee5/download
https://repository.ucc.edu.co/bitstreams/07007a74-163b-44e9-bd73-7d97486c780e/download
https://repository.ucc.edu.co/bitstreams/844288cf-375d-4948-a2ea-43b3c6cd68cf/download
bitstream.checksum.fl_str_mv 5b816c5b00df3e7a09d0f113b70c6c92
0f73d8bd806a4f0fd76160b9139d29c3
8a4605be74aa9ea9d79846c1fba20a33
12a16ff50c10aa97c4aa34cccfadaf5c
720038c86964cb370c7ef7586608a622
588171b3189ff95af6a5923817b96ea7
2171ebd84b7cf11a1346f58d6a6ca0c1
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Cooperativa de Colombia
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1808789050963787776
spelling Estrada Gómez, SebastiánVargas Muñoz, Leidy JohanaEstrada Gómez, SebastiánVargas Muñoz, Leidy JohanaSaldarriaga Córdoba, Mónica MaríaVan der Meijden, Arie272022-09-14T14:43:20Z2022-09-14T14:43:20Z2021-07-091678-919910.1590/1678-9199-JVATITD-2020-0173https://hdl.handle.net/20.500.12494/46383Estrada-Gómez S, Vargas-Muñoz LJ, Saldarriaga-Córdoba MM, van der Meijden A. MS/MS analysis of four scorpion venoms from Colombia: a descriptive approach. J Venom Anim Toxins Incl Trop Dis. 2021 Jul 9;27:e20200173. doi: 10.1590/1678-9199-JVATITD-2020-0173. PMID: 34290759; PMCID: PMC8277192.https://repository.ucc.edu.co/handle/20.500.12494/46383Background: Scorpions are widely known for the neurotoxic effects of their venoms, which contain peptides affecting ionic channels. Although Colombia is recognized for its scorpion diversity, only a few studies are available describing the venom content. Methods: In this descriptive study, we analyzed the MS/MS sequence, electrophoretic and chromatographic profile linked to a bioinformatics analysis of the scorpions Chactas reticulatus (Chactidae), Opisthacanthus elatus (Hormuridae), Centruroides edwardsii (Buthidae) and Tityus asthenes (Buthidae) from Colombia. Results: Each scorpion showed a specific electrophoretic and chromatographic profile. The electrophoretic profiles indicate the presence of high molecular mass compounds in all venoms, with a predominance of low molecular mass compounds in the Buthidae species. Chromatographic profiles showed a similar pattern as the electrophoretic profiles. From the MS/MS analysis of the chromatographic collected fractions, we obtained internal peptide sequences corresponding to proteins reported in scorpions from the respective family of the analyzed samples. Some of these proteins correspond to neurotoxins affecting ionic channels, antimicrobial peptides and metalloproteinaselike fragments. In the venom of Tityus asthenes, the MSn analysis allowed the detection of two toxins affecting sodium channels covering 50% and 84% of the sequence respectively, showing 100% sequence similarity. Two sequences from Tityus asthenes showed sequence similarity with a phospholipase from Opisthacanthus cayaporum indicating the presence of this type of toxin in this species for the first time. One sequence matching a hypothetical secreted protein from Hottentotta judaicus was found in three of the studied venoms. We found that this protein is common in the Buthidae family whereas it has been reported in other families – such as Scorpionidae – and may be part of the evolutionary puzzle of venoms in these arachnids. Conclusion: Buthidae venoms from Colombia can be considered an important source of peptides similar to toxins affecting ionic channels. An interesting predicted antimicrobial peptide was detected in three of the analyzed