Reinforced Portland cement porous scaffolds for load-bearing bone tissue engineering applications.
Modified Portland cement porous scaffolds with suitable characteristics for load-bearing bone tissue engineering applications were manufactured by combining the particulate leaching and foaming methods. Non-crosslinked polydimethylsiloxane was evaluated as a potential reinforcing material. The scaff...
- Autores:
-
Higuita-Castro, Natalia
Gallego-Perez, Daniel
Pelaez Vargas, Alejandro
García Quiroz, Felipe
Posada, Olga M
López, Luis E
Sarassa, Carlos A
Agudelo-Florez, Piedad
Monteiro, Fernando J
Litsky, Alan S
Hansford, Derek J
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2012
- Institución:
- Universidad Cooperativa de Colombia
- Repositorio:
- Repositorio UCC
- Idioma:
- OAI Identifier:
- oai:repository.ucc.edu.co:20.500.12494/41373
- Palabra clave:
- bone
cell-material interactions
composite/hard tissue
scaffolds
tissue engineering
- Rights
- closedAccess
- License
- http://purl.org/coar/access_right/c_14cb
Summary: | Modified Portland cement porous scaffolds with suitable characteristics for load-bearing bone tissue engineering applications were manufactured by combining the particulate leaching and foaming methods. Non-crosslinked polydimethylsiloxane was evaluated as a potential reinforcing material. The scaffolds presented average porosities between 70 and 80% with mean pore sizes ranging from 300 µm up to 5.0 mm. Non-reinforced scaffolds presented compressive strengths and elastic modulus values of 2.6 and 245 MPa, respectively, whereas reinforced scaffolds exhibited 4.2 and 443 MPa, respectively, an increase of ~62 and 80%. Portland cement scaffolds supported human osteoblast-like cell adhesion, spreading, and propagation (t = 1-28 days). Cell metabolism and alkaline phosphatase activity were found to be enhanced at longer culture intervals (t = 14 days). These results suggest the possibility of obtaining strong and biocompatible scaffolds for bone repair applications from inexpensive, yet technologically advanced materials such as Portland cement. |
---|