venoms.https://orcid.org/0000-0003-1332-5106Infettaresebastian.estrada@udea.edu.coleidy.vargasmu@campusucc.edu.comonica.saldarriaga@ubo.cl@arievandermeijden.nl1-13Universidad Cooperativa de Colombia, Facultad de Ciencias de la Salud, Medicina, Medellín y EnvigadoMedicinaMedellínScorpionVenomColombiaMS analysisToxinsSodium channelsMS/MS analysis of four scorpion venoms from Colombia: a descriptive approachArtículos Científicoshttp://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionAtribucióninfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Journal of Venomous Animals and Toxins Including Tropical Diseasesvan der Meijden A, Koch B, van der Valk T, Vargas-Muñoz LJ, Estrada-Gómez S. Target-Specificity in Scorpions; Comparing Lethality of Scorpion Venoms across Arthropods and Vertebrates. Toxins (Basel). 2017 Oct 4;9(10):312.Ortiz E, Gurrola GB, Schwartz EF, Possani LD. Scorpion venom components as potential candidates for drug development. Toxicon. 2015 Jan;93:125-35.Vargas LJ, Estrada-Gomez S. Purification and Characterization of Venom Components as Source for Antibiotics. Mini-Rev Org Chem. 2014 May;11(1):15-27Vargas Munoz LJ, Estrada-Gomez S, Escobar J. Snake and scorpion toxins venoms, a natural source of molecules with antimicrobial activity. CURARE. 2015;2.Almaaytah A, Tarazi S, Mhaidat N, Al-Balas Q, Mukattash TL. Mauriporin, a Novel Cationic α-Helical Peptide with Selective Cytotoxic Activity Against Prostate Cancer Cell Lines from the Venom of the Scorpion Androctonus mauritanicus. Int J Pept Res Ther. 2013 May 21;19:281-93.Estrada G, Villegas E, Corzo G. Spider venoms: a rich source of acylpolyamines and peptides as new leads for CNS drugs. Nat Prod Rep. 2007 Feb;24(1):145-61.Rash LD, Hodgson WC. Pharmacology and biochemistry of spider venoms. Toxicon. 2002 Mar;40(3):225-54.Cao LY, Dai C, Li ZJ, Fan Z, Song Y, Wu YL, et al. Antibacterial Activity and Mechanism of a Scorpion Venom Peptide Derivative in vitro and in vivo. Plos One. 2012;7(7):e40135.Cao LY, Li ZJ, Zhang RH, Wu YL, Li WX, Cao ZJ. StCT2, a new antibacterial peptide characterized from the venom of the scorpion Scorpiops tibetanus. Peptides. 2012 Aug;36(2):213-20Cociancich S, Goyffon M, Bontems F, Bulet P, Bouet F, Menez A, et al. Purification and characterization of a scorpion defensin, a 4kDa antibacterial peptide presenting structural similarities with insect defensins and scorpion toxins. Biochem Biophys Res Commun. 1993 Jul 15;194(1):17-22Corzo G, Escoubas P, Villegas E, Barnham KJ, He WL, Norton RS, et al. Characterization of unique amphipathic antimicrobial peptides from venom of the scorpion Pandinus imperator. Biochem J. 2001 Oct 1;359(Pt 1):35-45Corzo G, Villegas E, Gomez-Lagunas F, Possani LD, Belokoneva OS, Nakajima T. Oxyopinins, large amphipathic peptides isolated from the venom of the wolf spider Oxyopes kitabensis with cytolytic properties and positive insecticidal cooperativity with spider neurotoxins. J Biol Chem. 2002 Jun 28;277(26):23627-37.Diaz P, D’Suze G, Salazar V, Sevcik C, Shannon JD, Sherman NE, et al. Antibacterial activity of six novel peptides from Tityus discrepans scorpion venom. A fluorescent probe study of microbial membrane Na+ permeability changes. Toxicon. 2009 Nov;54(6):802-17Miyashita M, Sakai A, Matsushita N, Hanai Y, Nakagawa Y, Miyagawa HA. Novel Amphipathic Linear Peptide with Both Insect Toxicity and Antimicrobial Activity from the Venom of the Scorpion Isometrus maculatus. Biosci Biotechnol Biochem. 2010;74(2):364-9Ramirez-Carreto S, Quintero-Hernandez V, Jimenez-Vargas JM, Corzo G, Possani LD, Becerril B, et al. Gene cloning and functional characterization of four novel antimicrobial-like peptides from scorpions of the family Vaejovidae. Peptides. 2012 Apr;34(2):290-5.Estrada-Gomez S, Cupitra NI, Arango WM, Munoz LJ. Intraspecific variation of centruroides edwardsii venom from two regions of Colombia. Toxins (Basel). 2014 Jul 14;6(7):2082-96Estrada-Gómez S, Vargas Muñoz LJ, Saldarriaga-Córdoba M, Quintana Castillo JC. Venom from Opisthacanthus elatus scorpion of Colombia, could be more hemolytic and less neurotoxic than thought. Acta Trop. 2016 Jan;153:70-8.. Barona J, Batista CV, Zamudio FZ, Gomez-Lagunas F, Wanke E, Otero R, et al. Proteomic analysis of the venom and characterization of toxins specific for Na+ - and K+ -channels from the Colombian scorpion Tityus pachyurus. Biochim Biophys Acta. 2006 Jan;1764(1):76-84Rincón-Cortés CA, Olamendi-Portugal T, Carcamo-Noriega EN, Santillán EG, Zuñiga FZ, Reyes-Montaño EA, et al. Structural and functional characterization of toxic peptides purified from the venom of the Colombian scorpion Tityus macrochirus. Toxicon. 2019 Nov;169:5-11.Guerrero-Vargas JA, Mourão CBF, Quintero-Hernández V, Possani LD, Schwartz EF. Identification and Phylogenetic Analysis of Tityus pachyurus and Tityus obscurus Novel Putative Na(+)-Channel Scorpion Toxins. PloS One. 2012 Feb 15;7:e30478.Otero R, Navio E, Cespedes FA, Nunez MJ, Lozano L, Moscoso ER, et al. Scorpion envenoming in two regions of Colombia: clinical, epidemiological and therapeutic aspects. Trans R Soc Trop Med Hyg. 2004 Dec;98(12):742- 50.Ward MJ, Ellsworth SA, Nystrom GS. A global accounting of medically significant scorpions: Epidemiology, major toxins, and comparative resources in harmless counterparts. Toxicon. 2018 Sep 1;151:137-55Gómez JP, Quintana JC, Arbeláez P, Fernández J, Silva JF, Barona J, et al. Picaduras por escorpión Tityus asthenes en Mutatá, Colombia: aspectos epidemiológicos, clínicos y toxinológicos. Biomedica. 2010;30(1):126-39.Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680-5.Doumas BT, Bayse DD, Borner DD, Carter RJ, Elevitch F, Garber CC, et al. A candidate Reference Method for determination of total protein in serum. II. Test for transferability. Clin Chem. 1981 Oct;27(10):1651-4Doumas BT, Bayse DD, Carter RJ, Peters Jr T, Schaffer R. A candidate Reference Method for determination of total protein in serum. I. Development and validation. Clin Chem. 1981 Oct;27(10):1642-50Zheng K, Wu L, He Z, Yang B, Yang Y. Measurement of the total protein in serum by biuret method with uncertainty evaluation. Measurement. 2017 Dec;112:16-21.. Istvan LJ, Istvan LS. GelAnalyzer 19.1. 2021.Fernandez J, Gutierrez JM, Angulo Y, Sanz L, Juarez P, Calvete JJ, et al. Isolation of an acidic phospholipase A2 from the venom of the snake Bothrops asper of Costa Rica: biochemical and toxicological characterization. Biochimie. 2010 Mar;92(3):273-83Chen C, Li Z, Huang H, Suzek BE, Wu CH, UniProt Consortiium. A fast Peptide Match service for UniProt Knowledgebase. Bioinformatics. 2013 Nov 1;29(21):2808-9.Wu CH, Yeh LSL, Huang H, Arminski L, Castro-Alvear J, Chen Y, et al. The Protein Information Resource. Nucleic Acids Res. 2003 Jan 1;31(1):345-7.Chen C, Li Z, Huang H, Suzek BE, Wu CH, Consortium U. A fast Peptide Match service for UniProt Knowledgebase. Bioinformatics. 2013 Nov 1;29(21):2808-9.. Wang G, Li X, Wang Z. APD3: the antimicrobial peptide database as a tool for research and education. Nucleic Acids Res. 2016 Jan 4;44(D1):D1087-93Estrada-Gomez S, Gomez-Rave L, Vargas-Munoz LJ, van der Meijden A. Characterizing the biological and biochemical profile of six different scorpion venoms from the Buthidae and Scorpionidae family. Toxicon. 2017 May;130:104-15Sharma PP, Fernández R, Esposito LA, González-Santillán E, Monod L. Phylogenomic resolution of scorpions reveals multilevel discordance with morphological phylogenetic signal. Proc Biol Sci. 2015 Apr 7;282(1804):20142953Saez NJ, Senff S, Jensen JE, Er SY, Herzig V, Rash LD, et al. Spidervenom peptides as therapeutics. Toxins (Basel). 2010 Dec;2(12):2851-71.. D’Suze G, Schwartz EF, Garcia-Gomez BI, Sevcik C, Possani LD. Molecular cloning and nucleotide sequence analysis of genes from a cDNA library of the scorpion Tityus discrepans. Biochimie. 2009 Aug;91(8):1010-9Batista CV, del Pozo L, Zamudio FZ, Contreras S, Becerril B, Wanke E, et al. Proteomics of the venom from the Amazonian scorpion Tityus cambridgei and the role of prolines on mass spectrometry analysis of toxins. J Chromatogr B Analyt Technol Biomed Life Sci. 2004 Apr 15;803(1):55-66.Batista CV, D’Suze G, Gomez-Lagunas F, Zamudio FZ, Encarnacion S, Sevcik C, et al. Proteomic analysis of Tityus discrepans scorpion venom and amino acid sequence of novel toxins. Proteomics. 2006 Jun;6(12):3718-27.Garcia-Calvo M, Leonard RJ, Novick J, Stevens SP, Schmalhofer W, Kaczorowski GJ, et al. Purification, characterization, and biosynthesis of margatoxin, a component of Centruroides margaritatus venom that selectively inhibits voltage-dependent potassium channels. J Biol Chem. 1993 Sep 5;268(25):18866-74Grissmer S, Nguyen AN, Aiyar J, Hanson DC, Mather RJ, Gutman GA, et al. Pharmacological characterization of five cloned voltage-gated K+ channels, types Kv1.1, 1.2, 1.3, 1.5, and 3.1, stably expressed in mammalian cell lines. Mol Pharmacol. 1994 Jun;45(6):1227-34.de Oliveira UC, Candido DM, Dorce VA, Junqueira-de-Azevedo Ide L. The transcriptome recipe for the venom cocktail of Tityus bahiensis scorpion. Toxicon. 2015 Mar;95:52-61.de Paula Santos-da-Silva A, Candido DM, Nencioni ALA, Kimura LF, Prezotto-Neto JP, Barbaro KC, et al. Some pharmacological effects of Tityus obscurus venom in rats and mice. Toxicon. 2017 Feb;126:51-8.Martin-Eauclaire MF, Pimenta AMC, Bougis PE, De Lima ME. Potassium channel blockers from the venom of the Brazilian scorpion Tityus serrulatus (Lutz and Mello, 1922). Toxicon. 2016 Sep 1;119:253-65.Vargas Munoz LJ, Estrada-Gomez S, Vasquez J. Toxinas de venenos de serpientes y escorpiones, una fuente natural de moleculas con actividad antimicrobiana. CURARE. 2015;2(2).Schwartz EF, Camargos TS, Zamudio FZ, Silva LP, Bloch C, Caixeta F, et al. Mass spectrometry analysis, amino acid sequence and biological activity of venom components from the Brazilian scorpion Opisthacanthus cayaporum. Toxicon. 2008 Jun 15;51(8):1499-1508Estrada-Gomez, S.; Vargas-Munoz, L.J.; Saldarriaga-Cordoba, M.; Cifuentes, Y.; Perafan, C. Identifying different transcribed proteins in the newly described Theraphosidae Pamphobeteus verdolaga. Toxicon. 2017 Apr;129:81-88.Cheng TC, Long RW, Wu YQ, Guo YB, Liu DL, Peng L, et al. Identification and characterization of toxins in the venom gland of the Chinese bird spider, Haplopelma hainanum, by transcriptomic analysis. Insect Sci. 2016 Jun;23(3):487-99. Jiang L, Peng L, Chen J, Zhang Y, Xiong X, Liang S. Molecular diversification based on analysis of expressed sequence tags from the venom glands of the Chinese bird spider Ornithoctonus huwena. Toxicon. 2008 Jun 15;51(8):1479-89.Yuan C, Jin Q, Tang X, Hu W, Cao R, Yang S, et al. Proteomic and peptidomic characterization of the venom from the Chinese bird spider, Ornithoctonus huwena Wang. J Proteome Res. 2007 Jul;6(7):2792-801.. Borges MH, Figueiredo SG, Leprevost FV, De Lima ME, Cordeiro MN, Diniz MR, et al. Venomous extract protein profile of Brazilian tarantula Grammostola iheringi: searching for potential biotechnological applications. J Proteomics. 2016 Mar 16;136:35-47Liao Z, Cao J, Li S, Yan X, Hu W, He Q, et al. Proteomic and peptidomic analysis of the venom from Chinese tarantula Chilobrachys jingzhao. Proteomics. 2007 Jun; 7(11):1892-1907santibáñez-López CE, Cid-Uribe JI, Batista CVF, Ortiz E, Possani LD. Venom Gland Transcriptomic and Proteomic Analyses of the Enigmatic Scorpion Superstitionia donensis (Scorpiones: Superstitioniidae), with Insights on the Evolution of Its Venom Components. Toxins (Basel). 2016 Dec;8(12):367.He Y, Zhao R, Di Z, Li Z, Xu X, Hong W, et al. Molecular diversity of Chaerilidae venom peptides reveals the dynamic evolution of scorpion venom components from Buthidae to non-Buthidae. J Proteomics. 2013 Aug 26;89:1-14Ma Y, He Y, Zhao R, Wu Y, Li W, Cao Z. Extreme diversity of scorpion venom peptides and proteins revealed by transcriptomic analysis: implication for proteome evolution of scorpion venom arsenal. J Proteomics. 2012 Feb 16;75(5):1563-76.PublicationORIGINALMS MS analysis of four scorpion venoms.pdfMS MS analysis of four scorpion venoms.pdfapplication/pdf2179244https://repository.ucc.edu.co/bitstreams/bcfed45e-e23e-478f-9472-f41799f78c61/download5b816c5b00df3e7a09d0f113b70c6c92MD51Licencia de us MS-MS.pdfLicencia de us MS-MS.pdfLicencia Usoapplication/pdf720026https://repository.ucc.edu.co/bitstreams/f0e9f340-b927-4480-b667-5929bd603874/download0f73d8bd806a4f0fd76160b9139d29c3MD53LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repository.ucc.edu.co/bitstreams/89768198-fc29-467f-8b97-147d7ba15707/download8a4605be74aa9ea9d79846c1fba20a33MD54THUMBNAILMS MS analysis of four scorpion venoms.pdf.jpgMS MS analysis of four scorpion venoms.pdf.jpgGenerated Thumbnailimage/jpeg5564https://repository.ucc.edu.co/bitstreams/33898e4c-1595-453d-9ae5-5bb5739c9842/download12a16ff50c10aa97c4aa34cccfadaf5cMD55Licencia de us MS-MS.pdf.jpgLicencia de us MS-MS.pdf.jpgGenerated Thumbnailimage/jpeg5277https://repository.ucc.edu.co/bitstreams/76dff0ad-0872-494e-9985-c0e64a3f1ee5/download720038c86964cb370c7ef7586608a622MD56TEXTMS MS analysis of four scorpion venoms.pdf.txtMS MS analysis of four scorpion venoms.pdf.txtExtracted texttext/plain57091https://repository.ucc.edu.co/bitstreams/07007a74-163b-44e9-bd73-7d97486c780e/download588171b3189ff95af6a5923817b96ea7MD57Licencia de us MS-MS.pdf.txtLicencia de us MS-MS.pdf.txtExtracted texttext/plain6005https://repository.ucc.edu.co/bitstreams/844288cf-375d-4948-a2ea-43b3c6cd68cf/download2171ebd84b7cf11a1346f58d6a6ca0c1MD5820.500.12494/46383oai:repository.ucc.edu.co:20.500.12494/463832024-08-10 22:47:32.921open.accesshttps://repository.ucc.edu.coRepositorio Institucional Universidad Cooperativa de Colombiabdigital@metabiblioteca.comTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=